商务合作
动脉网APP
可切换为仅中文
AbstractLegumin A is a seed storage protein that provides nutrients for seed germination. The purpose of this study was to describe the structure and expression pattern of the EuLEGA gene in Eucommia ulmoides Oliver (E. ulmoides) and to infer its functional role. The 1287 bp coding sequence of the EuLEGA CDS of the EuLEGA gene, encoding a protein containing 428 amino acid residues, was cloned.
。本研究的目的是描述杜仲(E.ulmoides)中EuLEGA基因的结构和表达模式,并推断其功能作用。克隆了EuLEGA基因的EuLEGA CDS的1287 bp编码序列,该序列编码包含428个氨基酸残基的蛋白质。
The structure predicted that the protein belonged to the RmlC (deoxythymidine diphosphates, dTDP)-4-dehydrorhamnose 3,5-epimerase)-like cupin conserved domain family, which contains both RmlC, a key enzyme for the synthesis of rhamnose and legumin A. The overexpression (OE) vector of the EuLEGA gene was constructed and genetically transformed into tobacco and E.
该结构预测该蛋白质属于RmlC(脱氧胸苷二磷酸,dTDP)-4-脱氢核糖3,5-差向异构酶)样铜蛋白保守结构域家族,其中包含RmlC,RmlC是合成鼠李糖和豆类蛋白a的关键酶。构建了EuLEGA基因的过表达(OE)载体,并将其遗传转化到烟草和E中。
ulmoides; the RNA interference (RNAi) vector of the EuLEGA gene was constructed and genetically transformed into E. ulmoides; and the contents of legumin A and rhamnose were detected. The results showed that the EuLEGA gene could significantly increase the content of legumin A in transgenic tobacco leaves and transgenic E.
杜仲;构建EuLEGA基因的RNA干扰(RNAi)载体并将其遗传转化到杜仲中;并检测了豆科植物A和鼠李糖的含量。结果表明,EuLEGA基因能显著提高转基因烟草叶片和转基因E中豆科植物A的含量。
ulmoides regenerative buds, and the OE of this gene in E. ulmoides could promote an increase in rhamnose content. RNAi caused a significant decrease in the legumin A content in the regenerated buds of E. ulmoides. These was a significant increase in legumin A in the transgenic tobacco seeds, and these results indicate that the expression of the EuLEGA gene is closely related to the accumulation of legumin A.
杜仲再生芽,该基因在杜仲中的OE可以促进鼠李糖含量的增加。RNAi导致杜仲再生芽中豆科植物a含量显着降低。这些是转基因烟草种子中豆科植物a的显着增加,这些结果表明EuLEGA基因的表达与豆科植物a的积累密切相关。
Subcellular localization studies revealed that EuLEGA is localized to the cytoplasm with the vacuolar membrane. Analysis of the EuLEGA gene expression data revealed that the expression level of the EuLEGA gene in the samaras was significantly greater than that in the leaves and stems. In addition, th.
亚细胞定位研究表明,EuLEGA通过液泡膜定位于细胞质。对EuLEGA基因表达数据的分析表明,翅果中EuLEGA基因的表达水平显着高于叶片和茎中的表达水平。此外,th。
IntroductionA unique ancient tree species in China, Eucommia ulmoides Oliver (E. ulmoides), has multiple functions1,2,3. First, E. ulmoides is another important rubber-producing plant in addition to the rubber tree Hevea brasiliensis (H. brasiliensis). The molecular structure of E. ulmoides rubber is trans-1,4-polyisoprene, an isomer of the homeopathic 1,4-polyisoprene of H.
引言杜仲是中国特有的古树种,具有多种功能1,2,3。首先,除了橡胶树Hevea brasiliensis(H.brasiliensis)之外,杜仲是另一种重要的橡胶生产植物。杜仲橡胶的分子结构是反式-1,4-聚异戊二烯,是H的顺势疗法1,4-聚异戊二烯的异构体。
brasiliensis rubber4,5,6,7. E. ulmoides rubber has been widely used in many fields such as the environment, agriculture and medicine; its unique thermal stability, excellent mechanical properties and biodegradability make it a new type of material that plays an important role in sound insulation, tires and composite films8.
巴西橡胶4,5,6,7。E、 杜仲橡胶已广泛应用于环境、农业、医药等领域;它独特的热稳定性,优异的机械性能和生物降解性使其成为一种新型材料,在隔音,轮胎和复合薄膜中起着重要作用8。
Second, E. ulmoides has many pharmacological functions. The primary bioactive constituents of E. ulmoides include triterpenoids and flavonoids, among others. These key components exert therapeutic effects on osteoporosis by modulating bone marrow mesenchymal stem cells and osteoblasts to promote bone formation while concurrently inhibiting osteoclast-mediated bone resorption and adipocyte differentiation9.
。杜仲的主要生物活性成分包括三萜类化合物和类黄酮等。这些关键成分通过调节骨髓间充质干细胞和成骨细胞促进骨形成,同时抑制破骨细胞介导的骨吸收和脂肪细胞分化,对骨质疏松症产生治疗作用9。
In addition, many advances have been made in immune on E. ulmoides, and some studies have shown that E. ulmoides can increase immune function and protect liver function in mice and is expected to be applied in medical treatment10. Moreover, the use of E. ulmoides leaf extract as a dietary supplement has been demonstrated to augment the immune response, disease resistance capacity, and intestinal antioxidant capacity in tilapia (Oreochromis niloticus), chickens, and Scophthalmus maximus11,12,13.
此外,杜仲在免疫方面取得了许多进展,一些研究表明,杜仲可以增加小鼠的免疫功能并保护肝功能,有望应用于医学治疗10。此外,已经证明使用杜仲叶提取物作为膳食补充剂可以增强罗非鱼(尼罗罗非鱼),鸡和大菱鲆的免疫反应,抗病能力和肠道抗氧化能力11,12,13。
In recent years, E. ulmoides has been utilized in health care products such as black tea, green tea, oolong tea and other products, within the Chinese market14.The cupin protein superfam.
近年来,在中国市场上,杜仲已被用于保健产品,如红茶,绿茶,乌龙茶和其他产品14。铜蛋白superfam。
In this study, total RNA was extracted from the leaves of E. ulmoides seedlings, and the gene containing the conserved structural domain of the Cupin_RmlC-like superfamily (named EuLEGA) was identified from the E. ulmoides whole-genome annotation database constructed by our team. PCR primers were designed, the coding sequences were amplified using RT‒PCR, and the amplified CDSs were 1287 bp in length, encoding 428 amino acid residues.Analysis of the structural domains and properties of the protein encoded by the EuLEGA geneComparison of the NCBI E.
在这项研究中,从杜仲幼苗的叶片中提取总RNA,并从我们团队构建的杜仲全基因组注释数据库中鉴定出含有Cupin\u RmlC样超家族保守结构域(命名为EuLEGA)的基因。设计PCR引物,使用RT-PCR扩增编码序列,扩增的CDS长度为1287 bp,编码428个氨基酸残基。NCBI E的EuLEGA基因比较编码的蛋白质的结构域和特性分析。
ulmoides whole-genome annotation database revealed that the gene has four exons and three introns. Conserved structural domain analysis of EuLEGA revealed that the protein has a conserved structural domain belonging to the Cupin_RmIC-like superfamily, which has conserved structural domains catalysing both l-rhamnose synthase (RmlC) and the subunit of legumin 11S29.
尺蠖全基因组注释数据库显示该基因有四个外显子和三个内含子。EuLEGA的保守结构域分析表明,该蛋白具有属于Cupin\u RmIC样超家族的保守结构域,其具有催化l-鼠李糖合酶(RmlC)和豆类11S29亚基的保守结构域。
RmlC is the dTDP-l-rhamnose pathway's third enzyme that catalyses the synthesis of l-rhamnose from deoxythymidine diphosphate (dTDP)36, the legumin 11S subunit is a storage protein for seeds37. Physicochemical analysis of the EuLEGA protein revealed a molecular weight of 48.04 kDa, a theoretical isoelectric point of 9.52, and a molecular formula of C2088H3323N647O631S14.
RmlC是dTDP-l-鼠李糖途径的第三种酶,它催化脱氧胸苷二磷酸(dTDP)36合成l-鼠李糖,豆类11S亚基是种子的储存蛋白37。EuLEGA蛋白的物理化学分析显示分子量为48.04 kDa,理论等电点为9.52,分子式为C2088H3323N647O631S14。
The EuLEGA signal peptide was predicted to be 97.62% likely to be a signal peptide using the SignalP 4.1 or SignalP 5.0 Server (https://services.healthtech.dtu.dk/services/SignalP-5.0/); analysis of its transmembrane structural domains indicated that the protein has a transmembrane structural domain.Secondary structure analysis of the EuLEGA protein sequence using the NovoPro online analysis software (https://www.novoprolabs.com/protein-crystallography-service/) showed that the protein encoded by t.
使用SignalP 4.1或SignalP 5.0服务器预测EuLEGA信号肽可能是信号肽的可能性为97.62%(https://services.healthtech.dtu.dk/services/SignalP-5.0/);对其跨膜结构域的分析表明,该蛋白具有跨膜结构域。使用NovoPro在线分析软件对EuLEGA蛋白序列进行二级结构分析(https://www.novoprolabs.com/protein-crystallography-service/)表明由t编码的蛋白质。
Data availability
数据可用性
The E. ulmoides transcriptome database has been successfully uploaded to the NCBI database (https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_016647705.1/). The data that support the findings of this study are available from the corresponding author, [De-Gang Zhao], upon reasonable request.
杜仲转录组数据库已成功上传到NCBI数据库(https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_016647705.1/)。根据合理的要求,通讯作者[赵德刚]可以获得支持本研究结果的数据。
ReferencesLu, Y. et al. Combined analysis of the transcriptome and proteome of Eucommia ulmoides Oliv.(Duzhong) in response to Fusarium oxysporum. Frontiers in Chemistry. 10, 1053227 (2022).Article
。(杜仲)对尖孢镰刀菌的反应。化学前沿。101053227(2022)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Ren, N., Gong, W., Zhao, Y., Zhao, D. G. & Xu, Y. Innovation in sweet rice wine with high antioxidant activity: Eucommia ulmoides leaf sweet rice wine. Frontiers in nutrition. 9, 1108843 (2023).Article
Ren,N.,Gong,W.,Zhao,Y.,Zhao,D.G。和Xu,Y。具有高抗氧化活性的甜米酒的创新:杜仲叶甜米酒。营养前沿。91108843(2023)。文章
Google Scholar
谷歌学者
Zhao, Y., Liu, Y., Dong, X., Liu, J. J., & Zhao, D. G. Identification of a novel laccase gene EuLAC1 and its potential resistance against Botrytis cinerea. Transgenic Research. 31, 215–225 (2022).Article
Zhao,Y.,Liu,Y.,Dong,X.,Liu,J.J.,&Zhao,D.G.新型漆酶基因EuLAC1的鉴定及其对灰葡萄孢菌的潜在抗性。转基因研究。31215-225(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Bamba, T., Fukusaki, E., Nakazawa, Y. & Kobayashi, A. In-situ chemical analyses of trans-polyisoprene by histochemical staining and Fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver. Planta 215, 934–939 (2002).Article
。Planta 215934-939(2002)。文章
CAS
中科院
Google Scholar
谷歌学者
Nakazawa, Y. et al. Production of Eucommia-rubber from Eucommia ulmoides Oliv. (hardy rubber tree). Plant Biotechnol. 26, 71–79 (2009).Article
Nakazawa,Y.等人。用杜仲生产杜仲橡胶。(耐寒橡胶树)。植物生物技术。26,71-79(2009)。文章
CAS
中科院
Google Scholar
谷歌学者
Wang, J., Chen, X., Huang, X., Zhao, Y. & Zhao, D. Cloning and Function Identification of a Phytoene Desaturase Gene from Eucommia ulmoides. Phyton. 92, 0031–9457 (2023).Article
Wang,J.,Chen,X.,Huang,X.,Zhao,Y。&Zhao,D。杜仲八氢番茄红素去饱和酶基因的克隆和功能鉴定。植物。920031–9457(2023)。文章
Google Scholar
谷歌学者
Wang, L., Wang, R., Li, Y., Zhao, Y. & Zhao, D. Overexpression of ß-1, 4-Glucanase Gene EuEG1 Improves Micrografting Eucommia ulmoides. Phyton. 92, 0031–9457 (2023).Article
Wang,L.,Wang,R.,Li,Y.,Zhao,Y.&Zhao,D.ß-1,4-葡聚糖酶基因EuEG1的过表达改善了杜仲的显微嫁接。植物。920031–9457(2023)。文章
Google Scholar
谷歌学者
Wei, X., Peng, P., Peng, F. & Dong, J. Natural polymer Eucommia ulmoides rubber: A novel material. J. Agric. Food Chem. 69, 3797–3821 (2021).Article
Wei,X.,Peng,P.,Peng,F。&Dong,J。天然聚合物杜仲橡胶:一种新型材料。J、 农业。食品化学。693797-3821(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhang, C., Tan, L., Zhu, W., Yang, Z. Z. & Guo, M. Research progress on prevention and treatment of osteoporosis by Eucommia Ulmoides. Int. J. Clin. Exp. Med. Res. 6, 286–294 (2022).Article
Zhang,C.,Tan,L.,Zhu,W.,Yang,Z.Z.&Guo,M.杜仲防治骨质疏松症的研究进展。国际J.临床。《实验医学》第6286-294号决议(2022年)。文章
Google Scholar
谷歌学者
Xiong, Q. Y., Peng, C., Gao, J. H. & Xie, X. F. Comparative study among commercial Eucommia ulmoides Oliv. of different grades and Eucommia ulmoides Oliv. from Guangyuan on effects of immunity enhancement and liver protection. Nat. Prod. Res. Dev. 31, 9–16 (2019).
熊,Q.Y.,彭,C.,高,J.H。&Xie,X.F。商业杜仲的比较研究。不同等级的杜仲和杜仲。来自广元的免疫增强和肝脏保护作用。《自然产品研究》第31期,第9-16页(2019年)。
Google Scholar
谷歌学者
Zhang, B. L. et al. The effects of dietary Eucommia ulmoides Oliver on growth, feed utilization, antioxidant activity and immune responses of turbot (Scophthalmus maximus L.). Aquac. Nutr. 25, 367–376 (2019).Article
Zhang,B.L.等人。膳食杜仲对大菱鲆(Scophthalmus maximus L.)生长,饲料利用,抗氧化活性和免疫反应的影响。水族。营养。25367-376(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Hu, T. et al. Dietary Eucommia ulmoides extract alleviates the effect of cold stress on chick growth performance, antioxidant and immune ability. Animals 11, 3008 (2021).Article
Hu,T。等人。膳食杜仲提取物减轻了冷应激对雏鸡生长性能,抗氧化和免疫能力的影响。动物113008(2021)。文章
Google Scholar
谷歌学者
Huang, D. Y. et al. Dietary supplementation with Eucommia ulmoides leaf extract improved the intestinal antioxidant capacity, immune response, and disease resistance against Streptococcus agalactiae in genetically improved farmed tilapia (GIFT; Oreochromis niloticus). Antioxidants 11, 1800 (2022).Article .
Huang,D.Y.等人。膳食中添加杜仲叶提取物可改善遗传改良养殖罗非鱼(GIFT;尼罗罗非鱼)的肠道抗氧化能力,免疫反应和对无乳链球菌的抗病性。抗氧化剂111800(2022)。文章。
CAS
中科院
Google Scholar
谷歌学者
Bao, L. et al. A review of “ plant gold” Eucommia ulmoides Oliv: A medicinal and food homologous plant with economic value and prospect. Heliyon 10, 2405–8440 (2024).Article
Bao,L.等人,“植物黄金”杜仲综述:一种具有经济价值和前景的药用和食用同源植物。Heliyon 102405–8440(2024)。文章
Google Scholar
谷歌学者
Dunwell, J. M., Purvis, A. & Khuri, S. Cupins: The most functionally diverse protein superfamily?. Phytochemistry. 65, 7–17 (2004).Article
Dunwell,J.M.,Purvis,A。&Khuri,S.Cupins:功能最多样化的蛋白质超家族?。植物化学。65,7-17(2004)。文章
CAS
中科院
Google Scholar
谷歌学者
Dunwell, J. M., Culham, A., Carter, C. E., Sosa-Aguirre, C. R. & Goodenough, P. W. Evolution of functional diversity in the cupin superfamily. Trends Biochem. Sci. 26, 740–746 (2001).Article
Dunwell,J.M.,Culham,A.,Carter,C.E.,Sosa Aguirre,C.R。&Goodenough,P.W。cupin超家族功能多样性的进化。趋势生物化学。科学。26740-746(2001)。文章
CAS
中科院
Google Scholar
谷歌学者
Pirovani, C. P. et al. A sucrose binding protein homologue from soybean exhibits GTP-binding activity that functions independently of sucrose transport activity. Eur. J. Biochem. 269, 3998–4008 (2002).Article
Pirovani,C.P。等人。来自大豆的蔗糖结合蛋白同源物表现出GTP结合活性,其功能独立于蔗糖转运活性。Eur.J.生物化学。2693998-4008(2002)。文章
CAS
中科院
Google Scholar
谷歌学者
Dunwell, J. M. Cupins: A new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol. Genet. Eng. Rev. 15, 1–32 (1998).Article
Dunwell,J.M.Cupins:功能多样性蛋白质的新超家族,包括发芽蛋白和植物贮藏蛋白。生物技术。基因。《工程》第15版,第1-32页(1998年)。文章
CAS
中科院
Google Scholar
谷歌学者
Seymour, G. B., Østergaard, L., Chapman, N. H., Knapp, S. & Martin, C. Fruit development and ripening. Annu. Rev. Plant Biol. 64, 219–241 (2013).Article
Seymour,G.B.,Østergaard,L.,Chapman,N.H.,Knapp,S。&Martin,C。果实发育和成熟。年。植物生物学修订版。64219-241(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
Wang, T. et al. Characterization of peanut germin-like proteins, AhGLPs in plant development and defense. PLos One 8, e61722 (2013).Article
Wang,T.等人。花生发芽蛋白样蛋白AhGLPs在植物发育和防御中的角色塑造。PLos One 8,e61722(2013)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Xie, M. et al. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front. Plant Sci. 9, 1427 (2018).Article
Xie,M.等人。木质素生物合成的调节及其在生长防御权衡中的作用。正面。植物科学。91427(2018)。文章
Google Scholar
谷歌学者
Karlova, R., Boer, D., Hayes, S. & Testerink, C. Root plasticity under abiotic stress. Plant Physiol. 187, 1057–1070 (2021).Article
Karlova,R.,Boer,D.,Hayes,S。&Testerink,C。非生物胁迫下的根可塑性。植物生理学。1871057-1070(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Wright, D. J. & Boulter, D. Purification and subunit structure of legumin of Vicia faba L. (broad bean). Biochem. J. 141, 413–418 (1974).Article
Wright,D.J。&Boulter,D。蚕豆(蚕豆)豆类的纯化和亚基结构。生物化学。J、 141413-418(1974)。文章
CAS
中科院
Google Scholar
谷歌学者
Iwabuchi, S. & Yamauchi, F. Determination of glycinin and beta.-conglycinin in soybean proteins by immunological methods. J. Agric. Food Chem. 35, 200–205 (1987).Article
-通过免疫学方法检测大豆蛋白中的伴大豆球蛋白。J、 农业。食品化学。35200–205(1987)。文章
CAS
中科院
Google Scholar
谷歌学者
Saalbach, G. et al. Different legumin protein domains act as vacuolar targeting signals. Plant Cell 3, 695–708 (1991).CAS
Saalbach,G。等人。不同的豆类蛋白结构域充当液泡靶向信号。植物细胞3695-708(1991)。中科院
Google Scholar
谷歌学者
Bai, R. et al. Electron beam irradiation induced aggregation, structural and functional changes of soybean 11S globulin. Int. J. Biol. Macromol. 260, 129585 (2024).Article
。国际生物学杂志。大分子。260129585(2024)。文章
CAS
中科院
Google Scholar
谷歌学者
Bäumlein, H., Wobus, U., Pustell, J. & Kafatos, F. C. The legumin gene family: Structure of a B type gene of Vicia faba and a possible legumin gene specific regulatory element. Nucleic Acids Res. 14, 2707–2720 (1986).Article
Bäumlein,H.,Wobus,U.,Pustell,J。&Kafatos,F.C。豆类基因家族:蚕豆B型基因的结构和可能的豆类基因特异性调控元件。核酸研究142707-2720(1986)。文章
Google Scholar
谷歌学者
Gueguen, J., Anh, T. V. & François, S. Large-scale purification and characterisation of pea globulins. J. Sci. Food Agric. 35, 1024–1033 (1984).Article
Gueguen,J.,Anh,T.V。和François,S。豌豆球蛋白的大规模纯化和表征。J、 科学。粮食农业。351024-1033(1984)。文章
CAS
中科院
Google Scholar
谷歌学者
Angelina, A. et al. The lipid interaction capacity of Sin a 2 and Ara h 1, major mustard and peanut allergens of the cupin superfamily, endorses allergenicity. Allergy 71, 1284–1294 (2016).Article
Angelina,A。等人。cupin超家族的主要芥末和花生过敏原Sin A 2和Ara h 1的脂质相互作用能力支持过敏原性。过敏711284-1294(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Geiselhart, S., Hoffmann-Sommergruber, K. & Bublin, M. Tree nut allergens. Mol. Immunol. 100, 71–81 (2018).Article
Geiselhart,S.,Hoffmann-Sommergruber,K。&Bublin,M。树坚果过敏原。分子免疫。100,71-81(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Gómez-López, A., Fernández-Bravo, S., Nuñez-Borque, E. & Pérez, D. B. 11S globulin identified as a new bean allergen. J. Investig. Allergol. Clin. Immunol. 33, 309–311 (2023).Article
Gómez-López,A.,Fernández-Bravo,S.,Nuñez-Borque,E。&Pérez,D。B。11S球蛋白被鉴定为一种新的豆类过敏原。J.Investig。Allergol公司。临床。免疫。33309-311(2023)。文章
Google Scholar
谷歌学者
Li, L. et al. Covalent polyphenol with soybean 11S protein to develop hypoallergenic conjugates for potential immunotherapy. J. Funct. Foods 104, 105518 (2023).Article
Li,L。等人。将多酚与大豆11S蛋白共价,以开发用于潜在免疫疗法的低过敏性缀合物。J、 函数。食品104105518(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Yang, A., Yu, X., Zheng, A. & James, A. T. Rebalance between 7S and 11S globulins in soybean seeds of differing protein content and 11SA4. Food Chem. 210, 148–155 (2016).Article
Yang,A.,Yu,X.,Zheng,A.&James,A.T.在不同蛋白质含量和11SA4的大豆种子中重新平衡7S和11S球蛋白。食品化学。210148-155(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Krishnan, H. B. & Nelson, R. L. Proteomic analysis of high protein soybean (Glycine max) accessions demonstrates the contribution of novel glycinin subunits. J. Agric. Food Chem. 59, 2432–2439 (2011).Article
Krishnan,H.B。&Nelson,R.L。高蛋白大豆(Glycine max)种质的蛋白质组学分析证明了新型甘氨酸亚基的贡献。J、 农业。食品化学。592432-2439(2011)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhao, D. G. et al. Transcriptome data assembly and gene function annotation of female and male plants in Eucommia ulmoides. J. Mt. Agric. Biol. 34, 1–13 (2015).ADS
Zhao,D.G.等人。杜仲雌雄植物的转录组数据组装和基因功能注释。J、 农业山。生物学杂志34,1-13(2015)。广告
Google Scholar
谷歌学者
Giraud, M. F., Leonard, G. A., Field, R. A., Berlind, C. & Naismith, J. H. RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase. Nat. Struct. Biol. 7, 398–402 (2000).Article
Giraud,M.F.,Leonard,G.A.,Field,R.A.,Berlind,C.&Naismith,J.H.RmlC是dTDP-L-鼠李糖途径的第三种酶,是一类新的差向异构酶。自然结构。生物学7398-402(2000)。文章
CAS
中科院
Google Scholar
谷歌学者
Peng, I. C., Quass, D. W., Dayton, W. R. & Allen, C. E. The physicochemical and functional properties of soybean 11S globulin—A review. Cereal Chem. 61, 480–490 (1984).CAS
Peng,I.C.,Quass,D.W.,Dayton,W.R。&Allen,C.E。大豆11S球蛋白的物理化学和功能特性-综述。谷物化学。61480-490(1984)。中科院
Google Scholar
谷歌学者
Jin, T. et al. Crystal structure of prunin-1, a major component of the almond (Prunus dulcis) allergen amandin. J. Agric. Food Chem. 57, 8643–8651 (2009).Article
Jin,T.等人。杏仁(Prunus dulcis)过敏原amandin的主要成分prunin-1的晶体结构。J、 农业。食品化学。578643–8651(2009)。文章
CAS
中科院
Google Scholar
谷歌学者
Argos, P., Narayana, S. V. & Nielsen, N. C. Structural similarity between legumin and vicilin storage proteins from legumes. EMBO J. 4, 1111–1117 (1985).Article
Argos,P.,Narayana,S.V。&Nielsen,N.C。豆科植物中豆科植物和vicilin贮藏蛋白之间的结构相似性。EMBO J.41111–1117(1985)。文章
CAS
中科院
Google Scholar
谷歌学者
Shewry, P. R. & Casey, R. Seed proteins [M]// Seed proteins. Dordrecht: Springer Netherlands. 1–10, 17.060166.000553 (1999).Liu, Y. et al. Structure and function of seed storage proteins in faba bean (Vicia faba L.). 3 Biotech 7, 1–14 (2017).Article
Shewry,P.R。&Casey,R。种子蛋白[M]//种子蛋白。。1-10,17.060166.000553(1999)。Liu,Y。等人。蚕豆种子贮藏蛋白的结构和功能。3生物技术7,1-14(2017)。文章
Google Scholar
谷歌学者
Kawakatsu, T. & Takaiwa, F. Cereal seed storage protein synthesis: Fundamental processes for recombinant protein production in cereal grains. Plant Biotechnol. J. 8, 939–953 (2010).Article
Kawakatsu,T。&Takaiwa,F。谷物种子贮藏蛋白合成:谷物中重组蛋白生产的基本过程。植物生物技术。J、 。文章
CAS
中科院
Google Scholar
谷歌学者
Giraud, M. F. & Naismith, J. H. The rhamnose pathway. Curr. Opin. Struct. Biol. 10, 687–696 (2000).Article
Giraud,M.F。和Naismith,J.H。鼠李糖途径。货币。奥平。结构。生物学杂志10687-696(2000)。文章
CAS
中科院
Google Scholar
谷歌学者
Jiang, N., Dillon, F. M., Silva, A., Gomez-Cano, L. & Grotewold, E. Rhamnose in plants-from biosynthesis to diverse functions. Plant Sci. 302, 110687 (2021).Article
Jiang,N.,Dillon,F.M.,Silva,A.,Gomez-Cano,L。&Grotewold,E。鼠李糖在植物中从生物合成到多种功能。植物科学。302110687(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Tamara, L. et al. MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiol. 134, 296–306 (2004).Article
Tamara,L。等人粘液修饰的4编码一种假定的果胶生物合成酶,该酶由拟南芥种皮中的APETALA2,透明种皮GLABRA1和GLABRA2发育调节。植物生理学。134296-306(2004)。文章
Google Scholar
谷歌学者
Tandang-Silvas, M. R. G., Tecson-Mendoza, E. M., Mikami, B., Berlind, C. & Naismith, J. H. Molecular design of seed storage proteins for enhanced food physicochemical properties. Annu. Rev. Food Sci. Technol. 2, 59–73 (2011).Article
Tandang Silvas,M.R.G.,Tecson Mendoza,E.M.,Mikami,B.,Berlind,C.&Naismith,J.H。种子贮藏蛋白的分子设计,以增强食品的理化性质。年。食品科学评论。技术。2,59-73(2011)。文章
CAS
中科院
Google Scholar
谷歌学者
Kesari, P. et al. Structural, functional and evolutionary aspects of seed globulins. Protein Pept. Lett. 24, 267–277 (2017).Article
Kesari,P。等人。种子球蛋白的结构,功能和进化方面。蛋白质Pept。利特。24267-277(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Scott, M. P. et al. A protease responsible for post-translational cleavage of a conserved Asn-Gly linkage in glycinin, the major seed storage protein of soybean. Proc. Natl. Acad. Sci. 89, 658–662 (1992).Article
Scott,M.P.等人,一种蛋白酶,负责大豆主要种子贮藏蛋白大豆球蛋白中保守的Asn-Gly键的翻译后切割。程序。纳特尔。阿卡德。科学。89658-662(1992)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Hara-Nishimura, I., Shimada, T., Hiraiwa, N. & Nishimura, M. Vacuolar processing enzyme responsible for maturation of seed proteins. J. Plant Physiol. 145, 632–640 (1995).Article
Hara Nishimura,I.,Shimada,T.,Hiraiwa,N。&Nishimura,M。液泡加工酶负责种子蛋白的成熟。J、 植物生理学。145632-640(1995)。文章
CAS
中科院
Google Scholar
谷歌学者
Carpita, N. C. & Gibeaut, D. M. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30 (1993).Article
Carpita,N.C.&Gibeaut,D.M。开花植物初级细胞壁的结构模型:分子结构与生长过程中细胞壁物理性质的一致性。植物J.3,1-30(1993)。文章
CAS
中科院
Google Scholar
谷歌学者
Kawakatsu, T., Hirose, S., Yasuda, H. & Takaiwa, F. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol. 154, 1842–1854 (2010).Article
Kawakatsu,T.,Hirose,S.,Yasuda,H。&Takaiwa,F。减少水稻种子贮藏蛋白积累导致营养品质和贮藏细胞器形成的变化。植物生理学。1541842-1854(2010)。文章
CAS
中科院
Google Scholar
谷歌学者
Lamacchia, C., Shewry, P. R., Di, F. N., Forsyth, J. L. & Barcelo, P. Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J. Exp. Bot. 52, 243–250 (2001).Article
Lamacchia,C.,Shewry,P.R.,Di,F.N.,Forsyth,J.L。&Barcelo,P。转基因小麦种子中贮藏蛋白基因启动子的胚乳比活性。J、 附录52243-250(2001)。文章
CAS
中科院
Google Scholar
谷歌学者
Imoto, Y., Yamada, T., Kitamura, K. & Kanazawa, A. Spatial and temporal control of transcription of the soybean beta-conglycinin alpha subunit gene is conferred by its proximal promoter region and accounts for the unequal distribution of the protein during embryogenesis. Genes Genet Syst.
Imoto,Y.,Yamada,T.,Kitamura,K。&Kanazawa,A。大豆β-伴大豆球蛋白α亚基基因转录的时空控制由其近端启动子区域赋予,并解释了蛋白质在胚胎发生过程中的不均匀分布。基因Genet系统。
83, 469–476 (2008).Article .
83469-476(2008)。文章。
CAS
中科院
Google Scholar
谷歌学者
Ma, Q., Ma, B. Y., Mu, B. & Ma, H. Research progress on cloning and analysis of plant gene promoter. Chin. Agric. Digest Agric. Eng. 3, 23–29 (2018).
Ma,Q.,Ma,B.Y.,Mu,B。&Ma,H。植物基因启动子克隆和分析的研究进展。下巴。农业。消化农业。工程3,23-29(2018)。
Google Scholar
谷歌学者
Li, Z., Li, B., Zhao, Y. & Zhao, D. G. Cloning and characterization of the DIR1 promoter from Eucommia ulmoides Oliv and its response to hormonal and abiotic stress. Plant Cell Tissue Organ Cult. (PCTOC). 146, 313–322 (2021).Article
Li,Z.,Li,B.,Zhao,Y。&Zhao,D.G。杜仲DIR1启动子的克隆和表征及其对激素和非生物胁迫的反应。植物细胞组织器官培养。(PCTOC)。。文章
CAS
中科院
Google Scholar
谷歌学者
He, J., Wang, D., Zhang, J. & Wang, Y. Functional analysis of the fruit-specific promoter of VqSTS6 from the Chinese wild grape, Vitis quinquangularis. Agri Gene 1, 38–45 (2016).Article
He,J.,Wang,D.,Zhang,J。&Wang,Y。来自中国野生葡萄Vitis quinquangularis的VqSTS6果实特异性启动子的功能分析。Agri Gene 1,38-45(2016)。文章
Google Scholar
谷歌学者
Tian, S., Yin, X., Fu, P., Wu, W. & Lu, J. Ectopic expression of grapevine gene VaRGA1 in Arabidopsis improves resistance to downy mildew and Pseudomonas syringae pv. tomato DC3000 but increases susceptibility to Botrytis cinerea. Int. J. Mol. Sci. 21, 193 (2019).Article
Tian,S.,Yin,X.,Fu,P.,Wu,W。&Lu,J。葡萄基因VaRGA1在拟南芥中的异位表达提高了对霜霉病和丁香假单胞菌pv的抗性。番茄DC3000,但增加了对灰葡萄孢的易感性。Int.J.Mol.Sci。21193(2019)。文章
Google Scholar
谷歌学者
Boateng, I. D. A review of Ginkgo biloba L. seed’s protein; physicochemical properties, bioactivity, and allergic glycoprotein. Food Rev. Int. 39, 5215–5232 (2023).Article
Boateng,I.D。银杏种子蛋白质综述;理化性质,生物活性和过敏性糖蛋白。《食品评论》第395215-5232页(2023年)。文章
CAS
中科院
Google Scholar
谷歌学者
Guo, J. C., Bi, Y. P., Wei, Z. L., Zhang, G. Z. & Zhou, R. Study on the accumulation process of globulin components in soybean seed development. Acta Agric. Univ. Pekinen. 15, 5 (1989).
Guo,J.C.,Bi,Y.P.,Wei,Z.L.,Zhang,G.Z.&Zhou,R。大豆种子发育中球蛋白成分积累过程的研究。农业学报。北京大学。15,5(1989)。
Google Scholar
谷歌学者
Huang, L. et al. The ascorbate peroxidase APX1 is a direct target of a zinc finger transcription factor ZFP36 and a late embryogenesis abundant protein OsLEA5 interacts with ZFP36 to co-regulate OsAPX1 in seed germination in rice. Biochem. Biophys. Res. Commun. 495, 339–345 (2018).Article .
抗坏血酸过氧化物酶APX1是锌指转录因子ZFP36的直接靶标,晚期胚胎发生丰富的蛋白质OsLEA5与ZFP36相互作用,共同调节水稻种子萌发中的OsAPX1。生物化学。生物物理。。495339-345(2018)。文章。
CAS
中科院
Google Scholar
谷歌学者
Picha, D. H. HPLC determination of sugars in raw and baked sweet potatoes. J. Food Sci. 50, 1189–1190 (1985).Article
Picha,D.H。HPLC测定生红薯和烤红薯中的糖。J、 食品科学。501189-1190(1985)。文章
CAS
中科院
Google Scholar
谷歌学者
Suchkov, V. V., Popello, I. A., Grinberg, V. Y. & Tolstoguzov, V. B. Isolation and purification of 7 S and 11S globulins from broad beans and peas. J. Agric. Food Chem. 38, 92–95 (1990).Article
Suchkov,V.V.,Popello,I.A.,Grinberg,V.Y。和Tolstoguzov,V.B。从蚕豆和豌豆中分离和纯化7 S和11S球蛋白。J、 农业。食品化学。38,92-95(1990)。文章
CAS
中科院
Google Scholar
谷歌学者
Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).Article
Yoo,S.D.,Cho,Y.H。&Sheen,J。拟南芥叶肉原生质体:用于瞬时基因表达分析的多功能细胞系统。自然协议。21565-1572(2007)。文章
CAS
中科院
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by the National Natural Science Foundation of China (Molecular cloning and characterization of the genes encoding rubber particle proteins in Eucommia ulmoides No.31870285), the Guizhou Academy of Agricultural Sciences Talent Special Project Grant Number (2022-02 and 2023-02), the project of the Talent Office of Guizhou Province Grant Number (RCJD 2018-14), and the Guizhou Province High-level Innovative Talents Cultivation Project, Grant Number (2016-4003).Author informationAuthors and AffiliationsThe Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, ChinaLina Zheng & De-Gang ZhaoGuizhou Plant Conservation Technology Center, Biotechnology Institute of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou Province, ChinaDe-Gang ZhaoAuthorsLina ZhengView author publicationsYou can also search for this author in.
下载参考文献致谢这项工作得到了国家自然科学基金(杜仲橡胶颗粒蛋白编码基因的分子克隆和表征No.31870285),贵州省农业科学院人才专项资助号(2022-02和2023-02),贵州省人才办项目资助号(RCJD 2018-14)和贵州省高层次创新人才培养项目资助号(2016-4003)的支持。作者信息作者和所属单位贵州大学生命科学学院/农业生物工程研究所山地植物资源保护与种质创新重点实验室(教育部),贵阳,550025,贵州省,贵州省农业科学院生物技术研究所贵州植物保护技术中心,贵州省贵阳,550006,贵州省,中国赵德刚作者李娜ZhengView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarDe-Gang ZhaoView author publicationsYou can also search for this author in
PubMed Google ScholarDe Gang ZhaoView作者出版物您也可以在
PubMed Google ScholarContributionsZheng L. N. performed the experiment, analyzed the data, and wrote the initial draft of the paper. Zhao D. G. conceived and oversaw the project, supervising the experimental design, data analysis, and paper revision. All authors have read and agreed to the published version of the manuscript.Corresponding authorCorrespondence to.
PubMed Google ScholarContributionszhengL.N.进行了实验,分析了数据,并撰写了论文的初稿。Zhao D.G.构思并监督该项目,监督实验设计,数据分析和论文修订。所有作者均已阅读并同意稿件的发布版本。对应作者对应。
De-Gang Zhao.Ethics declarations
赵德刚。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleZheng, L., Zhao, DG. Cloning and functional characterization of the legumin A gene (EuLEGA) from Eucommia ulmoides Oliver.
转载和许可本文引用本文Zheng,L.,Zhao,DG。杜仲豆类蛋白A基因(EuLEGA)的克隆与功能鉴定。
Sci Rep 14, 14111 (2024). https://doi.org/10.1038/s41598-024-65020-5Download citationReceived: 04 February 2024Accepted: 16 June 2024Published: 19 June 2024DOI: https://doi.org/10.1038/s41598-024-65020-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 14111(2024)。https://doi.org/10.1038/s41598-024-65020-5Download引文接收日期:2024年2月4日接受日期:2024年6月16日发布日期:2024年6月19日OI:https://doi.org/10.1038/s41598-024-65020-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Keywords
关键词
Eucommia ulmoides
杜仲
Legumin ALegumin A-encoding geneTransgene
豆类ALegumin A编码基因转基因
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。