登录

癌症治疗的靶向细胞因子和趋化因子信号通路

Targeting cytokine and chemokine signaling pathways for cancer therapy

Nature 等信源发布 2024-07-22 06:54

可切换为仅中文


AbstractCytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments.

摘要细胞因子在调节免疫反应和细胞行为方面至关重要,在正常生理学和癌症等疾病的病理学中起着双重作用。这些分子,包括白细胞介素,干扰素,肿瘤坏死因子,趋化因子和生长因子,如TGF-β,VEGF和EGF,可以促进或抑制肿瘤生长,影响肿瘤微环境,并影响癌症治疗的疗效。

Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer.

针对这些途径的最新进展显示出有希望的治疗潜力,为调节免疫系统,抑制肿瘤进展和克服对常规疗法的抵抗力提供了新的策略。在这篇综述中,我们总结了目前对癌症中靶向细胞因子和趋化因子信号通路的理解和治疗意义。

By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention.

。该综述根据具体情况阐述了细胞因子作为肿瘤发生的启动子和抑制剂的双重性质,并讨论了这为治疗干预带来的挑战和机遇。

We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes.

我们还研究了靶向治疗的最新进展,包括单克隆抗体,双特异性抗体,受体抑制剂,融合蛋白,工程细胞因子变体及其对肿瘤生长,转移和肿瘤微环境的影响。此外,我们评估了将这些靶向治疗与其他治疗方式相结合以克服耐药性并改善患者预后的潜力。

Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- .

此外,我们还专注于正在进行的研究和临床试验,这些研究和临床试验对于促进我们对细胞因子的理解和应用至关重要。

IntroductionCytokines, which are typically polypeptides or glycoproteins with relatively small molecular weights (usually in the range of 6 to 70 kDa), regulate the functions, differentiation, proliferation, apoptosis, and survival of their target cells.1 When cytokines bind to receptors on target cells, they trigger intracellular signaling pathways to modulate gene transcription, thereby modifying various biological activities.

引言细胞因子通常是分子量相对较小(通常在6至70 kDa范围内)的多肽或糖蛋白,可调节其靶细胞的功能,分化,增殖,凋亡和存活。当细胞因子与靶细胞上的受体结合时,它们触发细胞内信号通路以调节基因转录,从而改变各种生物活性。

Target cells expressing specific sets of receptors interpret the information from different cytokines based on their concentration and timing of exposure.2 Diverse classes of cytokines, including interferons (IFNs), interleukins (ILs), tumor necrosis factor (TNF) superfamily, chemokines, and growth factors, play pivotal roles in homeostasis and diseases.3 It is well-established that an imbalanced cytokine profile contributes to cancer initiation and progression by inciting chronic inflammation and immune evasion (Fig.

表达特定受体组的靶细胞根据其浓度和暴露时间解释来自不同细胞因子的信息。2不同类型的细胞因子,包括干扰素(IFN),白细胞介素(ILs),肿瘤坏死因子(TNF)超家族,趋化因子和生长因子,在体内平衡和疾病中起着关键作用。众所周知,不平衡的细胞因子谱通过煽动慢性炎症和免疫逃避来促进癌症的发生和发展(图)。

1).4 Consequently, the manipulation or neutralization of abnormal cytokines in the tumor microenvironment (TME) presents a promising approach for the treatment of cancer patients.5,6Fig. 1Mechanisms of action of cytokines contributing to cancer progression. This figure illustrates the multifaceted roles of cytokines in cancer.

1) 因此,肿瘤微环境(TME)中异常细胞因子的操纵或中和为治疗癌症患者提供了一种有前途的方法[5,6]。1细胞因子促进癌症进展的作用机制。该图说明了细胞因子在癌症中的多方面作用。

The central diagram shows a tumor microenvironment with key processes labeled 1 through 6, indicating different aspects of cancer progression influenced by cytokines. Firstly, cytokines such as EGF, FGF, and IL-6 promote the proliferation and survival of tumor cells. Secondly, TGF-β, IL-1, IL-6, IL-8, and TNF contribute to the epithelial-mesenchymal transition (EMT) and maintenance of stemness in tumor cells, facilitating a more invasive phenotype.

中心图显示了具有标记为1至6的关键过程的肿瘤微环境,表明受细胞因子影响的癌症进展的不同方面。首先,细胞因子如EGF,FGF和IL-6促进肿瘤细胞的增殖和存活。。

Thirdly, VEGF, ANGPT2, IL-1, IL-6, and TNF drive the formatio.

第三,VEGF,ANGPT2,IL-1,IL-6和TNF驱动形成。

ReferencesLiu, C. et al. Cytokines: from clinical significance to quantification. Adv. Sci. 8, e2004433 (2021).Article

参考文献Liu,C。等人。细胞因子:从临床意义到定量。高级科学。8,e2004433(2021)。文章

Google Scholar

谷歌学者

Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019).Article

Berraondo,P。等。临床癌症免疫治疗中的细胞因子。Br.J.Cancer 120,6-15(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).Article

Propper,D.J。&Balkwill,F.R。利用细胞因子和趋化因子进行癌症治疗。国家修订临床。Oncol公司。19237-253(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lippitz, B. E. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 14, e218–e228 (2013).Article

Lippitz,B.E。癌症患者的细胞因子模式:系统评价。柳叶刀Oncol。14,e218–e228(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yi, M. et al. TGF-β: a novel predictor and target for anti-PD-1/PD-L1 therapy. Front. Immunol. 13, 1061394 (2022).Article

Yi,M。等人。TGF-β:抗PD-1/PD-L1治疗的新型预测因子和靶标。正面。免疫。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qin, S. et al. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J. Hematol. Oncol. 12, 27 (2019).Article

。J、 血液学。Oncol公司。12,27(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Waldmann, T. A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 10, a028472 (2018).Article

Waldmann,T.A。癌症免疫治疗中的细胞因子。冷泉兔。透视图。生物学杂志10,a028472(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gresser, I. & Bourali, C. Antitumor effects of interferon preparations in mice. J. Natl Cancer Inst. 45, 365–376, (1970).CAS

Gresser,I。&Bourali,C。干扰素制剂在小鼠中的抗肿瘤作用。J、 国家癌症研究所45365-376,(1970)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yu, R., Zhu, B. & Chen, D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell Mol. Life Sci. 79, 191 (2022).Article

Yu,R.,Zhu,B。&Chen,D。I型干扰素介导的肿瘤免疫及其在免疫治疗中的作用。细胞分子生命科学。79191(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kirkwood, J. M. et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol. 14, 7–17 (1996).Article

Kirkwood,J.M.等人,《干扰素α-2b辅助治疗高危切除皮肤黑色素瘤:东部肿瘤协作组试验EST 1684》。J、 临床。Oncol公司。14,7-17(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Groopman, J. E. et al. Recombinant alpha-2 interferon therapy for Kaposi’s sarcoma associated with the acquired immunodeficiency syndrome. Ann. Intern. Med. 100, 671–676, (1984).Article

Groopman,J.E。等人。重组α-2干扰素治疗与获得性免疫缺陷综合征相关的卡波西肉瘤。安,实习生。医学100671-676,(1984)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Golomb, H. M. et al. Alpha-2 interferon therapy of hairy-cell leukemia: a multicenter study of 64 patients. J. Clin. Oncol. 4, 900–905 (1986).Article

Golomb,H.M.等。α-2干扰素治疗毛细胞白血病:64例患者的多中心研究。J、 临床。Oncol公司。4900–905(1986)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Solal-Celigny, P. et al. Recombinant interferon alfa-2b combined with a regimen containing doxorubicin in patients with advanced follicular lymphoma. Groupe d’Etude des Lymphomes de l’Adulte. N. Engl. J. Med. 329, 1608–1614 (1993).Article

Solal-Celigny,P。等人。重组干扰素α-2b联合含阿霉素的方案治疗晚期滤泡性淋巴瘤。成人淋巴组。N、 英语。J、 医学3291608-1614(1993)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).Article

Atkins,M.B.等人,《转移性黑色素瘤患者的大剂量重组白细胞介素2治疗:对1985年至1993年间治疗的270例患者的分析》。J、 临床。Oncol公司。172105-2116(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 (1995).Article

Fyfe,G.等人。255例接受大剂量重组白细胞介素-2治疗的转移性肾细胞癌患者的治疗结果。J、 临床。Oncol公司。13688-696(1995)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kennedy, L. B. & Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 70, 86–104 (2020).Article

Kennedy,L.B。&Salama,A.K.S。癌症免疫治疗毒性综述。CA Cancer J.Clin。70,86-104(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Weng, J. et al. Exploring immunotherapy in colorectal cancer. J. Hematol. Oncol. 15, 95 (2022).Article

Weng,J。等人。探索结直肠癌的免疫治疗。J、 血液学。Oncol公司。15,95(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, Y. et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J. Hematol. Oncol. 15, 111 (2022).Article

Wang,Y.等。癌症免疫治疗中的免疫检查点调节剂:最新进展和新兴概念。J、 血液学。Oncol公司。15111(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Atallah-Yunes, S. A. & Robertson, M. J. Cytokine based immunotherapy for cancer and lymphoma: biology, challenges and future perspectives. Front. Immunol. 13, 872010 (2022).Article

Atalah Yunes,S.A。和Robertson,M.J。基于细胞因子的癌症和淋巴瘤免疫疗法:生物学,挑战和未来前景。正面。免疫。13872010(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545, (2001).Article

Balkwill,F。和Mantovani,A。炎症和癌症:回到Virchow?柳叶刀357539-545,(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Briukhovetska, D. et al. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer 21, 481–499 (2021).Article

Briukhovetska,D.等人,《癌症中的白细胞介素:从生物学到治疗》。《国家癌症评论》21481-499(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, T. et al. Bispecific antibody targeting TGF-β and PD-L1 for synergistic cancer immunotherapy. Front. Immunol. 14, 1196970 (2023).Article

Li,T。等人。靶向TGF-β和PD-L1的双特异性抗体用于协同癌症免疫疗法。正面。免疫。141196970(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yi, M. et al. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol. Cancer 18, 60 (2019).Article

Yi,M.等人。免疫检查点阻断和抗血管生成在癌症治疗中的协同作用。分子癌症18,60(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III interferons. Immunity 50, 907–923 (2019).Article

Lazear,H.M.,Schoggins,J.W。和Diamond,M.S。共享I型和III型干扰素的独特功能。免疫力50907-923(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Snell, L. M., McGaha, T. L. & Brooks, D. G. Type I interferon in chronic virus infection and cancer. Trends Immunol. 38, 542–557 (2017).Article

Snell,L.M.,McGaha,T.L。&Brooks,D.G。I型干扰素在慢性病毒感染和癌症中的作用。趋势免疫。38542-557(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e1512 (2016).Article

Benci,J.L。等人。肿瘤干扰素信号传导调节免疫检查点阻断的多基因抗性程序。细胞1671540-1554.e1512(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zitvogel, L. et al. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).Article

Zitvogel,L。等人。抗癌免疫中的I型干扰素。国家免疫修订版。15405-414(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Duong, E. et al. Type I interferon activates MHC class I-dressed CD11b(+) conventional dendritic cells to promote protective anti-tumor CD8(+) T cell immunity. Immunity 55, 308–323.e309 (2022).Article

Duong,E。等人。I型干扰素激活MHC I类修饰的CD11b(+)常规树突状细胞,以促进保护性抗肿瘤CD8(+)T细胞免疫。免疫力55308–323.e309(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ilander, M. et al. Enlarged memory T-cell pool and enhanced Th1-type responses in chronic myeloid leukemia patients who have successfully discontinued IFN-α monotherapy. PLoS ONE 9, e87794 (2014).Article

Ilander,M.等人在成功停止IFN-α单药治疗的慢性粒细胞白血病患者中扩大了记忆T细胞库并增强了Th1型反应。PLoS ONE 9,e87794(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guillot, B. et al. The expression of cytotoxic mediators is altered in mononuclear cells of patients with melanoma and increased by interferon-alpha treatment. Br. J. Dermatol. 152, 690–696 (2005).Article

Guillot,B。等人。细胞毒性介质的表达在黑色素瘤患者的单核细胞中发生改变,并通过干扰素α治疗而增加。Br.J.皮肤病。152690-696(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Papewalis, C. et al. IFN-alpha skews monocytes into CD56+-expressing dendritic cells with potent functional activities in vitro and in vivo. J. Immunol. 180, 1462–1470 (2008).Article

Papewalis,C。等人。IFN-α将单核细胞倾斜成表达CD56+的树突状细胞,在体外和体内具有强大的功能活性。J、 免疫。1801462-1470(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Crouse, J. et al. Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. Immunity 40, 961–973 (2014).Article

Crouse,J。等人。I型干扰素保护T细胞免受活化受体NCR1介导的NK细胞攻击。免疫力40961-973(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bacher, N. et al. Interferon-α suppresses cAMP to disarm human regulatory T cells. Cancer Res. 73, 5647–5656 (2013).Article

Bacher,N。等人。干扰素-α抑制cAMP以解除人类调节性T细胞。癌症研究735647-5656(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fung, K. Y. et al. Interferon-ε protects the female reproductive tract from viral and bacterial infection. Science 339, 1088–1092 (2013).Article

Fung,K.Y.等人。干扰素-ε保护女性生殖道免受病毒和细菌感染。科学3391088-1092(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marks, Z. R. C. et al. Interferon-ε is a tumour suppressor and restricts ovarian cancer. Nature 620, 1063–1070 (2023).Article

。自然6201063-1070(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Holicek, P. et al. Type I interferon and cancer. Immunol. Rev. 321, 115–127 (2024).Article

Holicek,P。等人。I型干扰素与癌症。免疫。第321115-127版(2024年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Terawaki, S. et al. IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J. Immunol. 186, 2772–2779 (2011).Article

Terawaki,S。等人。IFN-α直接促进程序性细胞死亡-1转录并限制T细胞介导的免疫的持续时间。J、 免疫。1862772-2779(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jacquelot, N. et al. Sustained type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. 29, 846–861 (2019).Article

Jacquelot,N。等人。持续的I型干扰素信号传导是抵抗PD-1阻断的机制。Cell Res.29846–861(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nan, J., Wang, Y., Yang, J. & Stark, G. R. IRF9 and unphosphorylated STAT2 cooperate with NF-κB to drive IL6 expression. Proc. Natl Acad. Sci. USA 115, 3906–3911 (2018).Article

Nan,J.,Wang,Y.,Yang,J。&Stark,G.R。IRF9和未磷酸化的STAT2与NF-κB协同驱动IL6表达。程序。国家科学院。科学。美国1153906-3911(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Musella, M. et al. Type I IFNs promote cancer cell stemness by triggering the epigenetic regulator KDM1B. Nat. Immunol. 23, 1379–1392 (2022).Article

Musella,M。等人。I型干扰素通过触发表观遗传调节因子KDM1B促进癌细胞干性。自然免疫。231379-1392(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tjandra, S. S. et al. IFN-{beta} signaling positively regulates tumorigenesis in aggressive fibromatosis, potentially by modulating mesenchymal progenitors. Cancer Res. 67, 7124–7131 (2007).Article

Tjandra,S.S.等人,IFN-{β}信号传导可能通过调节间充质祖细胞来正向调节侵袭性纤维瘤病的肿瘤发生。癌症研究677124-7131(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yi, M. et al. Exploiting innate immunity for cancer immunotherapy. Mol. Cancer 22, 187 (2023).Article

Yi,M.等人。利用先天免疫进行癌症免疫治疗。摩尔癌症22187(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

García-Martínez, E. et al. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 7, e1433982 (2018).Article

García-Martínez,E.等人,《试验观察:重组细胞因子对癌症治疗的免疫刺激》。肿瘤免疫学7,e1433982(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Eggermont, A. M. et al. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J. Clin. Oncol. 30, 3810–3818 (2012).Article

Eggermont,A.M.等人。聚乙二醇干扰素α-2b辅助治疗与切除的III期黑色素瘤观察的随机III期临床试验EORTC 18991的长期结果。J、 临床。Oncol公司。303810-3818(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Moschos, S. J. et al. Neoadjuvant treatment of regional stage IIIB melanoma with high-dose interferon alfa-2b induces objective tumor regression in association with modulation of tumor infiltrating host cellular immune responses. J. Clin. Oncol. 24, 3164–3171 (2006).Article

Moschos,S.J.等人。用大剂量干扰素α-2b对区域IIIB期黑色素瘤进行新辅助治疗可诱导客观的肿瘤消退,并调节肿瘤浸润的宿主细胞免疫反应。J、 临床。Oncol公司。243164-3171(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Simonsson, B. et al. Combination of pegylated IFN-α2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia. Blood 118, 3228–3235 (2011).Article

。血液1183228-3235(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Burchert, A. et al. Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J. Clin. Oncol. 28, 1429–1435 (2010).Article

Burchert,A。等人。慢性粒细胞白血病患者用伊马替尼加干扰素α诱导治疗后,干扰素α维持的持续分子反应。J、 临床。Oncol公司。281429-1435(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hu, B. et al. IFNα Potentiates Anti-PD-1 Efficacy by Remodeling Glucose Metabolism in the Hepatocellular Carcinoma Microenvironment. Cancer Discov. 12, 1718–1741 (2022).Article

Hu,B。等人。IFNα通过重塑肝细胞癌微环境中的葡萄糖代谢来增强抗PD-1功效。癌症发现。121718-1741(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Davar, D. et al. Phase Ib/II study of pembrolizumab and pegylated-interferon alfa-2b in advanced melanoma. J. Clin. Oncol. 36, Jco1800632 (2018).Article

Davar,D。等人。pembrolizumab和聚乙二醇化干扰素α-2b在晚期黑色素瘤中的Ib/II期研究。J、 临床。Oncol公司。36,Jco1800632(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Blaauboer, A., Sideras, K., van Eijck, C. H. J. & Hofland, L. J. Type I interferons in pancreatic cancer and development of new therapeutic approaches. Crit. Rev. Oncol. Hematol. 159, 103204 (2021).Article

Blaauboer,A.,Sideras,K.,van Eijck,C.H.J。&Hofland,L.J。I型干扰素在胰腺癌中的作用和新治疗方法的发展。暴击。修订版Oncol。血液学。159103204(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bialek-Waldmann, J. K., Heuser, M., Ganser, A. & Stripecke, R. Monocytes reprogrammed with lentiviral vectors co-expressing GM-CSF, IFN-α2 and antigens for personalized immune therapy of acute leukemia pre- or post-stem cell transplantation. Cancer Immunol. Immunother. 68, 1891–1899 (2019).Article .

Bialek-Waldmann,J.K.,Heuser,M.,Ganser,A。&Stripecke,R。用共表达GM-CSF,IFN-α2和抗原的慢病毒载体重编程单核细胞,用于干细胞移植前后急性白血病的个性化免疫治疗。癌症免疫。免疫疗法。681891-1899(2019)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bracci, L., Proietti, E. & Belardelli, F. IFN-alpha and novel strategies of combination therapy for cancer. Ann. N. Y Acad. Sci. 1112, 256–268, (2007).Article

Bracci,L.,Proietti,E。&Belardelli,F。IFN-α和癌症联合治疗的新策略。安·N·Y·阿卡德。科学。1112256-268,(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hauschild, A., Kähler, K. C., Schäfer, M. & Fluck, M. Interdisciplinary management recommendations for toxicity associated with interferon-alfa therapy. J. Dtsch Dermatol. Ges. 6, 829–837 (2008). 829-838.Article

Hauschild,A.,Kähler,K.C.,Schäfer,M。&Fluck,M。关于干扰素α治疗相关毒性的跨学科管理建议。J、 Dtsch皮肤病。通用电气。6829-837(2008)。829-838.文章

PubMed

PubMed

Google Scholar

谷歌学者

Fu, Y., Tang, R. & Zhao, X. Engineering cytokines for cancer immunotherapy: a systematic review. Front. Immunol. 14, 1218082 (2023).Article

Fu,Y.,Tang,R。&Zhao,X。癌症免疫治疗的工程细胞因子:系统综述。正面。免疫。14128082(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jin, S. et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target Ther. 7, 39 (2022).Article

Jin,S.等人。用于癌症治疗的新兴治疗性抗体衍生物。信号传输管。目标Ther。7,39(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cao, X. et al. Next generation of tumor-activating type I IFN enhances anti-tumor immune responses to overcome therapy resistance. Nat. Commun. 12, 5866 (2021).Article

。国家公社。125866(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Escobar, G. et al. Genetic engineering of hematopoiesis for targeted IFN-α delivery inhibits breast cancer progression. Sci. Transl. Med. 6, 217ra213 (2014).Article

Escobar,G。等人。靶向IFN-α递送的造血基因工程抑制乳腺癌进展。科学。翻译。医学杂志6217RA213(2014)。文章

Google Scholar

谷歌学者

Carta, L. et al. Engineering of macrophages to produce IFN-gamma in response to hypoxia. J. Immunol. 166, 5374–5380 (2001).Article

Carta,L.等人。巨噬细胞工程以产生IFN-γ以应对缺氧。J、 免疫。1665374-5380(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jiang, W., Zhang, C., Tian, Z. & Zhang, J. hIFN-α gene modification augments human natural killer cell line anti-human hepatocellular carcinoma function. Gene Ther. 20, 1062–1069 (2013).Article

Jiang,W.,Zhang,C.,Tian,Z。&Zhang,J。hIFN-α基因修饰增强人自然杀伤细胞系抗人肝细胞癌功能。基因疗法。201062-1069(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hashimoto, H. et al. Type I IFN gene delivery suppresses regulatory T cells within tumors. Cancer Gene Ther. 21, 532–541 (2014).Article

Hashimoto,H。等人。I型IFN基因递送抑制肿瘤内的调节性T细胞。癌症基因治疗。21532-541(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chin, E. N., Sulpizio, A. & Lairson, L. L. Targeting STING to promote antitumor immunity. Trends Cell Biol. 33, 189–203 (2023).Article

Chin,E.N.,Sulpizio,A。&Lairson,L.L。靶向STING以促进抗肿瘤免疫力。趋势细胞生物学。33189-203(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yi, M. et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol. Cancer 21, 28 (2022).Article

Yi,M。等人。PD-1/PD-L1阻断的组合策略:当前进展和未来方向。分子癌症21,28(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).Article

Burdette,D.L。等人。STING是环状di-GMP的直接先天免疫传感器。自然478515-518(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gao, P. et al. Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).Article

Gao,P。等人。环状[G(2',5’)pA(3',5’)P]是由DNA激活的环状GMP-AMP合酶产生的后生动物第二信使。细胞1531094-1107(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ablasser, A. et al. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).Article

Ablasser,A。等人,cGAS产生一个2'-5'-连接的环状二核苷酸第二信使,激活STING。自然498380-384(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).Article

Liu,S。等人。先天免疫衔接蛋白MAVS,STING和TRIF的磷酸化诱导IRF3活化。科学347,aaa2630(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Abe, T. & Barber, G. N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 88, 5328–5341 (2014).Article

。J、 维罗尔。885328-5341(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nakamura, T. et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J. Immunother. Cancer 9, e002852 (2021).Article

Nakamura,T。等人。STING激动剂负载的脂质纳米颗粒通过NK细胞活化克服黑色素瘤肺转移中的抗PD-1抗性。J、 免疫疗法。癌症9,e002852(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ding, L. et al. STING agonism overcomes STAT3-mediated immunosuppression and adaptive resistance to PARP inhibition in ovarian cancer. J. Immunother. Cancer 11, e005627 (2023).Article

丁,L。等人。STING激动剂克服了STAT3介导的免疫抑制和卵巢癌对PARP抑制的适应性抗性。J、 免疫疗法。癌症11,e005627(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, S. J. et al. STING activation normalizes the intraperitoneal vascular-immune microenvironment and suppresses peritoneal carcinomatosis of colon cancer. J. Immunother. Cancer 9, e002195 (2021).Article

Lee,S.J。等人。STING激活使腹膜内血管免疫微环境正常化并抑制结肠癌的腹膜癌病。J、 免疫疗法。癌症9,e002195(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramanjulu, J. M. et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439–443 (2018).Article

Ramanjulu,J.M.等人。具有全身活性的酰胺基苯并咪唑STING受体激动剂的设计。自然564439-443(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yi, M. et al. Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: a novel immune cocktail therapy for non-inflamed tumors. J. Hematol. Oncol. 15, 142 (2022).Article

Yi,M.等人。口服STING激动剂MSA-2和抗TGF-β/PD-L1双特异性抗体YM101的组合:一种用于非发炎肿瘤的新型免疫鸡尾酒疗法。J、 血液学。Oncol公司。15142(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yi, M. et al. Combine and conquer: manganese synergizing anti-TGF-β/PD-L1 bispecific antibody YM101 to overcome immunotherapy resistance in non-inflamed cancers. J. Hematol. Oncol. 14, 146 (2021).Article

Yi,M.等人联合征服:锰协同抗TGF-β/PD-L1双特异性抗体YM101克服非发炎癌症的免疫治疗耐药性。J、 血液学。Oncol公司。14146(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pan, B. S. et al. An orally available non-nucleotide STING agonist with antitumor activity. Science. 369, eaba6098 (2020).Wu, Y. T. et al. Tumor-targeted delivery of a STING agonist improvescancer immunotherapy. Proc. Natl Acad. Sci. USA 119, e2214278119 (2022).Article

Pan,B.S.等人。一种具有抗肿瘤活性的口服非核苷酸STING激动剂。科学。369,eaba6098(2020)。Wu,Y.T.等人。STING激动剂的肿瘤靶向递送改善了癌症免疫疗法。程序。国家科学院。科学。美国119,e2214278119(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, N. et al. STING agonist promotes CAR T cell trafficking and persistence in breast cancer. J. Exp. Med. 218, e20200844 (2021).Lu, Q. et al. Activation of the cGAS-STING pathway combined with CRISPR-Cas9 gene editing triggering long-term immunotherapy. Biomaterials 291, 121871 (2022).Article .

Xu,N。等人。STING激动剂促进CAR T细胞运输和乳腺癌的持续存在。J、 实验医学218,e20200844(2021)。Lu,Q。等人。cGAS-STING途径的激活与CRISPR-Cas9基因编辑相结合,引发长期免疫治疗。生物材料291121871(2022)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Meric-Bernstam, F. et al. Combination of the STING agonist MIW815 (ADU-S100) and PD-1 inhibitor spartalizumab in advanced/metastatic solid tumors or lymphomas: an open-label, multicenter, phase Ib study. Clin. Cancer Res. 29, 110–121 (2023).Article

Meric-Bernstam,F。等人。STING激动剂MIW815(ADU-S100)和PD-1抑制剂斯巴他珠单抗在晚期/转移性实体瘤或淋巴瘤中的组合:一项开放标签,多中心,Ib期研究。临床。癌症研究29110-121(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meric-Bernstam, F. et al. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clin. Cancer Res. 28, 677–688 (2022).Article

Meric-Bernstam,F。等人。肿瘤内STING激动剂MIW815(ADU-S100)在晚期/转移性实体瘤或淋巴瘤患者中的I期剂量递增试验。临床。癌症研究28677-688(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Luke, J. J. et al. Phase I study of SYNB1891, an engineered E. coli nissle strain expressing STING agonist, with and without atezolizumab in advanced malignancies. Clin. Cancer Res. 29, 2435–2444 (2023).Article

Luke,J.J.等人,SYNB1891(一种表达STING激动剂的工程化大肠杆菌nissle菌株)的I期研究,在晚期恶性肿瘤中有或没有atezolizumab。临床。癌症研究292435-2444(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lv, M. et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 30, 966–979 (2020).Article

Lv,M。等人。锰通过cGAS-STING对抗肿瘤免疫反应至关重要,并提高了临床免疫疗法的疗效。Cell Res.30966–979(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fang, L. et al. Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer. Acta Pharm. Sin. B 12, 353–363 (2022).Article

。药学学报。B 12353-363(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nagato, T., Lee, Y. R., Harabuchi, Y. & Celis, E. Combinatorial immunotherapy of polyinosinic-polycytidylic acid and blockade of programmed death-ligand 1 induce effective CD8 T-cell responses against established tumors. Clin. Cancer Res. 20, 1223–1234, (2014).Article

Nagato,T.,Lee,Y.R.,Harabuchi,Y。&Celis,E。聚肌苷酸-聚胞苷酸的组合免疫疗法和程序性死亡配体1的阻断诱导针对已建立肿瘤的有效CD8 T细胞应答。临床。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, T. et al. Discrepant antitumor efficacies of three CpG oligodeoxynucleotide classes in monotherapy and co-therapy with PD-1 blockade. Pharm. Res. 161, 105293 (2020).Article

Li,T。等人。三种CpG寡脱氧核苷酸类在单药治疗和与PD-1阻断剂联合治疗中的抗肿瘤效果不同。《药学》第161105293号决议(2020年)。文章

CAS

中科院

Google Scholar

谷歌学者

Wang, S. et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc. Natl Acad. Sci. USA 113, E7240–E7249 (2016).Article

。程序。国家科学院。科学。美国113,E7240–E7249(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiang, Y. et al. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J. Hematol. Oncol. 16, 8 (2023).Article

Jiang,Y。等人。利用RIG-I样受体途径进行癌症免疫治疗。J、 血液学。Oncol公司。16,8(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, J., Wu, M. & Liu, Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front. Immunol. 14, 1190333 (2023).Article

Han,J.,Wu,M。&Liu,Z。IFN-γ信号传导和反应失调:肿瘤免疫治疗的障碍。正面。免疫。141190333(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).Article

Ivashkiv,L.B。IFNγ:信号传导,表观遗传学以及在免疫,代谢,疾病和癌症免疫治疗中的作用。国家免疫修订版。18545-558(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gocher, A. M., Workman, C. J. & Vignali, D. A. A. Interferon-γ: teammate or opponent in the tumour microenvironment? Nat. Rev. Immunol. 22, 158–172 (2022).Article

Gocher,A.M.,Workman,C.J.&Vignali,D.A.A.干扰素-γ:肿瘤微环境中的队友还是对手?国家免疫修订版。22158-172(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tau, G. Z. et al. Regulation of IFN-gamma signaling is essential for the cytotoxic activity of CD8(+) T cells. J. Immunol. 167, 5574–5582 (2001).Article

Tau,G.Z.等人。IFN-γ信号传导的调节对于CD8(+)T细胞的细胞毒活性至关重要。J、 免疫。1675574-5582(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Song, M. et al. Low-dose IFNγ induces tumor cell stemness in tumor microenvironment of non-small cell lung cancer. Cancer Res. 79, 3737–3748 (2019).Article

Song,M。等人。低剂量IFNγ在非小细胞肺癌的肿瘤微环境中诱导肿瘤细胞干性。癌症研究793737-3748(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jorgovanovic, D., Song, M., Wang, L. & Zhang, Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark. Res. 8, 49 (2020).Article

Jorgovanovic,D.,Song,M.,Wang,L。&Zhang,Y。IFN-γ在肿瘤进展和消退中的作用:综述。生物标志物第8、49号决议(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mojic, M., Takeda, K. & Hayakawa, Y. The dark side of IFN-γ: its role in promoting cancer immunoevasion. Int. J. Mol. Sci. 19, 89 (2017).Article

Mojic,M.,Takeda,K。&Hayakawa,Y。IFN-γ的黑暗面:其在促进癌症免疫逃逸中的作用。Int.J.Mol.Sci。19,89(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Castro, F. et al. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847 (2018).Article

Castro,F。等人。干扰素γ处于肿瘤免疫监视或逃避的十字路口。正面。免疫。9847(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pujade-Lauraine, E. et al. Intraperitoneal recombinant interferon gamma in ovarian cancer patients with residual disease at second-look laparotomy. J. Clin. Oncol. 14, 343–350 (1996).Article

Pujade-Lauraine,E.等。第二次剖腹手术后残留疾病的卵巢癌患者腹腔注射重组干扰素-γ。J、 临床。Oncol公司。14343-350(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Windbichler, G. H. et al. Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br. J. Cancer 82, 1138–1144 (2000).Article

Windbichler,G.H.等人,《干扰素γ在卵巢癌一线治疗中的作用:一项随机III期临床试验》。《癌症杂志》821138-1144(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alberts, D. S. et al. Randomized phase 3 trial of interferon gamma-1b plus standard carboplatin/paclitaxel versus carboplatin/paclitaxel alone for first-line treatment of advanced ovarian and primary peritoneal carcinomas: results from a prospectively designed analysis of progression-free survival.

Alberts,D.S.等人。干扰素γ-1b加标准卡铂/紫杉醇与单独卡铂/紫杉醇一线治疗晚期卵巢癌和原发性腹膜癌的随机3期临床试验:前瞻性设计的无进展生存分析结果。

Gynecol. Oncol. 109, 174–181 (2008).Article .

妇科。Oncol公司。。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gleave, M. E. et al. Interferon gamma-1b compared with placebo in metastatic renal-cell carcinoma. Canadian Urologic Oncology Group. N. Engl. J. Med. 338, 1265–1271 (1998).Article

Glave,M.E.等人在转移性肾细胞癌中干扰素γ-1b与安慰剂的比较。加拿大泌尿肿瘤组。N、 英语。J、 医学3381265-1271(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schiller, J. H. et al. Eastern cooperative group trial of interferon gamma in metastatic melanoma: an innovative study design. Clin. Cancer Res. 2, 29–36 (1996).CAS

。临床。癌症研究2,29-36(1996)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wiesenfeld, M. et al. Controlled clinical trial of interferon-gamma as postoperative surgical adjuvant therapy for colon cancer. J. Clin. Oncol. 13, 2324–2329 (1995).Article

Wiesenfeld,M。等人。干扰素γ作为结肠癌术后手术辅助治疗的对照临床试验。J、 临床。Oncol公司。132324-2329(1995)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Larson, R. C. et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 604, 563–570 (2022).Article

Larson,R.C。等人。CAR T细胞杀伤需要实体瘤而非液体肿瘤中的IFNγR途径。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).Article

与IFN-γ相关的mRNA谱可预测对PD-1阻断的临床反应。J、 临床。投资。1272930-2940(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Higgs, B. W. et al. Interferon gamma messenger RNA signature in tumor biopsies predicts outcomes in patients with non-small cell lung carcinoma or urothelial cancer treated with durvalumab. Clin. Cancer Res. 24, 3857–3866 (2018).Article

Higgs,B.W.等人,《肿瘤活检中的干扰素γ信使RNA标记预测用durvalumab治疗的非小细胞肺癌或尿路上皮癌患者的预后》。临床。癌症研究243857-3866(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Reijers, I. L. M. et al. IFN-γ signature enables selection of neoadjuvant treatment in patients with stage III melanoma. J. Exp. Med. 220, e20221952 (2023).Article

Reijers,I.L.M.等人,IFN-γ特征可以选择III期黑色素瘤患者的新辅助治疗。J、 实验医学220,e20221952(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gao, J. et al. Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell 167, 397–404.e399 (2016).Article

Gao,J.等人。肿瘤细胞中IFN-γ途径基因的缺失是抗CTLA-4治疗耐药的机制。细胞167397-404.e399(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, S. et al. Systemic interferon-γ increases MHC class I expression and T-cell infiltration in cold tumors: results of a phase 0 clinical trial. Cancer Immunol. Res. 7, 1237–1243 (2019).Article

Zhang,S。等人。全身性干扰素-γ增加冷肿瘤中MHC I类表达和T细胞浸润:0期临床试验的结果。癌症免疫。第71237-1243号决议(2019年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, M. et al. Interferon gamma inhibits CXCL8-CXCR2 axis mediated tumor-associated macrophages tumor trafficking and enhances anti-PD1 efficacy in pancreatic cancer. J. Immunother. Cancer 8, e000308 (2020).Article

Zhang,M。等人。干扰素γ抑制CXCL8-CXCR2轴介导的肿瘤相关巨噬细胞肿瘤运输并增强胰腺癌中的抗PD1功效。J、 免疫疗法。癌症8,e000308(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zibelman, M. et al. A phase 1 study of nivolumab in combination with interferon-gamma for patients with advanced solid tumors. Nat. Commun. 14, 4513 (2023).Article

Zibelman,M.等人。nivolumab联合干扰素γ治疗晚期实体瘤患者的1期研究。国家公社。144513(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schroeder, B. A. et al. Histiocyte predominant myocarditis resulting from the addition of interferon gamma to cyclophosphamide-based lymphodepletion for adoptive cellular therapy. J. Immunother. Cancer 8, e000247 (2020).Article

。J、 免疫疗法。癌症8,e000247(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morgan, D. A., Ruscetti, F. W. & Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193, 1007–1008 (1976).Article

Morgan,D.A.,Ruscetti,F.W。&Gallo,R。来自正常人骨髓的T淋巴细胞的选择性体外生长。科学1931007-1008(1976)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).Article

Liao,W.,Lin,J.X。&Leonard,W.J。白细胞介素-2处于效应反应,耐受和免疫治疗的十字路口。豁免38,13-25(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ko, B. et al. Rethinking oncologic treatment strategies with interleukin-2. Cells 12, 1316 (2023).Article

Ko,B.等人。用白细胞介素-2重新思考肿瘤治疗策略。细胞121316(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ross, S. H. & Cantrell, D. A. Signaling and function of interleukin-2 in T lymphocytes. Annu. Rev. Immunol. 36, 411–433 (2018).Article

Ross,S.H。&Cantrell,D.A。白细胞介素-2在T淋巴细胞中的信号传导和功能。年。免疫修订版。36411-433(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290, 92–97 (2000).Article

Lanzavecchia,A。&Sallusto,F。T淋巴细胞反应的动力学:中间体,效应物和记忆细胞。科学290,92-97(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).Article

Boyman,O。&Sprent,J。白细胞介素-2在免疫系统稳态和激活过程中的作用。国家免疫修订版。12180-190(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sakaguchi, S. et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).Article

Sakaguchi,S.等人。由表达IL-2受体α链(CD25)的活化T细胞维持的免疫自身耐受。自我耐受的单一机制的崩溃会导致各种自身免疫性疾病。J、 免疫。1551151-1164(1995)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hernandez, R., Põder, J., LaPorte, K. M. & Malek, T. R. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 22, 614–628 (2022).Article

Hernandez,R.,Põder,J.,LaPorte,K.M。和Malek,T.R。工程IL-2用于自身免疫和癌症的免疫治疗。国家免疫修订版。22614-628(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lisiero, D. N., Soto, H., Liau, L. M. & Prins, R. M. Enhanced sensitivity to IL-2 signaling regulates the clinical responsiveness of IL-12-primed CD8(+) T cells in a melanoma model. J. Immunol. 186, 5068–5077 (2011).Article

Lisiero,D.N.,Soto,H.,Liau,L.M。&Prins,R.M。增强对IL-2信号传导的敏感性调节黑色素瘤模型中IL-12引发的CD8(+)T细胞的临床反应性。J、 免疫。1865068-5077(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985).Article

Rosenberg,S.A.等人对转移性癌症患者全身施用自体淋巴因子激活的杀伤细胞和重组白细胞介素-2的观察。N、 英语。J、 医学3131485-1492(1985)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rosenberg, S. A., Yang, J. C., White, D. E. & Steinberg, S. M. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann. Surg. 228, 307–319 (1998).Article

Rosenberg,S.A.,Yang,J.C.,White,D.E。&Steinberg,S.M。用高剂量白细胞介素-2治疗的转移性癌症患者完全反应的持久性:鉴定介导反应的抗原。《外科杂志》228307-319(1998)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).Article

Rosenberg,S.A。IL-2:第一种有效的人类癌症免疫疗法。J、 免疫。1925451-5458(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Skrombolas, D. & Frelinger, J. G. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev. Clin. Immunol. 10, 207–217 (2014).Article

Skrombolas,D。&Frelinger,J.G。挑战和开发解决方案,以增加IL-2治疗在肿瘤治疗中的益处。专家Rev.Clin。免疫。10207-217(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Doberstein, S. K. Bempegaldesleukin (NKTR-214): a CD-122-biased IL-2 receptor agonist for cancer immunotherapy. Expert Opin. Biol. Ther. 19, 1223–1228 (2019).Article

Doberstein,S.K。Bempegaldesleukin(NKTR-214):一种CD-122偏向的IL-2受体激动剂,用于癌症免疫治疗。。生物疗法。191223-1228(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bentebibel, S. E. et al. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 9, 711–721 (2019).Article

Bentebibel,S.E.等人首次对晚期或转移性实体瘤患者的新型IL2Rβγ偏向细胞因子NKTR-214进行人体研究和生物标志物分析。癌症发现。9711-721(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Diab, A. et al. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov. 10, 1158–1173 (2020).Article

Diab,A.等人,《Bempegaldesleukin(NKTR-214)联合nivolumab治疗晚期实体瘤:安全性、有效性和免疫激活的I期剂量递增研究》(PIVOT-02)。癌症发现。101158-1173(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lopes, J. E. et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J. Immunother. Cancer 8, e000673 (2020).Article

Lopes,J.E.等人,《ALKS 4230:一种新型工程化IL-2融合蛋白,具有改善的癌症免疫治疗细胞选择性。J、 免疫疗法。癌症8,e000673(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lopes, J. E. et al. Pharmacokinetics and pharmacodynamic effects of nemvaleukin alfa, a selective agonist of the intermediate-affinity IL-2 receptor, in cynomolgus monkeys. J. Pharm. Exp. Ther. 379, 203–210 (2021).Article

Lopes,J.E.等人。nemvaleukin alfa(一种中等亲和力IL-2受体的选择性激动剂)在食蟹猴中的药代动力学和药效学作用。J、 药物实验。379203-210(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Pan, Y. et al. Nemvaleukin alfa, a novel engineered IL-2 fusion protein, drives antitumor immunity and inhibits tumor growth in small cell lung cancer. J. Immunother. Cancer 10, e004913 (2022).Article

Pan,Y.等人Nemvaleukin alfa是一种新型工程化IL-2融合蛋白,可驱动抗肿瘤免疫并抑制小细胞肺癌的肿瘤生长。J、 免疫疗法。癌症10,e004913(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boyman, O. & Arenas-Ramirez, N. Development of a novel class of interleukin-2 immunotherapies for metastatic cancer. Swiss Med. Wkly 149, w14697 (2019).PubMed

Boyman,O。&Arenas-Ramirez,N。开发一类用于转移性癌症的新型白细胞介素-2免疫疗法。瑞士医学Wkly 149,w14697(2019)。PubMed出版社

Google Scholar

谷歌学者

Vaishampayan, U. N. et al. Nemvaleukin alfa monotherapy and in combination with pembrolizumab in patients (pts) with advanced solid tumors: ARTISTRY-1. J. Clin. Oncol. 40, 2500–2500 (2022).Article

Vaishampayan,U.N.等人。Nemvaleukin alfa单药治疗和与pembrolizumab联合治疗晚期实体瘤患者:ARTISTRY-1。J、 临床。Oncol公司。402500–2500(2022)。文章

Google Scholar

谷歌学者

Tichet, M. et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8(+) T cells and reprogramming macrophages. Immunity 56, 162–179.e166 (2023).Article

Tichet,M。等人。双特异性PD1-IL2v和抗PD-L1通过增强干细胞样肿瘤反应性CD8(+)T细胞和重编程巨噬细胞来破坏肿瘤免疫抗性。免疫力56162–179.e166(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Piper, M. et al. Simultaneous targeting of PD-1 and IL-2Rβγ with radiation therapy inhibits pancreatic cancer growth and metastasis. Cancer Cell 41, 950–969.e956 (2023).Article

。癌细胞41950–969.e956(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ren, Z. et al. Selective delivery of low-affinity IL-2 to PD-1+ T cells rejuvenates antitumor immunity with reduced toxicity. J. Clin. Invest. 132, e153604 (2022).Niederlova, V., Tsyklauri, O., Kovar, M. & Stepanek, O. IL-2-driven CD8(+) T cell phenotypes: implications for immunotherapy.

Ren,Z。等人。选择性地将低亲和力IL-2递送至PD-1+T细胞可恢复抗肿瘤免疫力并降低毒性。J、 临床。投资。132,e153604(2022)。Niederlova,V.,Tsyklauri,O.,Kovar,M。&Stepanek,O。IL-2驱动的CD8(+)T细胞表型:对免疫疗法的影响。

Trends Immunol. 44, 890–901 (2023).Article .

趋势免疫。44890-901(2023)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Codarri Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8(+) T cells. Nature 610, 161–172 (2022).Article

Codarri-Deak,L。等人。PD-1-顺式IL-2R激动剂从干细胞样CD8(+)T细胞产生更好的效应物。自然610161-172(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rosen, D. B. et al. TransCon IL-2 β/γ: a novel long-acting prodrug with sustained release of an IL-2Rβ/γ-selective IL-2 variant with improved pharmacokinetics and potent activation of cytotoxic immune cells for the treatment of cancer. J. Immunother. Cancer 10, e004991 (2022).Article .

Rosen,D.B.等人。TransCon IL-2β/γ:一种新型长效前药,可持续释放IL-2Rβ/γ选择性IL-2变体,具有改善的药代动力学和有效激活细胞毒性免疫细胞以治疗癌症。J、 免疫疗法。癌症10,e004991(2022)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saraiva, M. & O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170–181 (2010).Article

Saraiva,M。&O'Garra,A。免疫细胞产生IL-10的调节。国家免疫修订版。10170-181(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bermúdez-Morales, V. H. et al. IL-10 expression is regulated by HPV E2 protein in cervical cancer cells. Mol. Med. Rep. 4, 369–375 (2011).PubMed

Bermúdez-Morales,V.H.等人。IL-10的表达受宫颈癌细胞中HPV E2蛋白的调节。Mol.Med.Rep.4369–375(2011)。PubMed出版社

Google Scholar

谷歌学者

Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).Article

Moore,K.W.,de Waal Malefyt,R.,Coffman,R.L。&O'Garra,A。白细胞介素-10和白细胞介素-10受体。年。免疫修订版。19683-765(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Murray, P. J. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629, (2007).Article

Murray,P.J。JAK-STAT信号通路:输入和输出整合。J、 免疫。1782623-2629,(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Murray, P. J. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr. Opin. Pharm. 6, 379–386 (2006).Article

Murray,P.J。了解和利用内源性白细胞介素-10/STAT3介导的抗炎反应。货币。奥平。Pharm.6379-386(2006)。文章

CAS

中科院

Google Scholar

谷歌学者

Wang, X., Wong, K., Ouyang, W. & Rutz, S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb. Perspect. Biol. 11, a028548 (2019).Article

Wang,X.,Wong,K.,Ouyang,W。&Rutz,S。靶向IL-10家族细胞因子治疗人类疾病。冷泉兔。透视图。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Waal Malefyt, R. et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J. Exp. Med. 174, 915–924 (1991).Article .

de Waal Malefyt,R。等人。白细胞介素10(IL-10)和病毒IL-10通过下调II类主要组织相容性复合物表达来降低单核细胞的抗原呈递能力,从而强烈降低抗原特异性人T细胞增殖。J、 实验医学174915-924(1991)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Taga, K. & Tosato, G. IL-10 inhibits human T cell proliferation and IL-2 production. J. Immunol. 148, 1143–1148 (1992).Article

Taga,K。&Tosato,G。IL-10抑制人T细胞增殖和IL-2产生。J、 免疫。1481143-1148(1992)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brooks, D. G., Walsh, K. B., Elsaesser, H. & Oldstone, M. B. IL-10 directly suppresses CD4 but not CD8 T cell effector and memory responses following acute viral infection. Proc. Natl Acad. Sci. USA 107, 3018–3023 (2010).Article

Brooks,D.G.,Walsh,K.B.,Elsaesser,H。&Oldstone,M.B。IL-10在急性病毒感染后直接抑制CD4但不抑制CD8 T细胞效应物和记忆反应。程序。国家科学院。科学。美国1073018–3023(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Emmerich, J. et al. IL-10 directly activates and expands tumor-resident CD8(+) T cells without de novo infiltration from secondary lymphoid organs. Cancer Res. 72, 3570–3581 (2012).Article

Emmerich,J。等人。IL-10直接激活和扩增肿瘤驻留的CD8(+)T细胞,而不会从次级淋巴器官从头浸润。癌症研究723570-3581(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Salkeni, M. A. & Naing, A. Interleukin-10 in cancer immunotherapy: from bench to bedside. Trends Cancer 9, 716–725 (2023).Article

Salkeni,M.A。&Naing,A。癌症免疫治疗中的白细胞介素-10:从长凳到床边。趋势癌症9716-725(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Naing, A. et al. Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J. Clin. Oncol. 34, 3562–3569 (2016).Article

Naing,A。等人。聚乙二醇化重组人白细胞介素-10(AM0010)在晚期实体瘤患者中的安全性,抗肿瘤活性和免疫激活。J、 临床。Oncol公司。343562-3569(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Naing, A. et al. Pegilodecakin combined with pembrolizumab or nivolumab for patients with advanced solid tumours (IVY): a multicentre, multicohort, open-label, phase 1b trial. Lancet Oncol. 20, 1544–1555 (2019).Article

Naing,A。等人。Pegilodecakin联合pembrolizumab或nivolumab治疗晚期实体瘤(IVY)患者:一项多中心,多队列,开放标签的1b期临床试验。柳叶刀Oncol。201544-1555(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Spigel, D. et al. Randomized phase 2 studies of checkpoint inhibitors alone or in combination with pegilodecakin in patients with metastatic NSCLC (CYPRESS 1 and CYPRESS 2). J. Thorac. Oncol. 16, 327–333 (2021).Article

Spigel,D.等人。转移性NSCLC患者(CYPRESS 1和CYPRESS 2)中单独或联合使用检查点抑制剂的随机2期研究。J、 胸部。Oncol公司。16327-333(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hecht, J. R. et al. Randomized phase III study of FOLFOX alone or with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer that progressed after gemcitabine (SEQUOIA). J. Clin. Oncol. 39, 1108–1118 (2021).Article

Hecht,J.R.等人对吉西他滨(SEQUOIA)治疗后进展的转移性胰腺癌患者进行了FOLFOX单独或与pegilodecakin联合作为二线治疗的随机III期研究。J、 临床。Oncol公司。391108-1118(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qiao, J. et al. Targeting tumors with IL-10 prevents dendritic cell-mediated CD8(+) T cell apoptosis. Cancer Cell 35, 901–915.e904 (2019).Article

Qiao,J。等人。用IL-10靶向肿瘤可防止树突状细胞介导的CD8(+)T细胞凋亡。癌细胞35901-915.e904(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gorby, C. et al. Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses. Sci. Signal. 13, eabc0653 (2020).Article

。科学。信号。13,eabc0653(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chard, L. S. et al. A vaccinia virus armed with interleukin-10 is a promising therapeutic agent for treatment of murine pancreatic cancer. Clin. Cancer Res. 21, 405–416 (2015).Article

携带白细胞介素-10的痘苗病毒是一种很有前景的治疗鼠胰腺癌的药物。临床。癌症研究21405-416(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Baganizi, D. R. et al. Interleukin-10 conjugation to carboxylated PVP-coated silver nanoparticles for improved stability and therapeutic efficacy. Nanomaterials (Basel) 7, 165 (2017).Article

Baganizi,D.R.等人。白细胞介素-10与羧化PVP包被的银纳米颗粒的结合,以提高稳定性和治疗效果。纳米材料(巴塞尔)7165(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kobayashi, M. et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170, 827–845 (1989).Article

Kobayashi,M。等人。自然杀伤细胞刺激因子(NKSF)的鉴定和纯化,NKSF是一种对人淋巴细胞具有多种生物学作用的细胞因子。J、 实验医学170827-845(1989)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chua, A. O. et al. Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. J. Immunol. 153, 128–136 (1994).Article

Chua,A.O.等人。人IL-12受体成分的表达克隆。与gp130具有很强同源性的细胞因子受体超家族的新成员。J、 免疫。153128-136(1994)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Desai, B. B. et al. IL-12 receptor. II. Distribution and regulation of receptor expression. J. Immunol. 148, 3125–3132 (1992).Article

Desai,B.B.等人,IL-12受体。二。受体表达的分布和调节。J、 免疫。1483125–3132(1992)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Goriely, S., Neurath, M. F. & Goldman, M. How microorganisms tip the balance between interleukin-12 family members. Nat. Rev. Immunol. 8, 81–86 (2008).Article

Goriely,S.,Neurath,M.F。和Goldman,M。微生物如何打破白细胞介素-12家族成员之间的平衡。国家免疫修订版。8,81-86(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zou, J., Presky, D. H., Wu, C. Y. & Gubler, U. Differential associations between the cytoplasmic regions of the interleukin-12 receptor subunits beta1 and beta2 and JAK kinases. J. Biol. Chem. 272, 6073–6077 (1997).Article

Zou,J.,Presky,D.H.,Wu,C.Y。&Gubler,U。白细胞介素-12受体亚基β1和β2的细胞质区域与JAK激酶之间的差异关联。J、 生物。化学。2726073-6077(1997)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).Article

Trinchieri,G。白细胞介素-12和先天抵抗和适应性免疫的调节。国家免疫修订版。3133-146(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Billerbeck, E. et al. Insufficient interleukin-12 signalling favours differentiation of human CD4(+) and CD8(+) T cells into GATA-3(+) and GATA-3(+) T-bet(+) subsets in humanized mice. Immunology 143, 202–218 (2014).Article

Billerbeck,E。等人,白细胞介素-12信号传导不足有利于人源化小鼠中人CD4(+)和CD8(+)T细胞分化为GATA-3(+)和GATA-3(+)T-bet(+)亚群。免疫学143202-218(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Atkins, M. B. et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin. Cancer Res. 3, 409–417 (1997).CAS

Atkins,M.B.等。晚期恶性肿瘤患者静脉注射重组人白细胞介素12的I期评估。临床。癌症研究3409-417(1997)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Leonard, J. P. et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90, 2541–2548 (1997).CAS

Leonard,J.P.等人。单剂量白细胞介素-12暴露对白细胞介素-12相关毒性和干扰素γ产生的影响。血液902541-2548(1997)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cirella, A. et al. Novel strategies exploiting interleukin-12 in cancer immunotherapy. Pharm. Ther. 239, 108189 (2022).Article

Cirella,A。等人。在癌症免疫治疗中利用白细胞介素-12的新策略。药剂师。239108189(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Caruso, M. et al. Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma. Proc. Natl Acad. Sci. USA 93, 11302–11306 (1996).Article

Caruso,M。等人。腺病毒介导的白细胞介素-12基因治疗转移性结肠癌。程序。国家科学院。科学。美国9311302–11306(1996)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pañeda, A. et al. Effect of adeno-associated virus serotype and genomic structure on liver transduction and biodistribution in mice of both genders. Hum. Gene Ther. 20, 908–917 (2009).Article

Pañeda,A。等人。腺相关病毒血清型和基因组结构对两性小鼠肝脏转导和生物分布的影响。嗯。吉恩·瑟。20908-917(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, J. et al. Cloning of human IL-12 p40 and p35 DNA into the Semliki Forest virus vector: expression of IL-12 in human tumor cells. Gene Ther. 4, 367–374 (1997).Article

Zhang,J。等。将人IL-12 p40和p35 DNA克隆到Semliki森林病毒载体中:IL-12在人肿瘤细胞中的表达。基因疗法。4367-374(1997)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ghouse, S. M. et al. Oncolytic herpes simplex virus encoding IL12 controls triple-negative breast cancer growth and metastasis. Front. Oncol. 10, 384 (2020).Article

Ghouse,S.M.等人。编码IL12的溶瘤单纯疱疹病毒控制三阴性乳腺癌的生长和转移。正面。Oncol公司。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zitvogel, L. et al. Construction and characterization of retroviral vectors expressing biologically active human interleukin-12. Hum. Gene Ther. 5, 1493–1506 (1994).Article

Zitvogel,L。等人。表达生物活性人白细胞介素-12的逆转录病毒载体的构建和表征。嗯。吉恩·瑟。51493-1506(1994)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, X. et al. Viral vector-based gene therapy. Int J. Mol. Sci. 24, 7736 (2023).Article

Li,X。等。基于病毒载体的基因治疗。Int J.Mol.Sci。247736(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barton, K. N. et al. Phase I trial of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for the treatment of metastatic pancreatic cancer. Mol. Ther. Oncolyt. 20, 94–104 (2021).Article

Barton,K.N.等人。溶瘤腺病毒介导的细胞毒性和白细胞介素-12基因治疗转移性胰腺癌的I期临床试验。摩尔热。Oncolyt公司。20,94-104(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Sangro, B. et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J. Clin. Oncol. 22, 1389–1397 (2004).Article

Sangro,B。等人。肿瘤内注射编码白细胞介素-12的腺病毒治疗晚期消化道肿瘤的I期临床试验。J、 临床。Oncol公司。221389-1397(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Watanabe, M. et al. Intradermal delivery of IL-12 naked DNA induces systemic NK cell activation and Th1 response in vivo that is independent of endogenous IL-12 production. J. Immunol. 163, 1943–1950 (1999).Article

Watanabe,M。等人。皮内递送IL-12裸DNA诱导体内系统性NK细胞活化和Th1应答,这与内源性IL-12产生无关。J、 免疫。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Salem, M. L. et al. Review: novel nonviral delivery approaches for interleukin-12 protein and gene systems: curbing toxicity and enhancing adjuvant activity. J. Interferon Cytokine Res. 26, 593–608 (2006).Article

Salem,M.L.等人综述:白细胞介素-12蛋白和基因系统的新型非病毒递送方法:抑制毒性和增强佐剂活性。J、 干扰素细胞因子研究26593-608(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Anwer, K. et al. Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer. Gene Ther. 17, 360–369 (2010).Article

Anwer,K。等人。IL-12质粒/脂质聚合物复合物治疗复发性卵巢癌的I期临床试验。基因疗法。17360-369(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Algazi, A. et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann. Oncol. 31, 532–540 (2020).Article

Algazi,A。等人。tavokinogene telseplasmid的肿瘤内递送在转移性黑素瘤患者中产生全身免疫应答。安科。31532-540(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Greaney, S. K. et al. Intratumoral plasmid IL12 electroporation therapy in patients with advanced melanoma induces systemic and intratumoral T-cell responses. Cancer Immunol. Res. 8, 246–254 (2020).Article

Greaney,S.K.等人。晚期黑色素瘤患者的瘤内质粒IL12电穿孔疗法诱导全身和肿瘤内T细胞反应。癌症免疫。第8246-254号决议(2020年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Algazi, A. P. et al. Phase II trial of IL-12 plasmid transfection and PD-1 BLockade in Immunologically Quiescent Melanoma. Clin. Cancer Res. 26, 2827–2837 (2020).Article

。临床。癌症研究262827-2837(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hewitt, S. L. et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res. 26, 6284–6298 (2020).Article

Hewitt,S.L.等人。肿瘤内IL12 mRNA治疗促进肿瘤微环境的TH1转化。临床。癌症研究266284-6298(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zheng, X. et al. The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cell Mol. Immunol. 19, 192–209 (2022).Article

郑,X。等。超细胞因子,免疫细胞因子,参与细胞因子和其他合成细胞因子在免疫治疗中的应用。细胞分子免疫。19192-209(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ongaro, T. et al. A novel anti-cancer L19-interleukin-12 fusion protein with an optimized peptide linker efficiently localizes in vivo at the site of tumors. J. Biotechnol. 291, 17–25 (2019).Article

Ongaro,T。等人。一种具有优化肽接头的新型抗癌L19-白细胞介素-12融合蛋白在体内有效定位于肿瘤部位。J、 生物技术。291,17-25(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Strauss, J. et al. First-in-human phase I trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clin. Cancer Res. 25, 99–109 (2019).Article

Strauss,J.等人首次在转移性实体瘤患者中进行肿瘤靶向细胞因子(NHS-IL12)的人类I期试验。临床。癌症研究25,99-109(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Skrombolas, D., Sullivan, M. & Frelinger, J. G. Development of an interleukin-12 fusion protein that is activated by cleavage with matrix metalloproteinase 9. J. Interferon Cytokine Res. 39, 233–245 (2019).Article

Skrombolas,D.,Sullivan,M。&Frelinger,J.G。开发通过与基质金属蛋白酶9切割而激活的白细胞介素-12融合蛋白。J、 干扰素细胞因子研究39233-245(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xue, D. et al. A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci. Immunol. 7, eabi6899 (2022).Article

Xue,D。等人。肿瘤特异性前IL-12激活先前存在的细胞毒性T细胞以控制已建立的肿瘤。科学。免疫。7,eabi6899(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Glassman, C. R. et al. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 184, 983–999.e924 (2021).Article

Glassman,C.R.等人,《IL-12和IL-23受体共享的结构基础》揭示了塑造T细胞与NK细胞作用的途径。细胞184983-999.e924(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Perera, L. P., Goldman, C. K. & Waldmann, T. A. Comparative assessment of virulence of recombinant vaccinia viruses expressing IL-2 and IL-15 in immunodeficient mice. Proc. Natl Acad. Sci. USA 98, 5146–5151, (2001).Article

Perera,L.P.,Goldman,C.K。&Waldmann,T.A。免疫缺陷小鼠中表达IL-2和IL-15的重组痘苗病毒毒力的比较评估。程序。国家科学院。科学。美国985146-5151,(2001)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Giri, J. G. et al. Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J. 14, 3654–3663 (1995).Article

Giri,J.G.等人。鉴定和克隆与IL-2受体α链结构相关的新型IL-15结合蛋白。EMBO J.143654–3663(1995)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17, 537–547 (2002).Article

Dubois,S.,Mariner,J.,Waldmann,T.A。&Tagaya,Y。IL-15Ralpha回收并将IL-15反式呈递给邻近细胞。免疫力17537-547(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Giri, J. G. et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. Embo j. 13, 2822–2830 (1994).Article

Giri,J.G.等人。新型细胞因子IL-15对IL-2受体β链和γ链的利用。Embo j.132822–2830(1994)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lodolce, J. P. et al. Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev. 13, 429–439 (2002).Article

Lodolce,J.P。等人。白细胞介素-15对淋巴稳态的调节。细胞因子生长因子Rev.13429-439(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hangasky, J. A. et al. A very long-acting IL-15: implications for the immunotherapy of cancer. J. Immunother. Cancer 10, e004104 (2022).Article

Hangasky,J.A。等人。一种非常长效的IL-15:对癌症免疫治疗的影响。J、 免疫疗法。癌症10,e004104(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl Acad. Sci. USA 97, 11445–11450 (2000).Article

Marks Konczalik,J。等人。IL-2诱导的活化诱导的细胞死亡在IL-15转基因小鼠中被抑制。程序。国家科学院。科学。美国9711445-11450(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Waldmann, T. A., Dubois, S., Miljkovic, M. D. & Conlon, K. C. IL-15 in the combination immunotherapy of cancer. Front Immunol. 11, 868 (2020).Article

。前免疫。11868(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tang, F. et al. Activity of recombinant human interleukin-15 against tumor recurrence and metastasis in mice. Cell Mol. Immunol. 5, 189–196 (2008).Article

Tang,F。等人。重组人白细胞介素-15对小鼠肿瘤复发和转移的活性。细胞分子免疫。5189-196(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miller, J. S. et al. A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin. Cancer Res. 24, 1525–1535 (2018).Article

Miller,J.S.等人首次在成人晚期实体瘤患者中进行皮下门诊重组人IL15(rhIL15)的人体I期研究。临床。癌症研究241525-1535(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhou, Y. et al. Interleukin 15 in cell-based cancer immunotherapy. Int. J. Mol. Sci. 23, 7311 (2022).Article

Zhou,Y。等。白细胞介素15在基于细胞的癌症免疫治疗中的应用。Int.J.Mol.Sci。237311(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chertova, E. et al. Characterization and favorable in vivo properties of heterodimeric soluble IL-15·IL-15Rα cytokine compared to IL-15 monomer. J. Biol. Chem. 288, 18093–18103 (2013).Article

Chertova,E。等人。与IL-15单体相比,异二聚体可溶性IL-15·IL-15Rα细胞因子的表征和有利的体内特性。J、 生物。化学。28818093–18103(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bergamaschi, C. et al. Heterodimeric IL-15 delays tumor growth and promotes intratumoral CTL and dendritic cell accumulation by a cytokine network involving XCL1, IFN-γ, CXCL9 and CXCL10. J. Immunother. Cancer 8, e000599 (2020).Article

Bergamaschi,C。等人。异二聚体IL-15通过涉及XCL1,IFN-γ,CXCL9和CXCL10的细胞因子网络延迟肿瘤生长并促进肿瘤内CTL和树突状细胞积聚。J、 免疫疗法。癌症8,e000599(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Watson, D. C. et al. Treatment with native heterodimeric IL-15 increases cytotoxic lymphocytes and reduces SHIV RNA in lymph nodes. PLoS Pathog. 14, e1006902 (2018).Article

Watson,D.C.等人用天然异二聚体IL-15治疗可增加细胞毒性淋巴细胞并减少淋巴结中的SHIV RNA。PLoS Pathog。14,e1006902(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, Z. & Xu, Y. IL-15R alpha-IgG1-Fc enhances IL-2 and IL-15 anti-tumor action through NK and CD8+ T cells proliferation and activation. J. Mol. Cell Biol. 2, 217–222, (2010).Article

Wu,Z。&Xu,Y。IL-15Rα-IgG1-Fc通过NK和CD8+T细胞增殖和活化增强IL-2和IL-15的抗肿瘤作用。J、 分子细胞生物学。2217-222,(2010年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dubois, S. et al. Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J. Immunol. 180, 2099–2106 (2008).Article

Dubois,S。等人。IL-15与IL-15Rα-IgG1-Fc的预缔合增强了其对NK和CD8+/CD44高T细胞增殖的活性及其抗肿瘤作用。J、 免疫。1802099-2106(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Han, K. P. et al. IL-15:IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine 56, 804–810 (2011).Article

Han,K.P.等。IL-15:IL-15受体α超抗原复合物:重组哺乳动物细胞中的高水平共表达,纯化和表征。细胞因子56804-810(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Felices, M. et al. IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer. Gynecol. Oncol. 145, 453–461 (2017).Article

IL-15超级激动剂(ALT-803)增强了自然杀伤(NK)细胞对抗卵巢癌的功能。妇科。Oncol公司。145453-461(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Romee, R. et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 131, 2515–2527 (2018).Article

Romee,R.等人首次对IL-15超促性腺激素复合物ALT-803治疗移植后复发的人类1期临床研究。血液1312515-2527(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Margolin, K. et al. Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors. Clin. Cancer Res. 24, 5552–5561 (2018).Article

Margolin,K。等人。新型重组IL15复合物ALT-803在晚期实体瘤患者中的I期试验。临床。癌症研究245552-5561(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, P. S. et al. IL-15 superagonist/IL-15RαSushi-Fc fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget 7, 16130–16145 (2016).Article .

Kim,P.S.等人,IL-15超抗原/IL-15RαSushi-Fc融合复合物(IL-15SA/IL-15RαSu-Fc;ALT-803)显着增强NK和记忆CD8+T细胞的特定亚群,并介导针对小鼠乳腺癌和结肠癌的有效抗肿瘤活性。Oncotarget716130–16145(2016)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chu, Y. et al. Combinatorial immunotherapy of N-803 (IL-15 superagonist) and dinutuximab with ex vivo expanded natural killer cells significantly enhances in vitro cytotoxicity against GD2(+) pediatric solid tumors and in vivo survival of xenografted immunodeficient NSG mice. J. Immunother.

Chu,Y。等人。N-803(IL-15超抗原)和dinutuximab与离体扩增的自然杀伤细胞的组合免疫疗法显着增强了对GD2(+)小儿实体瘤的体外细胞毒性和异种移植免疫缺陷NSG小鼠的体内存活。J、 免疫疗法。

Cancer 9, e002267 (2021).Article .

癌症9,e002267(2021)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mortier, E. et al. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J. Biol. Chem. 281, 1612–1619 (2006).Article

Mortier,E。等人。可溶性白细胞介素-15受体α(IL-15Rα)-寿司作为IL-15通过IL-15Rβ/γ作用的选择性和有效激动剂。超促性腺激素IL-15 x IL-15Rα融合蛋白。J、 生物。化学。2811612-1619(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bessard, A. et al. High antitumor activity of RLI, an interleukin-15 (IL-15)-IL-15 receptor alpha fusion protein, in metastatic melanoma and colorectal cancer. Mol. Cancer Ther. 8, 2736–2745 (2009).Article

白细胞介素-15(IL-15)-IL-15受体α融合蛋白RLI在转移性黑色素瘤和结直肠癌中的高抗肿瘤活性。分子癌症治疗。82736-2745(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Desbois, M. et al. IL-15 superagonist RLI has potent immunostimulatory properties on NK cells: implications for antimetastatic treatment. J. Immunother. Cancer 8, e000632 (2020).Article

Desbois,M。等人。IL-15超性腺激素RLI对NK细胞具有有效的免疫刺激特性:对抗转移治疗的意义。J、 免疫疗法。癌症8,e000632(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miyazaki, T. et al. NKTR-255, a novel polymer-conjugated rhIL-15 with potent antitumor efficacy. J. Immunother. Cancer 9, e002024 (2021).Article

Miyazaki,T。等人。NKTR-255,一种新型聚合物偶联的rhIL-15,具有有效的抗肿瘤功效。J、 免疫疗法。癌症9,e002024(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Robinson, T. O. et al. NKTR-255 is a polymer-conjugated IL-15 with unique mechanisms of action on T and natural killer cells. J. Clin. Invest. 131, e144365 (2021).Article

Robinson,T.O.等人NKTR-255是一种聚合物偶联的IL-15,对T细胞和自然杀伤细胞具有独特的作用机制。J、 临床。投资。131,e144365(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Van Acker, H. H. et al. The role of the common gamma-chain family cytokines in γδ T cell-based anti-cancer immunotherapy. Cytokine Growth Factor Rev. 41, 54–64 (2018).Article

Van Acker,H.H.等人。常见γ链家族细胞因子在基于γδT细胞的抗癌免疫疗法中的作用。细胞因子生长因子Rev.41,54-64(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hoyos, V. et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24, 1160–1170 (2010).Article

Hoyos,V。等人用白细胞介素-15和自杀基因改造CD19特异性T淋巴细胞,以增强其抗淋巴瘤/白血病的作用和安全性。白血病241160-1170(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. et al. Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limiting IL-15 systemic exposure during CAR-T immunotherapy. J. Transl. Med. 20, 432 (2022).Article

Zhang,Y。等人。在CAR-T免疫治疗期间,IL-15受体α与IL-15的共表达通过限制IL-15全身暴露来降低毒性。J、 翻译。医学杂志20432(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hurton, L. V. et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl Acad. Sci. USA 113, E7788–E7797 (2016).Article

Hurton,L.V。等人。束缚的IL-15增强抗肿瘤活性并促进肿瘤特异性T细胞中的干细胞记忆子集。程序。国家科学院。科学。美国113,E7788–E7797(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Feng, J. et al. Treatment of aggressive T cell lymphoblastic lymphoma/leukemia using Anti-CD5 CAR T cells. Stem Cell Rev. Rep. 17, 652–661 (2021).Article

Feng,J.等人。使用抗CD5 CAR T细胞治疗侵袭性T细胞淋巴母细胞淋巴瘤/白血病。Stem Cell Rev.Rep.17652–661(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, Y. et al. CD19 CAR-T cells with membrane-bound IL-15 for B-cell acute lymphoblastic leukemia after failure of CD19 and CD22 CAR-T cells: case report. Front. Immunol. 12, 728962 (2021).Article

Sun,Y。等人。CD19和CD22 CAR-T细胞失败后,具有膜结合IL-15的CD19 CAR-T细胞用于B细胞急性淋巴细胞白血病:病例报告。正面。免疫。12728962(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Christodoulou, I. et al. Engineering CAR-NK cells to secrete IL-15 sustains their anti-AML functionality but is associated with systemic toxicities. J. Immunother. Cancer 9, e003894 (2021).Article

Christodoulou,I。等人设计CAR-NK细胞分泌IL-15维持其抗AML功能,但与全身毒性有关。J、 免疫疗法。癌症9,e003894(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Du, Z., Ng, Y. Y., Zha, S. & Wang, S. piggyBac system to co-express NKG2D CAR and IL-15 to augment the in vivo persistence and anti-AML activity of human peripheral blood NK cells. Mol. Ther. Methods Clin. Dev. 23, 582–596 (2021).Article

Du,Z.,Ng,Y.Y.,Zha,S。&Wang,S。piggyBac系统共表达NKG2D CAR和IL-15,以增强人外周血NK细胞的体内持久性和抗AML活性。摩尔热。方法临床。发展23582-596(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).Article

Liu,E。等人。CAR转导的自然杀伤细胞在CD19阳性淋巴肿瘤中的应用。N、 英语。J、 医学382545-553(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531 (2018).Article

Liu,E。等人。经工程改造以表达IL-15和CD19靶向CAR的脐带血NK细胞显示出长期持久性和有效的抗肿瘤活性。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Makkouk, A. et al. Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J. Immunother. Cancer 9, e003441 (2021).Article

Makkouk,A。等人。用磷脂酰肌醇蛋白聚糖-3(GPC-3)特异性嵌合抗原受体(CAR)和可溶性IL-15工程化的现成Vδ1γδT细胞对肝细胞癌显示出强大的抗肿瘤功效。J、 免疫疗法。癌症9,e003441(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heczey, A. et al. Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis. Nat. Med. 26, 1686–1690 (2020).Article

Heczey,A。等人。复发或难治性神经母细胞瘤患者的抗GD2 CAR-NKT细胞:中期分析。《自然医学》261686-1690(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Deng, X. et al. Combination of novel oncolytic herpesvirus with paclitaxel as an efficient strategy for breast cancer therapy. J. Med. Virol. 95, e28768 (2023).Article

Deng,X。等人。新型溶瘤疱疹病毒与紫杉醇的组合作为乳腺癌治疗的有效策略。J、 医学博士Virol。95,e28768(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Guo, J. et al. Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res. 31, 1190–1198 (2021).Article

Guo,J。等人。肿瘤条件性IL-15促细胞因子以有限的毒性重新激活抗肿瘤免疫。Cell Res.311190–1198(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nelson, A., Gebremeskel, S., Lichty, B. D. & Johnston, B. Natural killer T cell immunotherapy combined with IL-15-expressing oncolytic virotherapy and PD-1 blockade mediates pancreatic tumor regression. J. Immunother. Cancer 10, e003923 (2022).Article

Nelson,A.,Gebremeskel,S.,Lichty,B.D。&Johnston,B。自然杀伤T细胞免疫疗法联合表达IL-15的溶瘤病毒疗法和PD-1阻断介导胰腺肿瘤消退。J、 免疫疗法。癌症10,e003923(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dinarello, C. A., Goldin, N. P. & Wolff, S. M. Demonstration and characterization of two distinct human leukocytic pyrogens. J. Exp. Med. 139, 1369–1381 (1974).Article

Dinarello,C.A.,Goldin,N.P。和Wolff,S.M。两种不同的人类白细胞热原的证明和表征。J、 实验医学1391369-1381(1974)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dinarello, C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281, 8–27 (2018).Article

Dinarello,C.A。先天性炎症和获得性免疫中IL-1家族的概述。免疫。第281版,第8-27页(2018年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and Related Cytokines in the regulation of inflammation and immunity. Immunity 50, 778–795 (2019).Article

Mantovani,A.,Dinarello,C.A.,Molgora,M。&Garlanda,C。白细胞介素-1和相关细胞因子在炎症和免疫调节中的作用。免疫力50778-795(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Malik, A. & Kanneganti, T. D. Function and regulation of IL-1α in inflammatory diseases and cancer. Immunol. Rev. 281, 124–137 (2018).Article

Malik,A。&Kanneganti,T。D。IL-1α在炎症性疾病和癌症中的功能和调节。免疫。第281124-137版(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bent, R., Moll, L., Grabbe, S. & Bros, M. Interleukin-1 beta-A friend or foe in malignancies? Int. J. Mol. Sci. 19, 2155 (2018).Article

Bent,R.,Moll,L.,Grabbe,S。&Bros,M。白细胞介素-1β-恶性肿瘤的朋友还是敌人?Int.J.Mol.Sci。192155(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mantovani, A., Barajon, I. & Garlanda, C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol. Rev. 281, 57–61 (2018).Article

Mantovani,A.,Barajon,I。&Garlanda,C。癌症进展和治疗中的IL-1和IL-1调节途径。免疫。第281版,第57-61页(2018年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dosch, A. R. et al. Interleukin-1 signaling in solid organ malignancies. Biochim. Biophys. Acta Rev. Cancer 1877, 188670 (2022).Article

Dosch,A.R.等人,《实体器官恶性肿瘤中的白细胞介素-1信号传导》。生物化学。生物物理。《癌症学报》1877188670(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Casadio, R. et al. Model of interaction of the IL-1 receptor accessory protein IL-1RAcP with the IL-1beta/IL-1R(I) complex. FEBS Lett. 499, 65–68 (2001).Article

Casadio,R。等人。IL-1受体辅助蛋白IL-1RAcP与IL-1β/IL-1R(I)复合物相互作用的模型。FEBS Lett公司。499,65-68(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brikos, C. et al. Mass spectrometric analysis of the endogenous type I interleukin-1 (IL-1) receptor signaling complex formed after IL-1 binding identifies IL-1RAcP, MyD88, and IRAK-4 as the stable components. Mol. Cell Proteom. 6, 1551–1559 (2007).Article

。分子细胞蛋白质组学。61551-1559(2007)。文章

CAS

中科院

Google Scholar

谷歌学者

Yamazaki, K. et al. Two mechanistically and temporally distinct NF-kappaB activation pathways in IL-1 signaling. Sci. Signal 2, ra66 (2009).Article

Yamazaki,K。等人。IL-1信号传导中两种机制和时间上不同的NF-κB激活途径。科学。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Huang, Q. et al. Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat. Immunol. 5, 98–103 (2004).Article

Huang,Q。等人。MEKK3对白细胞介素1受体和Toll样受体信号传导的差异调节。自然免疫。5,98-103(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schmidt, C. et al. Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Mol. Cell 12, 1287–1300 (2003).Article

Schmidt,C。等人。促炎细胞因子诱导的双相NF-κB激活的机制。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, X., Commane, M., Jiang, Z. & Stark, G. R. IL-1-induced NFkappa B and c-Jun N-terminal kinase (JNK) activation diverge at IL-1 receptor-associated kinase (IRAK). Proc. Natl Acad. Sci. USA 98, 4461–4465 (2001).Article

Li,X.,Commane,M.,Jiang,Z。&Stark,G.R。IL-1诱导的NFkappa B和c-Jun N末端激酶(JNK)激活在IL-1受体相关激酶(IRAK)处发散。程序。国家科学院。科学。美国984461-4465(2001)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Walsh, M. C., Lee, J. & Choi, Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol. Rev. 266, 72–92 (2015).Article

Walsh,M.C.,Lee,J。&Choi,Y。肿瘤坏死因子受体相关因子6(TRAF6)调节免疫系统的发育,功能和体内平衡。免疫。第266、72–92版(2015年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weber, A., Wasiliew, P. & Kracht, M. Interleukin-1 (IL-1) pathway. Sci. Signal. 3, cm1 (2010).PubMed

Weber,A.,Wasiliew,P。&Kracht,M。白细胞介素-1(IL-1)途径。科学。信号。3,cm1(2010)。PubMed出版社

Google Scholar

谷歌学者

Elaraj, D. M. et al. The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin. Cancer Res. 12, 1088–1096 (2006).Article

Elaraj,D.M.等人。白细胞介素1在人类癌症异种移植物生长和转移中的作用。临床。癌症研究121088-1096(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ling, J. et al. KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21, 105–120 (2012).Article

Ling,J。等人。KrasG12D诱导的IL-1α和p62前馈环激活IKK2/β/NF-κB是胰腺导管腺癌发展所必需的。癌细胞21105-120(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lau, L. et al. Uncoupling the senescence-associated secretory phenotype from cell cycle exit via interleukin-1 inactivation unveils its protumorigenic role. Mol. Cell Biol. 39, e00586–18 (2019).Voronov, E. et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl Acad.

Lau,L。等人。通过白细胞介素-1失活将衰老相关的分泌表型与细胞周期退出解偶联,揭示了其致瘤作用。分子细胞生物学。39,e00586-18(2019)。Voronov,E。等人。IL-1是肿瘤侵袭性和血管生成所必需的。程序。国家科学院。

Sci. USA 100, 2645–2650 (2003).Article .

科学。美国1002645-2650(2003)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Voronov, E., Carmi, Y. & Apte, R. N. The role IL-1 in tumor-mediated angiogenesis. Front. Physiol. 5, 114 (2014).Article

。正面。生理学。5114(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiménez-Garduño, A. M. et al. IL-1β induced methylation of the estrogen receptor ERα gene correlates with EMT and chemoresistance in breast cancer cells. Biochem. Biophys. Res. Commun. 490, 780–785 (2017).Article

Jiménez-Garduño,A.M.等人。IL-1β诱导的雌激素受体ERα基因甲基化与乳腺癌细胞的EMT和化疗耐药相关。生物化学。生物物理。公共资源。490780-785(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mendoza-Rodríguez, M. G. et al. IL-1β inflammatory cytokine-induced TP63 isoform ∆NP63α signaling cascade contributes to cisplatin resistance in human breast cancer cells. Int. J. Mol. Sci. 20, 270 (2019).Article

Mendoza Rodríguez,M.G.等人。IL-1β炎性细胞因子诱导的TP63亚型ΔNP63α信号级联反应有助于人乳腺癌细胞对顺铂的耐药性。Int.J.Mol.Sci。20270(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, J. et al. Targeting the IL-1β/EHD1/TUBB3 axis overcomes resistance to EGFR-TKI in NSCLC. Oncogene 39, 1739–1755 (2020).Article

Huang,J.等人靶向IL-1β/EHD1/TUBB3轴克服了NSCLC对EGFR-TKI的耐药性。癌基因391739-1755(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gelfo, V. et al. A novel role for the interleukin-1 receptor axis in resistance to anti-EGFR therapy. Cancers (Basel) 10, 355 (2018).Article

Gelfo,V。等人。白细胞介素-1受体轴在抗EGFR治疗中的新作用。癌症(巴塞尔)10355(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lin, D. et al. Membrane IL1α inhibits the development of hepatocellular carcinoma via promoting T- and NK-cell activation. Cancer Res. 76, 3179–3188 (2016).Article

。癌症研究763179-3188(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tu, S. et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408–419 (2008).Article

Tu,S。等人。白细胞介素-1β的过表达诱导胃炎和癌症,并在小鼠中动员骨髓来源的抑制细胞。癌细胞14408-419(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiang, H. et al. Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int. J. Cancer 136, 2352–2360 (2015).Article

Jiang,H。等人。慢性炎症因子和髓源性抑制细胞升高表明晚期黑色素瘤患者预后不良。《国际癌症杂志》1362352-2360(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mertens, M. & Singh, J. A. Anakinra for rheumatoid arthritis. Cochrane Database Syst. Rev. Cd005121, (2009).Wu, T. C. et al. IL1 receptor antagonist controls transcriptional signature of inflammation in patients with metastatic breast cancer. Cancer Res. 78, 5243–5258 (2018).Article .

。Cochrane数据库系统。修订版Cd005121,(2009)。Wu,T.C.等人,IL1受体拮抗剂控制转移性乳腺癌患者炎症的转录特征。癌症研究785243-5258(2018)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Isambert, N. et al. Fluorouracil and bevacizumab plus anakinra for patients with metastatic colorectal cancer refractory to standard therapies (IRAFU): a single-arm phase 2 study. Oncoimmunology 7, e1474319 (2018).Article

Isambert,N.等人。氟尿嘧啶和贝伐单抗联合阿那白滞素治疗标准疗法(IRAFU)难治的转移性结直肠癌患者:单臂2期研究。肿瘤免疫学7,e1474319(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hou, J. et al. Design of a superior cytokine antagonist for topical ophthalmic use. Proc. Natl Acad. Sci. USA 110, 3913–3918 (2013).Article

。程序。国家科学院。科学。美国1103913-3918(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

O’Sullivan Coyne, G. & Burotto, M. MABp1 for the treatment of colorectal cancer. Expert Opin. Biol. Ther. 17, 1155–1161 (2017).Article

O'Sullivan Coyne,G。&Burotto,M。MABp1用于治疗结直肠癌。。生物疗法。171155-1161(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hong, D. S. et al. MABp1, a first-in-class true human antibody targeting interleukin-1α in refractory cancers: an open-label, phase 1 dose-escalation and expansion study. Lancet Oncol. 15, 656–666 (2014).Article

Hong,D.S.等人。MABp1,一种针对难治性癌症中白细胞介素-1α的一流真人抗体:一项开放标签的1期剂量递增和扩展研究。柳叶刀Oncol。15656-666(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hickish, T. et al. MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 18, 192–201 (2017).Article

。柳叶刀Oncol。18192-201(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

De Benedetti, F. et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N. Engl. J. Med. 378, 1908–1919 (2018).Article

De Benedetti,F。等人。Canakinumab治疗自身炎症复发性发热综合征。N、 英语。J、 医学3781908-1919(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).Article

Ridker,P.M.等人。canakinumab抑制白细胞介素-1β对动脉粥样硬化患者发生肺癌的影响:一项随机、双盲、安慰剂对照试验的探索性结果。柳叶刀3901833-1842(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Garrido, P. et al. Canakinumab with and without pembrolizumab in patients with resectable non-small-cell lung cancer: CANOPY-N study design. Future Oncol. 17, 1459–1472 (2021).Article

Garrido,P。等人。Canakinumab联合和不联合pembrolizumab治疗可切除非小细胞肺癌:CAOPY-N研究设计。未来Oncol。171459-1472(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lythgoe, M. P. & Prasad, V. Repositioning canakinumab for non-small cell lung cancer-important lessons for drug repurposing in oncology. Br. J. Cancer 127, 785–787 (2022).Article

Lythgoe,M.P。&Prasad,V。重新定位canakinumab治疗非小细胞肺癌-肿瘤学药物再利用的重要教训。《癌症杂志》127785-787(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8, 1237–1247 (2012).Article

Rose John,S。通过可溶性IL-6受体的IL-6反式信号传导:对IL-6促炎活性的重要性。国际生物学杂志。科学。81237-1247(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 33, 127–148 (2021).Article

Hirano,T。IL-6在炎症,自身免疫和癌症中的作用。内部免疫。33127-148(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Neurath, M. F. & Finotto, S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev. 22, 83–89 (2011).Article

Neurath,M.F。&Finotto,S。IL-6信号在自身免疫,慢性炎症和炎症相关癌症中的作用。细胞因子生长因子Rev.22,83-89(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mihara, M. et al. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin. Sci. (Lond.) 122, 143–159 (2012).Article

Mihara,M。等人。IL-6/IL-6受体系统及其在生理和病理条件中的作用。临床。科学。(伦敦)122143-159(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rose-John, S. et al. Targeting IL-6 trans-signalling: past, present and future prospects. Nat. Rev. Immunol. 23, 666–681 (2023).Article

Rose John,S.等人。靶向IL-6反式信号传导:过去,现在和未来的前景。国家免疫修订版。23666-681(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Heink, S. et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic T(H)17 cells. Nat. Immunol. 18, 74–85 (2017).Article

Heink,S。等人。树突状细胞对IL-6的反式呈递是引发致病性T(H)17细胞所必需的。自然免疫。18,74-85(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).Article

Hunter,C.A。&Jones,S.A。IL-6是健康和疾病中的关键细胞因子。自然免疫。16448-457(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rašková, M. et al. The role of IL-6 in cancer cell invasiveness and metastasis-overview and therapeutic opportunities. Cells 11, 3698 (2022).Article

Rašková,M.等人。IL-6在癌细胞侵袭和转移中的作用概述和治疗机会。细胞113698(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schaper, F. & Rose-John, S. Interleukin-6: biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 26, 475–487 (2015).Article

Schaper,F。&Rose John,S。白细胞介素-6:生物学,信号传导和阻断策略。细胞因子生长因子Rev.26475-487(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).Article

Bromberg,J.F。等人。Stat3作为致癌基因。细胞98295-303(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tanaka, H. et al. GATA-1 blocks IL-6-induced macrophage differentiation and apoptosis through the sustained expression of cyclin D1 and bcl-2 in a murine myeloid cell line M1. Blood 95, 1264–1273 (2000).Article

Tanaka,H。等人,GATA-1通过在小鼠骨髓细胞系M1中持续表达细胞周期蛋白D1和bcl-2来阻断IL-6诱导的巨噬细胞分化和凋亡。血液951264-1273(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Petrenko, O. et al. IL-6 promotes MYC-induced B cell lymphomagenesis independent of STAT3. PLoS ONE 16, e0247394 (2021).Article

Petrenko,O。等人。IL-6促进MYC诱导的B细胞淋巴瘤形成,而不依赖于STAT3。PLoS ONE 16,e0247394(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Puthier, D. et al. Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells. Br. J. Haematol. 107, 392–395 (1999).Article

Puthier,D。等人。Mcl-1和Bcl-xL在人骨髓瘤细胞中受IL-6共同调节。Br.J.血液学。107392-395(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lepiller, Q. et al. HCMV activates the IL-6-JAK-STAT3 axis in HepG2 cells and primary human hepatocytes. PLoS ONE 8, e59591 (2013).Article

HCMV激活HepG2细胞和原代人肝细胞中的IL-6-JAK-STAT3轴。PLoS ONE 8,e59591(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, R., Roque, D. M., Reader, J. & Lin, J. Combined inhibition of IL‑6 and IL‑8 pathways suppresses ovarian cancer cell viability and migration and tumor growth. Int. J. Oncol. 60, 50 (2022).Zhao, G. et al. IL-6 mediates the signal pathway of JAK-STAT3-VEGF-C promoting growth, invasion and lymphangiogenesis in gastric cancer.

Zhang,R.,Roque,D.M.,Reader,J。&Lin,J。联合抑制IL-6和IL-8途径抑制卵巢癌细胞活力和迁移以及肿瘤生长。内景J.Oncol。60,50(2022)。Zhao,G。等。IL-6介导JAK-STAT3-VEGF-C促进胃癌生长,侵袭和淋巴管生成的信号通路。

Oncol. Rep. 35, 1787–1795 (2016).Article .

叔叔。众议员351787-1795(2016)。第[UNK]条。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lin, C. M. et al. Silibinin inhibits the invasion of IL-6-stimulated colon cancer cells via selective JNK/AP-1/MMP-2 modulation in vitro. J. Agric. Food Chem. 60, 12451–12457 (2012).Article

Lin,C.M。等人。水飞蓟宾通过选择性JNK/AP-1/MMP-2调节体外抑制IL-6刺激的结肠癌细胞的侵袭。J、 农业。食品化学。6012451-12457(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, H. et al. IL-6-induced cGGNBP2 encodes a protein to promote cell growth and metastasis in intrahepatic cholangiocarcinoma. Hepatology 75, 1402–1419 (2022).Article

Li,H。等人。IL-6诱导的cGGNBP2编码一种蛋白质,可促进肝内胆管癌的细胞生长和转移。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hong, C. et al. cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022).Article

Hong,C。等人。cGAS-STING驱动染色体不稳定癌症的IL-6依赖性存活。自然607366-373(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Weng, Y. S. et al. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol. Cancer 18, 42 (2019).Article

Weng,Y.S.等人。MCT-1/miR-34a/IL-6/IL-6R信号轴促进三阴性乳腺癌中的EMT进展,癌症干性和M2巨噬细胞极化。分子癌症18,42(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chan, L. C. et al. IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J. Clin. Invest. 129, 3324–3338 (2019).Article

Chan,L.C。等人,IL-6/JAK1途径驱动PD-L1 Y112磷酸化以促进癌症免疫逃避。J、 临床。投资。1293324-3338(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weber, R. et al. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. J. Immunother. Cancer 8, e000949 (2020).Article

IL-6调节小鼠黑色素瘤中CCR5的表达和MDSC的免疫抑制能力。J、 免疫疗法。癌症8,e000949(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, Q. et al. Obesity promotes tumor immune evasion in ovarian cancer through increased production of myeloid-derived suppressor cells via IL-6. Cancer Manag. Res. 13, 7355–7363 (2021).Article

Yang,Q。等人。肥胖通过IL-6增加骨髓来源的抑制细胞的产生,促进卵巢癌的肿瘤免疫逃避。癌症管理。第137355-7363号决议(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ohno, Y. et al. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells. Cancer Immunol. Immunother. 65, 193–204 (2016).Article

Ohno,Y。等人。IL-6下调人类树突状细胞的HLA II类表达和IL-12产生,从而损害抗原特异性CD4(+)T细胞的活化。癌症免疫。免疫疗法。65193-204(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huseni, M. A. et al. CD8(+) T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy. Cell Rep. Med. 4, 100878 (2023).Article

Huseni,M.A。等人,CD8(+)T细胞内在的IL-6信号传导促进对抗PD-L1免疫疗法的抗性。细胞代表医学4100878(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Keegan, A. et al. Plasma IL-6 changes correlate to PD-1 inhibitor responses in NSCLC. J. Immunother. Cancer 8, e000678 (2020).Article

Keegan,A。等人。血浆IL-6变化与NSCLC中PD-1抑制剂反应相关。J、 免疫疗法。癌症8,e000678(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, W. et al. Blockade of IL-6 inhibits tumor immune evasion and improves anti-PD-1 immunotherapy. Cytokine 158, 155976 (2022).Article

Li,W。等人。阻断IL-6抑制肿瘤免疫逃避并改善抗PD-1免疫疗法。细胞因子158155976(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hailemichael, Y. et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 40, 509–523.e506 (2022).Article

Hailemichael,Y。等人。白细胞介素-6阻断剂消除免疫疗法毒性并促进肿瘤免疫。癌细胞40509-523.e506(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Soler, M. F. et al. New perspectives in cancer immunotherapy: targeting IL-6 cytokine family. J. Immunother. Cancer 11, e007530 (2023).Article

Soler,M.F.等人。癌症免疫治疗的新观点:靶向IL-6细胞因子家族。J、 免疫疗法。癌症11,e007530(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).Article

Johnson,D.E.,O'Keefe,R.A。和Grandis,J.R。靶向癌症中的IL-6/JAK/STAT3信号轴。国家修订临床。Oncol公司。15234-248(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kishimoto, T. & Kang, S. IL-6 revisited: from rheumatoid arthritis to CAR T cell therapy and COVID-19. Annu. Rev. Immunol. 40, 323–348 (2022).Article

Kishimoto,T。&Kang,S。重新审视IL-6:从类风湿性关节炎到CAR T细胞治疗和COVID-19。年。免疫修订版。40323-348(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yu, L. et al. Development and validation of a reporter-cell-line-based bioassay for therapeutic soluble gp130-Fc. Molecules 24, 3845 (2019).Article

Yu,L.等人。基于报告细胞系的治疗性可溶性gp130-Fc生物测定的开发和验证。分子243845(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brooks, G. D. et al. IL6 trans-signaling promotes KRAS-driven lung carcinogenesis. Cancer Res. 76, 866–876 (2016).Article

Brooks,G.D.等人,IL6反式信号传导促进KRAS驱动的肺癌发生。癌症研究76866-876(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Goumas, F. A. et al. Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. Int. J. Cancer 137, 1035–1046 (2015).Article

Goumas,F.A。等人。抑制IL-6信号传导可显着降低胰腺癌原位异种移植模型中的原发性肿瘤生长和复发。Int.J.Cancer 1371035–1046(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Angevin, E. et al. A phase I/II, multiple-dose, dose-escalation study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with advanced solid tumors. Clin. Cancer Res. 20, 2192–2204 (2014).Article

Angevin,E.等。晚期实体瘤患者抗白细胞介素-6单克隆抗体siltuximab的I/II期多剂量剂量递增研究。临床。癌症研究202192-2204(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hudes, G. et al. A phase 1 study of a chimeric monoclonal antibody against interleukin-6, siltuximab, combined with docetaxel in patients with metastatic castration-resistant prostate cancer. Invest. N. Drugs 31, 669–676 (2013).Article

Hudes,G.等人,一项针对白细胞介素-6(siltuximab)的嵌合单克隆抗体联合多西紫杉醇治疗转移性去势抵抗性前列腺癌患者的1期研究。投资。N、 药物31669-676(2013)。文章

CAS

中科院

Google Scholar

谷歌学者

Fizazi, K. et al. Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. Eur. J. Cancer 48, 85–93 (2012).Article

Fizazi,K.等。抗IL-6单克隆抗体siltuximab(CNTO 328)联合米托蒽醌/泼尼松与单独米托蒽醌/泼尼松治疗转移性去势抵抗性前列腺癌的随机II期研究。《欧洲癌症杂志》48,85-93(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yanaihara, N. et al. Antitumor effects of interleukin-6 (IL-6)/interleukin-6 receptor (IL-6R) signaling pathway inhibition in clear cell carcinoma of the ovary. Mol. Carcinog. 55, 832–841 (2016).Article

Yanaihara,N。等人。白细胞介素-6(IL-6)/白细胞介素-6受体(IL-6R)信号通路抑制在卵巢透明细胞癌中的抗肿瘤作用。分子癌症。55832-841(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dijkgraaf, E. M. et al. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-α2b in patients with recurrent epithelial ovarian cancer. Ann. Oncol. 26, 2141–2149 (2015).Article

Dijkgraaf,E.M.等人,一项将卡铂/多柔比星与托珠单抗(一种抗IL-6R单克隆抗体)和干扰素-α2b联合用于复发性上皮性卵巢癌患者的I期临床试验。安科。262141-2149(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dhillon, S. Tofacitinib: a review in rheumatoid arthritis. Drugs 77, 1987–2001 (2017).Article

Dhillon,S。Tofacitinib:类风湿性关节炎的综述。药物771987-2001(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

McLornan, D. P., Pope, J. E., Gotlib, J. & Harrison, C. N. Current and future status of JAK inhibitors. Lancet 398, 803–816 (2021).Article

McLornan,D.P.,Pope,J.E.,Gotlib,J。&Harrison,C.N。JAK抑制剂的现状和未来。柳叶刀398803-816(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hedvat, M. et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16, 487–497 (2009).Article

Hedvat,M。等人。JAK2抑制剂AZD1480有效阻断实体瘤中的Stat3信号传导和肿瘤发生。癌细胞16487-497(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moskowitz, A. J. et al. A phase 2 biomarker-driven study of ruxolitinib demonstrates effectiveness of JAK/STAT targeting in T-cell lymphomas. Blood 138, 2828–2837 (2021).Article

Moskowitz,A.J.等人对ruxolitinib的2期生物标志物驱动研究证明了JAK/STAT靶向在T细胞淋巴瘤中的有效性。血液138288-2837(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lynce, F. et al. Phase I study of JAK1/2 inhibitor ruxolitinib with weekly paclitaxel for the treatment of HER2-negative metastatic breast cancer. Cancer Chemother. Pharm. 87, 673–679 (2021).Article

Lynche,F。等人,JAK1/2抑制剂ruxolitinib与每周紫杉醇治疗HER2阴性转移性乳腺癌的I期研究。癌症化疗。。文章

CAS

中科院

Google Scholar

谷歌学者

Hong, D. et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci. Transl. Med. 7, 314ra185 (2015).Article

Hong,D.等人,AZD9150是STAT3的下一代反义寡核苷酸抑制剂,具有淋巴瘤和肺癌临床活性的早期证据。科学。翻译。医学杂志7314RA185(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dong, J., Cheng, X. D., Zhang, W. D. & Qin, J. J. Recent update on development of small-molecule STAT3 inhibitors for cancer therapy: from phosphorylation inhibition to protein degradation. J. Med. Chem. 64, 8884–8915 (2021).Article

Dong,J.,Cheng,X.D.,Zhang,W.D。和Qin,J.J。癌症治疗小分子STAT3抑制剂开发的最新进展:从磷酸化抑制到蛋白质降解。J、 医学化学。648884-8915(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bendell, J. C. et al. Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother. Pharm. 74, 125–130 (2014).Article

Bendell,J.C.等人,STAT3抑制剂OPB-31121在晚期实体瘤患者中的第一阶段,开放标签,剂量递增和药代动力学研究。癌症化疗。Pharm.74125-130(2014)。文章

CAS

中科院

Google Scholar

谷歌学者

Oh, D. Y. et al. Phase I study of OPB-31121, an oral STAT3 inhibitor, in patients with advanced solid tumors. Cancer Res. Treat. 47, 607–615 (2015).Article

Oh,D.Y.等人,口服STAT3抑制剂OPB-31121在晚期实体瘤患者中的I期研究。癌症研究治疗。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wong, A. L. et al. Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. Ann. Oncol. 26, 998–1005 (2015).Article

Wong,A.L.等人。新型信号转导和转录激活因子(STAT)3抑制剂OPB-51602在难治性实体恶性肿瘤患者中的I期和生物标志物研究。安科。26998-1005(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mace, T. A. et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67, 320–332 (2018).Article

Mace,T.A.等人,IL-6和PD-L1抗体阻断联合治疗可减少胰腺癌小鼠模型中的肿瘤进展。肠道67320-332(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Holmstroem, R. B. et al. COLAR: open-label clinical study of IL-6 blockade with tocilizumab for the treatment of immune checkpoint inhibitor-induced colitis and arthritis. J. Immunother. Cancer 10, e005111 (2022).Article

Holmstroem,R.B.等人,COLAR:用托珠单抗阻断IL-6治疗免疫检查点抑制剂诱导的结肠炎和关节炎的开放标签临床研究。J、 免疫疗法。癌症10,e005111(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Salem, J. E. et al. Abatacept/ruxolitinib and screening for concomitant respiratory muscle failure to mitigate fatality of immune-checkpoint inhibitor myocarditis. Cancer Discov. 13, 1100–1115 (2023).Article

Salem,J.E.等人。Abatacept/ruxolitinib和筛查伴随的呼吸肌衰竭,以减轻免疫检查点抑制剂心肌炎的死亡率。癌症发现。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nguyen, L. S. et al. Reversal of immune-checkpoint inhibitor fulminant myocarditis using personalized-dose-adjusted abatacept and ruxolitinib: proof of concept. J. Immunother. Cancer 10, e004699 (2022).Article

Nguyen,L.S.等人。使用个性化剂量调整的阿巴西普和ruxolitinib逆转免疫检查点抑制剂暴发性心肌炎:概念验证。J、 免疫疗法。癌症10,e004699(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).Article

Carswell,E.A。等人。一种内毒素诱导的血清因子,可引起肿瘤坏死。程序。国家科学院。科学。美国723666–3670(1975)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316, 552–554 (1985).Article

Beutler,B。等人。肿瘤坏死因子和巨噬细胞分泌因子恶病质的身份。自然316552-554(1985)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Waters, J. P., Pober, J. S. & Bradley, J. R. Tumour necrosis factor and cancer. J. Pathol. 230, 241–248 (2013).Article

Waters,J.P.,Pober,J.S。和Bradley,J.R。肿瘤坏死因子和癌症。J、 病理学。230241-248(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).Article

Balkwill,F。肿瘤坏死因子与癌症。《国家癌症评论》9361-371(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, A. Y., Wolchok, J. D. & Bass, A. R. TNF in the era of immune checkpoint inhibitors: friend or foe? Nat. Rev. Rheumatol. 17, 213–223 (2021).Article

Chen,A.Y.,Wolchok,J.D。和Bass,A.R。免疫检查点抑制剂时代的TNF:朋友还是敌人?风湿病杂志。17213-223(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fràter-Schröder, M. et al. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc. Natl Acad. Sci. USA 84, 5277–5281 (1987).Article

Fràter Schröder,M.等人。肿瘤坏死因子α型是体外内皮细胞生长的有效抑制剂,在体内是血管生成的。程序。国家科学院。科学。美国845277–5281(1987)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bertrand, F. et al. Blocking tumor necrosis factor α enhances CD8 T-cell-dependent immunity in experimental melanoma. Cancer Res. 75, 2619–2628 (2015).Article

Bertrand,F。等人。阻断肿瘤坏死因子α增强实验性黑色素瘤中CD8 T细胞依赖性免疫。癌症研究752619-2628(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zheng, Y. et al. TNF-α-induced Tim-3 expression marks the dysfunction of infiltrating natural killer cells in human esophageal cancer. J. Transl. Med. 17, 165 (2019).Article

Zheng,Y。等。TNF-α诱导的Tim-3表达标志着人食管癌浸润性自然杀伤细胞的功能障碍。J、 翻译。医学杂志17165(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ivagnès, A. et al. TNFR2/BIRC3-TRAF1 signaling pathway as a novel NK cell immune checkpoint in cancer. Oncoimmunology 7, e1386826 (2018).Article

Ivagnès,A。等人。TNFR2/BIRC3-TRAF1信号通路作为癌症中新的NK细胞免疫检查点。肿瘤免疫学7,e1386826(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Grinberg-Bleyer, Y. et al. Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. J. Clin. Invest. 120, 4558–4568 (2010).Article

Grinberg-Bleyer,Y。等人。致病性T细胞通过促进Tregs在小鼠自身免疫性糖尿病中具有矛盾的保护作用。J、 临床。投资。1204558-4568(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, X. et al. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J. Immunol. 180, 6467–6471 (2008).Article

Chen,X。等人。前沿:TNFR2的表达定义了小鼠CD4+CD25+FoxP3+T调节细胞的最大抑制子集:适用于肿瘤浸润性T调节细胞。J、 免疫。1806467-6471(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, X. et al. TNFR2 expression by CD4 effector T cells is required to induce full-fledged experimental colitis. Sci. Rep. 6, 32834 (2016).Article

Chen,X。等人。CD4效应T细胞的TNFR2表达是诱导完全实验性结肠炎所必需的。科学。代表632834(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, X. et al. TNF signaling drives myeloid-derived suppressor cell accumulation. J. Clin. Invest. 122, 4094–4104 (2012).Article

Zhao,X。等人。TNF信号传导驱动骨髓来源的抑制细胞积累。J、 临床。投资。1224094-4104(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sade-Feldman, M. et al. Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity 38, 541–554 (2013).Article

Sade Feldman,M。等人。肿瘤坏死因子-α在慢性炎症期间阻断分化并增强未成熟骨髓细胞的抑制活性。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ren, G. et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell 11, 812–824 (2012).Article

。细胞干细胞11812-824(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lim, S. O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925–939 (2016).Article

Lim,S.O.等人。CSN5对PD-L1的去泛素化和稳定化。癌细胞30925-939(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bertrand, F. et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat. Commun. 8, 2256 (2017).Article

Bertrand,F。等人。TNFα阻断剂克服了实验性黑色素瘤对抗PD-1的耐药性。国家公社。82256(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, L. et al. A bacteria-based system expressing anti-TNF-α nanobody for enhanced cancer immunotherapy. Signal Transduct. Target Ther. 8, 134 (2023).Article

Liu,L.等人。一种表达抗TNF-α纳米抗体的基于细菌的系统,用于增强癌症免疫疗法。信号传输管。目标Ther。8134(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Perez-Ruiz, E. et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 569, 428–432 (2019).Article

Perez-Ruiz,E。等人。预防性TNF阻断剂在双重CTLA-4和PD-1免疫疗法中解偶联功效和毒性。自然569428-432(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

D’Haens, G. R. & van Deventer, S. 25 years of anti-TNF treatment for inflammatory bowel disease: lessons from the past and a look to the future. Gut 70, 1396–1405 (2021).Article

D'Haens,G.R。&van Deventer,S。25年的炎症性肠病抗TNF治疗:过去的教训和未来的展望。肠道701396-1405(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. J. Am. Med. Assoc. 295, 2275–2285 (2006).Article

Bongartz,T。等。类风湿性关节炎的抗TNF抗体治疗和严重感染和恶性肿瘤的风险:随机对照试验中罕见有害作用的系统评价和荟萃分析。J、 。文章

CAS

中科院

Google Scholar

谷歌学者

Badran, Y. R. et al. Concurrent therapy with immune checkpoint inhibitors and TNFα blockade in patients with gastrointestinal immune-related adverse events. J. Immunother. Cancer 7, 226 (2019).Article

Badran,Y.R.等人。胃肠道免疫相关不良事件患者同时使用免疫检查点抑制剂和TNFα阻断剂治疗。J、 免疫疗法。癌症7226(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Montfort, A. et al. Combining nivolumab and ipilimumab with infliximab or certolizumab in patients with advanced melanoma: first results of a phase Ib clinical trial. Clin. Cancer Res. 27, 1037–1047 (2021).Article

Montfort,A.等人将nivolumab和ipilimumab与英夫利昔单抗或certolizumab联合用于晚期黑色素瘤患者:Ib期临床试验的首次结果。临床。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ozga, A. J., Chow, M. T. & Luster, A. D. Chemokines and the immune response to cancer. Immunity 54, 859–874 (2021).Article

Ozga,A.J.,Chow,M.T。和Luster,A.D。趋化因子和对癌症的免疫反应。豁免54859-874(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Märkl, F., Huynh, D., Endres, S. & Kobold, S. Utilizing chemokines in cancer immunotherapy. Trends Cancer 8, 670–682 (2022).Article

Märkl,F.,Huynh,D.,Endres,S。&Kobold,S。利用趋化因子进行癌症免疫治疗。趋势癌症8670-682(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hao, Q., Vadgama, J. V. & Wang, P. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun. Signal. 18, 82 (2020).Article

Hao,Q.,Vadgama,J.V。&Wang,P。CCL2/CCR2信号在癌症发病机制中的作用。细胞通讯。信号。18,82(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shen, H. et al. PLEK2 promotes gallbladder cancer invasion and metastasis through EGFR/CCL2 pathway. J. Exp. Clin. Cancer Res. 38, 247 (2019).Article

Shen,H。等人。PLEK2通过EGFR/CCL2途径促进胆囊癌的侵袭和转移。J、 实验临床。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoshimura, T., Li, C., Wang, Y. & Matsukawa, A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell Mol. Immunol. 20, 714–738 (2023).Article

Yoshimura,T.,Li,C.,Wang,Y。&Matsukawa,A。趋化因子单核细胞趋化蛋白-1/CCL2是乳腺癌转移的启动子。细胞分子免疫。20714-738(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, X. et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 66, 157–167 (2017).Article

Li,X。等人。通过CCL2/CCR2信号传导靶向肿瘤浸润巨噬细胞作为抗肝细胞癌的治疗策略。肠道66157-167(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, H. et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol. Cancer 19, 41 (2020).Article

Yang,H。等人。CCL2-CCR2轴募集肿瘤相关巨噬细胞,通过食管癌发生中的PD-1信号传导诱导免疫逃避。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, Y. I. et al. CCL2 overexpression is associated with paclitaxel resistance in ovarian cancer cells via autocrine signaling and macrophage recruitment. Biomed. Pharmacother. 153, 113474 (2022).Article

Yang,Y.I.等人,CCL2过表达通过自分泌信号传导和巨噬细胞募集与卵巢癌细胞中的紫杉醇抗性相关。生物医学。药剂师。153113474(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ma, L., Jiang, Y. & Wu, N. Long non-coding RNA CCL2 promoted gastric cancer function via miR-128/ PARP2 signal pathway. Bioengineered 13, 1602–1611 (2022).Article

Ma,L.,Jiang,Y。&Wu,N。Long非编码RNA CCL2通过miR-128/PARP2信号通路促进胃癌功能。生物工程131602-1611(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, J., Patel, L. & Pienta, K. J. CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev. 21, 41–48, (2010).Article

Zhang,J.,Patel,L。&Pienta,K.J。CC趋化因子配体2(CCL2)促进前列腺癌肿瘤发生和转移。细胞因子生长因子Rev.21,41-48,(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fei, L., Ren, X., Yu, H. & Zhan, Y. Targeting the CCL2/CCR2 axis in cancer immunotherapy: one stone, three birds? Front. Immunol. 12, 771210 (2021).Article

Fei,L.,Ren,X.,Yu,H。&Zhan,Y。在癌症免疫治疗中靶向CCL2/CCR2轴:一石三鸟?正面。免疫。12771210(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, X. et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76, 4124–4135 (2016).Article

Yang,X。等人。FAP通过STAT3-CCL2信号传导促进肿瘤微环境中癌症相关成纤维细胞的免疫抑制。癌症研究764124-4135(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, S. et al. Surgical trauma-induced CCL2 upregulation mediates lung cancer progression by promoting Treg recruitment in mice and patients. Cancer Invest. 40, 91–102 (2022).Article

Zhao,S。等人。手术创伤诱导的CCL2上调通过促进小鼠和患者中的Treg募集来介导肺癌进展。癌症投资。40,91-102(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xie, M. et al. FGF19/FGFR4-mediated elevation of ETV4 facilitates hepatocellular carcinoma metastasis by upregulating PD-L1 and CCL2. J. Hepatol. 79, 109–125 (2023).Article

Xie,M。等人。FGF19/FGFR4介导的ETV4升高通过上调PD-L1和CCL2促进肝细胞癌转移。J、 肝病。79109-125(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Feng, H. et al. Targeting tumor cell-derived CCL2 as a strategy to overcome Bevacizumab resistance in ETV5(+) colorectal cancer. Cell Death Dis. 11, 916 (2020).Article

Feng,H。等人。靶向肿瘤细胞衍生的CCL2作为克服ETV5(+)结直肠癌中贝伐单抗耐药性的策略。细胞死亡Dis。11916(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Low-Marchelli, J. M. et al. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 73, 662–671 (2013).Article

Low Marchelli,J.M。等人Twist1诱导CCL2并募集巨噬细胞以促进血管生成。癌症研究73662-671(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bess, S. N., Greening, G. J., Rajaram, N. & Muldoon, T. J. Macrophage-targeted anti-CCL2 immunotherapy enhances tumor sensitivity to 5-fluorouracil in a Balb/c-CT26 murine colon carcinoma model measured using diffuse reflectance spectroscopy. BMC Immunol. 23, 20 (2022).Article

Bess,S.N.,Greening,G.J.,Rajaram,N。&Muldoon,T.J。巨噬细胞靶向抗CCL2免疫疗法增强了Balb/c-CT26鼠结肠癌模型中对5-氟尿嘧啶的肿瘤敏感性。使用漫反射光谱法测量。BMC免疫。23、20(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vitiello, P. F. et al. Impact of tumor-derived CCL2 on T cell effector function. Immunol. Lett. 91, 239–245 (2004).Article

Vitiello,P.F。等人。肿瘤来源的CCL2对T细胞效应功能的影响。免疫。利特。91239-245(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhu, X., Fujita, M., Snyder, L. A. & Okada, H. Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J. Neurooncol. 104, 83–92 (2011).Article

Zhu,X.,Fujita,M.,Snyder,L.A。和Okada,H。全身递送靶向CCL2的中和抗体用于神经胶质瘤治疗。J、 神经肿瘤学。104,83-92(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zollo, M. et al. Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clin. Exp. Metastasis 29, 585–601 (2012).Article

Zollo,M。等人。用bindarit靶向单核细胞趋化蛋白-1合成诱导前列腺癌和乳腺癌动物模型中的肿瘤消退。临床。实验转移29585-601(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Herman, J. G., Stadelman, H. L. & Roselli, C. E. Curcumin blocks CCL2-induced adhesion, motility and invasion, in part, through down-regulation of CCL2 expression and proteolytic activity. Int. J. Oncol. 34, 1319–1327, (2009).CAS

Herman,J.G.,Stadelman,H.L。&Roselli,C.E。姜黄素部分通过下调CCL2表达和蛋白水解活性来阻断CCL2诱导的粘附,运动和侵袭。内景J.Oncol。341319-1327,(2009)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mu, X. Y. et al. RS 504393 inhibits M-MDSCs recruiting in immune microenvironment of bladder cancer after gemcitabine treatment. Mol. Immunol. 109, 140–148 (2019).Article

Mu,X.Y.等人RS 504393抑制吉西他滨治疗后膀胱癌免疫微环境中的M-MDSCs募集。分子免疫。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, Z. et al. CCL2/CCR2 axis promotes the progression of salivary adenoid cystic carcinoma via recruiting and reprogramming the tumor-associated macrophages. Front. Oncol. 9, 231 (2019).Article

Yang,Z。等人。CCL2/CCR2轴通过募集和重编程肿瘤相关巨噬细胞来促进唾液腺样囊性癌的进展。正面。Oncol公司。9231(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, R. et al. Estrogen promotes progression of hormone-dependent breast cancer through CCL2-CCR2 axis by upregulation of Twist via PI3K/AKT/NF-κB signaling. Sci. Rep. 8, 9575 (2018).Article

Han,R。等人。雌激素通过PI3K/AKT/NF-κB信号传导上调Twist,通过CCL2-CCR2轴促进激素依赖性乳腺癌的进展。科学。代表89575(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, C. et al. Disruption of SLFN11 deficiency-induced CCL2 signaling and macrophage M2 polarization potentiates anti-PD-1 therapy efficacy in hepatocellular carcinoma. Gastroenterology 164, 1261–1278 (2023).Article

Zhou,C。等人。SLFN11缺陷诱导的CCL2信号传导和巨噬细胞M2极化的破坏增强了肝细胞癌中抗PD-1的治疗效果。胃肠病学1641261-1278(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tu, M. M. et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Commun. Biol. 3, 720 (2020).Article

Tu,M.M.等人。抑制CCL2受体CCR2可增强肿瘤对免疫检查点治疗的反应。Commun公司。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Flores-Toro, J. A. et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc. Natl Acad. Sci. USA 117, 1129–1138 (2020).Article

Flores Toro,J.A。等人,CCR2抑制减少了肿瘤骨髓细胞,并揭示了检查点抑制剂对减缓耐药鼠神经胶质瘤进展的作用。程序。国家科学院。科学。美国1171129–1138(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sandhu, S. K. et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother. Pharm. 71, 1041–1050 (2013).Article

。癌症化疗。Pharm.711041-1050(2013)。文章

CAS

中科院

Google Scholar

谷歌学者

Pienta, K. J. et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest. N. Drugs 31, 760–768 (2013).Article

Pienta,K.J.等人对转移性去势抵抗性前列腺癌中抗CC趋化因子配体2(CCL2)的人单克隆抗体carlumab(CNTO 888)进行了2期研究。投资。N、 药物31760-768(2013)。文章

CAS

中科院

Google Scholar

谷歌学者

Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).Article .

Nywening,T.M.等人。针对临界可切除和局部晚期胰腺癌患者的CCR2抑制联合FOLFIRINOX靶向肿瘤相关巨噬细胞:单中心,开放标签,剂量发现,非随机,1b期临床试验。柳叶刀Oncol。17651-662(2016)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, M. et al. Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell Prolif. 54, e13115 (2021).Article

。细胞增殖。54,e13115(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Noel, M. et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. N. Drugs 38, 800–811 (2020).Article

Noel,M.等人。人类趋化因子(C-C基序)受体2(PF-04136309)小分子拮抗剂联合nab-紫杉醇/吉西他滨一线治疗转移性胰腺导管腺癌的1b期研究。投资。N、 药物38800-811(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Gobert, M. et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 69, 2000–2009 (2009).Article

通过CCL22/CCR4募集的调节性T细胞在原发性乳腺肿瘤周围的淋巴浸润中被选择性激活,并导致不良的临床结果。癌症研究692000-2009(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wiedemann, G. M. et al. Cancer cell-derived IL-1α induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology 5, e1175794 (2016).Article

Wiedemann,G.M。等人。癌细胞衍生的IL-1α诱导CCL22和调节性T细胞的募集。肿瘤免疫学5,e1175794(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shabaneh, T. B. et al. Oncogenic BRAF(V600E) governs regulatory t-cell recruitment during melanoma tumorigenesis. Cancer Res. 78, 5038–5049 (2018).Article

Shabaneh,T.B。等人。致癌BRAF(V600E)在黑色素瘤肿瘤发生过程中控制调节性T细胞募集。癌症研究785038-5049(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bayry, J., Tartour, E. & Tough, D. F. Targeting CCR4 as an emerging strategy for cancer therapy and vaccines. Trends Pharm. Sci. 35, 163–165, (2014).Article

Bayry,J.,Tartour,E。&Tough,D.F。将CCR4作为癌症治疗和疫苗的新兴策略。。35163-165,(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).Article

Curiel,T.J。等人。卵巢癌中调节性T细胞的特异性募集促进了免疫特权并预测了生存率的降低。《自然医学》10942-949(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Maeda, S. et al. CCR4 blockade depletes regulatory T cells and prolongs survival in a canine model of bladder cancer. Cancer Immunol. Res. 7, 1175–1187 (2019).Article

在犬膀胱癌模型中,CCR4阻断剂消耗调节性T细胞并延长存活时间。癌症免疫。第71175-1187号决议(2019年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pere, H. et al. A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens. Blood 118, 4853–4862 (2011).Article

Pere,H。等人。CCR4拮抗剂与疫苗联合诱导抗原特异性CD8+T细胞和针对自身抗原的肿瘤免疫。血液1184853-4862(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Berlato, C. et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J. Clin. Invest. 127, 801–813 (2017).Article

Berlato,C。等人。CCR4拮抗剂逆转肾癌的肿瘤促进微环境。J、 临床。投资。127801-813(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Khabipov, A. et al. CCR4 blockade diminishes intratumoral macrophage recruitment and augments survival of syngeneic pancreatic cancer-bearing mice. Biomedicines 11, 1517 (2023).Article

Khabipov,A。等人。CCR4阻断减少肿瘤内巨噬细胞募集并增加携带同基因胰腺癌的小鼠的存活率。生物医学111517(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marshall, L. A. et al. Tumors establish resistance to immunotherapy by regulating T(reg) recruitment via CCR4. J. Immunother. Cancer 8, e000764 (2020).Article

Marshall,L.A。等人。肿瘤通过CCR4调节T(reg)募集来建立对免疫疗法的抗性。J、 免疫疗法。癌症8,e000764(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ogura, M. et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J. Clin. Oncol. 32, 1157–1163 (2014).Article

Ogura,M.等。复发性外周T细胞淋巴瘤和皮肤T细胞淋巴瘤患者中去岩藻糖基化抗cc趋化因子受体4抗体mogamulizumab(KW-0761)的多中心II期研究。J、 临床。Oncol公司。321157-1163(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kurose, K. et al. Phase Ia study of FoxP3+ CD4 Treg depletion by infusion of a humanized Anti-CCR4 antibody, KW-0761, in cancer patients. Clin. Cancer Res 21, 4327–4336 (2015).Article

Kurose,K。等人。通过在癌症患者中输注人源化抗CCR4抗体KW-0761对FoxP3+CD4 Treg耗竭的Ia期研究。临床。癌症研究214327-4336(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zamarin, D. et al. Mogamulizumab in combination with durvalumab or tremelimumab in patients with advanced solid tumors: a phase I study. Clin. Cancer Res. 26, 4531–4541 (2020).Article

Zamarin,D。等人。Mogamulizumab联合durvalumab或tremelimumab治疗晚期实体瘤患者:I期研究。临床。癌症研究264531-4541(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Doi, T. et al. A phase I study of the anti-CC chemokine receptor 4 antibody, mogamulizumab, in combination with nivolumab in patients with advanced or metastatic solid tumors. Clin. Cancer Res. 25, 6614–6622 (2019).Article

Doi,T。等人。抗CC趋化因子受体4抗体mogamulizumab联合nivolumab治疗晚期或转移性实体瘤患者的I期研究。临床。癌症研究256614-6622(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Aldinucci, D., Borghese, C. & Casagrande, N. The CCL5/CCR5 axis in cancer progression. Cancers (Basel) 12, 1765 (2020).Article

Aldinucci,D.,Borghese,C。&Casagrande,N。癌症进展中的CCL5/CCR5轴。癌症(巴塞尔)121765(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Appay, V. & Rowland-Jones, S. L. RANTES: a versatile and controversial chemokine. Trends Immunol. 22, 83–87, (2001).Article

Appay,V.&Rowland-Jones,S.L.RANTES:一种多功能且有争议的趋化因子。趋势免疫。22,83-87,(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Velasco-Velázquez, M., Xolalpa, W. & Pestell, R. G. The potential to target CCL5/CCR5 in breast cancer. Expert Opin. Ther. Targets 18, 1265–1275, (2014).Article

Velasco Velázquez,M.,Xolalpa,W。&Pestell,R.G。在乳腺癌中靶向CCL5/CCR5的潜力。。他们。目标181265-1275(2014年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zeng, Z., Lan, T., Wei, Y. & Wei, X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 9, 12–27 (2022).Article

Zeng,Z.,Lan,T.,Wei,Y。&Wei,X。CCL5/CCR5轴在人类疾病和相关治疗中的作用。基因Dis。9,12-27(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Velasco-Velázquez, M. et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 72, 3839–3850 (2012).Article

Velasco Velázquez,M。等人,CCR5拮抗剂阻断基底乳腺癌细胞的转移。癌症研究723839-3850(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Schlecker, E. et al. Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J. Immunol. 189, 5602–5611 (2012).Article

Schlecker,E。等人。肿瘤浸润性单核细胞骨髓来源的抑制细胞介导CCR5依赖性募集有利于肿瘤生长的调节性T细胞。J、 免疫。1895602-5611(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, H. C. et al. Tumor-associated macrophages promote epigenetic silencing of gelsolin through DNA methyltransferase 1 in gastric cancer cells. Cancer Immunol. Res. 5, 885–897 (2017).Article

Wang,H.C.等人。肿瘤相关巨噬细胞通过DNA甲基转移酶1在胃癌细胞中促进凝溶胶蛋白的表观遗传沉默。癌症免疫。第5885-897号决议(2017年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, L. et al. Blockade of CCR5-mediated myeloid derived suppressor cell accumulation enhances anti-PD1 efficacy in gastric cancer. Immunopharmacol. Immunotoxicol. 40, 91–97 (2018).Article

Yang,L。等人。阻断CCR5介导的髓源性抑制细胞积聚可增强胃癌中的抗PD1功效。免疫药理学。免疫毒理学。40,91-97(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brett, E. et al. Naming the barriers between Anti-CCR5 therapy, breast cancer and its microenvironment. Int. J. Mol. Sci. 23, 14159 (2022).Article

Brett,E.等人命名了抗CCR5治疗,乳腺癌及其微环境之间的障碍。Int.J.Mol.Sci。2314159(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Blanco, J. R. & Ochoa-Callejero, L. Off-label use of maraviroc in clinical practice. Expert Rev. Anti Infect. Ther. 14, 5–8 (2016).Article

Blanco,J.R。&Ochoa Callejero,L。在临床实践中使用马拉维罗的标签外使用。专家版抗感染。他们。14,5-8(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zeng, H. et al. Cancer-associated fibroblasts facilitate premetastatic niche formation through lncRNA SNHG5-mediated angiogenesis and vascular permeability in breast cancer. Theranostics 12, 7351–7370 (2022).Article

Zeng,H。等人。癌症相关成纤维细胞通过lncRNA SNHG5介导的乳腺癌血管生成和血管通透性促进转移前生态位的形成。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiao, X. et al. CCR5 governs DNA damage repair and breast cancer stem cell expansion. Cancer Res. 78, 1657–1671 (2018).Article

Jiao,X。等人。CCR5控制DNA损伤修复和乳腺癌干细胞扩增。癌症研究781657-1671(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, F. et al. Structure activity relationship studies of natural product chemokine receptor CCR5 antagonist anibamine toward the development of novel anti prostate cancer agents. Eur. J. Med. Chem. 55, 395–408 (2012).Article

Zhang,F。等。天然产物趋化因子受体CCR5拮抗剂氨基胺的构效关系研究,用于开发新型抗前列腺癌药物。欧洲医学化学杂志。55395-408(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Robinson, S. C. et al. A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res. 63, 8360–8365 (2003).CAS

Robinson,S.C.等人。趋化因子受体拮抗剂抑制实验性乳腺肿瘤生长。癌症研究638360-8365(2003)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Woollard, S. M. & Kanmogne, G. D. Maraviroc: a review of its use in HIV infection and beyond. Drug Des. Dev. Ther. 9, 5447–5468, (2015).CAS

Woollard,S.M。&Kanmogne,G.D.Maraviroc:对其在HIV感染及其他方面的应用的回顾。药物Des。。95447-5468,(2015)。中科院

Google Scholar

谷歌学者

Dunbar, K. J. et al. Tumor-derived CCL5 recruits cancer-associated fibroblasts and promotes tumor cell proliferation in esophageal squamous cell carcinoma. Mol. Cancer Res. 21, 741–752 (2023).Article

。Mol.Cancer Res.21741–752(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Passman, A. M. et al. Maraviroc prevents HCC development by suppressing macrophages and the liver progenitor cell response in a murine chronic liver disease model. Cancers (Basel) 13, 4935 (2021).Article

Passman,A.M.等人,Maraviroc通过抑制小鼠慢性肝病模型中的巨噬细胞和肝祖细胞反应来预防HCC的发展。癌症(巴塞尔)134935(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, X. N. et al. Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling. Cell Res. 31, 1072–1087 (2021).Article

Zhang,X.N.等人。周细胞通过CCL5-CCR5旁分泌信号传导增强胶质母细胞瘤细胞对替莫唑胺的抗性。Cell Res.311072–1087(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Haag, G. M. et al. Pembrolizumab and maraviroc in refractory mismatch repair proficient/microsatellite-stable metastatic colorectal cancer—the PICCASSO phase I trial. Eur. J. Cancer 167, 112–122 (2022).Article

Haag,G.M.等人,Pembrolizumab和maraviroc在难治性错配修复熟练/微卫星稳定转移性结直肠癌中的PICCASSO I期试验。《欧洲癌症杂志》167112-122(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brat, D. J., Bellail, A. C. & Van Meir, E. G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 7, 122–133 (2005).Article

Brat,D.J.,Bellail,A.C。和Van Meir,例如白细胞介素-8及其受体在胶质瘤发生和肿瘤血管生成中的作用。神经肿瘤学。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Knall, C., Worthen, G. S. & Johnson, G. L. Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc. Natl Acad. Sci. USA 94, 3052–3057, (1997).Article .

Knall,C.,Worthen,G.S。&Johnson,G.L。白细胞介素8刺激的磷脂酰肌醇-3-激酶活性调节人中性粒细胞的迁移,而不依赖于细胞外信号调节激酶和p38丝裂原活化蛋白激酶。程序。国家科学院。科学。。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Knall, C. et al. Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J. Biol. Chem. 271, 2832–2838 (1996).Article

Knall,C。等人。白细胞介素-8调节人嗜中性粒细胞中Ras/Raf/丝裂原活化蛋白激酶途径。J、 生物。化学。2712832-2838(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lang, K., Niggemann, B., Zanker, K. S. & Entschladen, F. Signal processing in migrating T24 human bladder carcinoma cells: role of the autocrine interleukin-8 loop. Int. J. Cancer 99, 673–680 (2002).Article

Lang,K.,Niggemann,B.,Zanker,K.S。&Entschladen,F。信号处理在迁移T24人膀胱癌细胞中的作用:自分泌白细胞介素-8环的作用。《国际癌症杂志》99673-680(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ha, H., Debnath, B. & Neamati, N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 7, 1543–1588 (2017).Article

Ha,H.,Debnath,B。&Neamati,N。CXCL8-CXCR1/2轴在癌症和炎性疾病中的作用。Theranostics 71543-1588(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cambier, S., Gouwy, M. & Proost, P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol. Immunol. 20, 217–251 (2023).Article

Cambier,S.,Gouwy,M。&Proost,P。趋化因子CXCL8和CXCL12:分子和功能特性,在疾病中的作用以及药物干预的努力。细胞分子免疫。20217-251(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Q. et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 31, 61–71 (2016).Article

Liu,Q。等人。癌症中的CXCL8-CXCR1/2途径。细胞因子生长因子Rev.31,61-71(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, Z. J. et al. Roles of the CXCL8-CXCR1/2 axis in the tumor microenvironment and immunotherapy. Molecules. 27, 137 (2021).Greene, S. et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clin. Cancer Res.

Han,Z.J.等人。CXCL8-CXCR1/2轴在肿瘤微环境和免疫治疗中的作用。分子。27137(2021)。Greene,S。等人。用CXCR1/2抑制剂SX-682抑制MDSC运输,增强头颈癌模型中的NK细胞免疫疗法。临床。癌症研究。

26, 1420–1431 (2020).Article .

261420-1431(2020)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bertini, R. et al. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc. Natl Acad. Sci. USA 101, 11791–11796 (2004).Article

Bertini,R。等人。炎性趋化因子受体CXCR1和CXCR2的非竞争性变构抑制剂:预防再灌注损伤。程序。国家科学院。科学。美国10111791–11796(2004)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, C. et al. Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer. Gut 68, 1764–1773 (2019).Article

Lin,C。等人。肿瘤相关巨噬细胞衍生的CXCL8通过胃癌中自主PD-L1表达确定免疫逃避。肠道681764-1773(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bilusic, M. et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J. Immunother. Cancer 7, 240 (2019).Article

Bilusic,M。等人。抗IL-8单克隆抗体HuMax-IL8(BMS-986253)在转移性或不可切除实体瘤患者中的I期试验。J、 免疫疗法。癌症7240(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kargl, J. et al. Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC. JCI Insight 4, e130850 (2019).Article

Kargl,J。等人。中性粒细胞含量预测NSCLC中淋巴细胞耗竭和抗PD1治疗失败。JCI Insight 4,e130850(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gonçalves, T. L., de Araújo, L. P. & Pereira Ferrer, V. Tamoxifen as a modulator of CXCL12-CXCR4-CXCR7 chemokine axis: a breast cancer and glioblastoma view. Cytokine 170, 156344 (2023).Article

Gonçalves,T.L.,de Araújo,L.P。和Pereira Ferrer,V。他莫昔芬作为CXCL12-CXCR4-CXCR7趋化因子轴的调节剂:乳腺癌和胶质母细胞瘤的观点。细胞因子170156344(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Teicher, B. A. & Fricker, S. P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 16, 2927–2931 (2010).Article

Teicher,B.A。&Fricker,S.P。癌症中的CXCL12(SDF-1)/CXCR4途径。临床。癌症研究162927-2931(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhou, W. et al. Targeting CXCL12/CXCR4 axis in tumor immunotherapy. Curr. Med. Chem. 26, 3026–3041 (2019).Article

Zhou,W。等人。在肿瘤免疫治疗中靶向CXCL12/CXCR4轴。货币。医学化学。263026-3041(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Khalighfard, S. et al. Breast tumor metastasis following filgrastim administration due to the SDF-1/CXCR4 pathway. Med. Oncol. 40, 74 (2023).Article

Khalighfard,S。等人。由于SDF-1/CXCR4途径,非格司亭给药后的乳腺肿瘤转移。医学肿瘤学。40,74(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Song, Z. Y. et al. Downregulation of the CXCR4/CXCL12 axis blocks the activation of the Wnt/β-catenin pathway in human colon cancer cells. Biomed. Pharmacother. 71, 46–52 (2015).Article

Song,Z.Y.等人。CXCR4/CXCL12轴的下调阻断了人结肠癌细胞中Wnt/β-连环蛋白途径的激活。生物医学。药剂师。71,46-52(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Daniel, S. K., Seo, Y. D. & Pillarisetty, V. G. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin. Cancer Biol. 65, 176–188 (2020).Article

Daniel,S.K.,Seo,Y.D。和Pillarisetty,V.G。CXCL12-CXCR4/CXCR7轴是胃肠道恶性肿瘤免疫抵抗的机制。塞米。癌症生物学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Eckert, F. et al. Potential role of CXCR4 targeting in the context of radiotherapy and immunotherapy of cancer. Front. Immunol. 9, 3018 (2018).Article

Eckert,F。等人。CXCR4靶向在癌症放射治疗和免疫治疗中的潜在作用。正面。免疫。93018(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bao, S. et al. CXC chemokine receptor 4 (CXCR4) blockade in cancer treatment. J. Cancer Res. Clin. Oncol. 149, 7945–7968 (2023).Article

Bao,S。等。CXC趋化因子受体4(CXCR4)在癌症治疗中的阻断作用。J、 癌症研究临床。Oncol公司。1497945-7968(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mota, J. M. et al. Post-sepsis state induces tumor-associated macrophage accumulation through CXCR4/CXCL12 and favors tumor progression in mice. Cancer Immunol. Res. 4, 312–322 (2016).Article

Mota,J.M.等人。脓毒症后状态通过CXCR4/CXCL12诱导肿瘤相关巨噬细胞积聚,并有利于小鼠的肿瘤进展。癌症免疫。第4312-322号决议(2016年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fortunato, O. et al. CXCR4 inhibition counteracts immunosuppressive properties of metastatic NSCLC stem cells. Front. Immunol. 11, 02168 (2020).Article

Fortunato,O。等人。CXCR4抑制抵消转移性NSCLC干细胞的免疫抑制特性。正面。免疫。110268(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dürr, C. et al. CXCL12 mediates immunosuppression in the lymphoma microenvironment after allogeneic transplantation of hematopoietic cells. Cancer Res. 70, 10170–10181 (2010).Article

Dürr,C。等人。CXCL12介导造血细胞异基因移植后淋巴瘤微环境中的免疫抑制。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Righi, E. et al. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res. 71, 5522–5534 (2011).Article

Righi,E。等人。CXCL12/CXCR4阻断诱导多模式抗肿瘤作用,延长卵巢癌免疫活性小鼠模型的存活期。癌症研究715522-5534(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fearon, D. T. & Janowitz, T. AMD3100/Plerixafor overcomes immune inhibition by the CXCL12-KRT19 coating on pancreatic and colorectal cancer cells. Br. J. Cancer 125, 149–151 (2021).Article

Fearon,D。T。&Janowitz,T。AMD3100/Plerixafor克服了CXCL12-KRT19涂层对胰腺癌和结直肠癌细胞的免疫抑制作用。Br.J.Cancer 125149-151(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bila, J. et al. Bone marrow microenvironment interplay and current clinical practice in multiple myeloma: a review of the balkan myeloma study group. J. Clin. Med. 10, 3940 (2021).Article

Bila,J.等人。骨髓微环境相互作用和多发性骨髓瘤的当前临床实践:巴尔干骨髓瘤研究小组的综述。J、 临床。医学杂志103940(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, J., Tannous, B. A., Poznansky, M. C. & Chen, H. CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent. Pharm. Res. 159, 105010 (2020).Article

Wang,J.,Tannous,B.A.,Poznansky,M.C。&Chen,H。CXCR4拮抗剂AMD3100(plerixafor):从杂质到治疗剂。《药学》第159105010号决议(2020年)。文章

CAS

中科院

Google Scholar

谷歌学者

Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).Article

Feig,C。等人。靶向表达FAP的癌相关成纤维细胞中的CXCL12与胰腺癌中的抗PD-L1免疫疗法协同作用。程序。国家科学院。科学。美国11020212-20217(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Domanska, U. M. et al. CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia 14, 709–718 (2012).Article

用AMD3100抑制CXCR4使前列腺癌对多西紫杉醇化疗敏感。肿瘤形成14709-718(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, K. X. et al. CXCR4 antagonist AMD3100 enhances the response of MDA-MB-231 triple-negative breast cancer cells to ionizing radiation. Cancer Lett. 418, 196–203 (2018).Article

Zhou,K.X.等人CXCR4拮抗剂AMD3100增强MDA-MB-231三阴性乳腺癌细胞对电离辐射的反应。癌症Lett。418196-203(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Thomas, R. P. et al. Macrophage exclusion after radiation therapy (MERT): a first in human phase I/II trial using a CXCR4 inhibitor in glioblastoma. Clin. Cancer Res. 25, 6948–6957 (2019).Article

Thomas,R.P.等人,《放射治疗后巨噬细胞排斥(MERT):首次在胶质母细胞瘤中使用CXCR4抑制剂的人类I/II期试验》。临床。癌症研究256948-6957(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bockorny, B. et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat. Med. 26, 878–885 (2020).Article

Bockorny,B。等人,CXCR4拮抗剂BL-8040与pembrolizumab联合化疗治疗胰腺癌:COMBART试验。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Borthakur, G. et al. BL-8040 CXCR4 antagonist is safe and demonstrates antileukemic activity in combination with cytarabine for the treatment of relapsed/refractory acute myelogenous leukemia: an open-label safety and efficacy phase 2a study. Cancer 127, 1246–1259 (2021).Article

Borthakur,G。等人,BL-8040 CXCR4拮抗剂是安全的,并且与阿糖胞苷联合用于治疗复发/难治性急性骨髓性白血病显示出抗白血病活性:一项开放标签的安全性和有效性2a期研究。癌症1271246-1259(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Galsky, M. D. et al. A phase I trial of LY2510924, a CXCR4 peptide antagonist, in patients with advanced cancer. Clin. Cancer Res. 20, 3581–3588 (2014).Article

Galsky,M.D.等人,CXCR4肽拮抗剂LY2510924在晚期癌症患者中的I期试验。临床。癌症研究203581-3588(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pernas, S. et al. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol. 19, 812–824 (2018).Article

Pernas,S.等人,《Balixafortide加eribulin治疗HER2阴性转移性乳腺癌:一项1期单臂剂量递增试验》。柳叶刀Oncol。19812-824(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ghobrial, I. M. et al. A phase Ib/II trial of the first-in-class anti-CXCR4 antibody ulocuplumab in combination with lenalidomide or bortezomib plus dexamethasone in relapsed multiple myeloma. Clin. Cancer Res. 26, 344–353 (2020).Article

Ghobrial,I.M.等人在复发性多发性骨髓瘤中联合来那度胺或硼替佐米加地塞米松的第一类抗CXCR4抗体ulocuplumab的Ib/II期试验。临床。癌症研究26344-353(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hoellenriegel, J. et al. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood 123, 1032–1039 (2014).Article

Hoellenriegel,J。等人。新型CXCL12抑制剂Spiegelmer NOX-A12干扰慢性淋巴细胞白血病细胞运动并引起化学增敏。血液1231032-1039(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pol, J. G. et al. Cytokines in oncolytic virotherapy. Cytokine Growth Factor Rev. 56, 4–27 (2020).Article

Pol,J.G.等人。溶瘤病毒疗法中的细胞因子。细胞因子生长因子Rev.56,4-27(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Z. et al. CXCL11-Armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. Oncoimmunology 5, e1091554 (2016).Article

Liu,Z。等人。携带CXCL11的溶瘤痘病毒引发有效的抗肿瘤免疫力,并显示出增强的治疗效果。肿瘤免疫学5,e1091554(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Eckert, E. C. et al. Generation of a tumor-specific chemokine gradient using oncolytic vesicular stomatitis virus encoding CXCL9. Mol. Ther. Oncolyt. 16, 63–74 (2020).Article

Eckert,E.C.等人。使用编码CXCL9的溶瘤性水泡性口炎病毒产生肿瘤特异性趋化因子梯度。摩尔热。Oncolyt公司。16,63-74(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Simon, G. et al. 762 First-in-human phase 1a study of NG-641, a tumour-selective vector expressing a FAP-TAc bispecific antibody and immune enhancer module, in patients with metastatic/advanced epithelial tumours (STAR). J. Immunother. Cancer 10, A794 (2022).

Simon,G。等人762首次在转移性/晚期上皮肿瘤(STAR)患者中对表达FAP-TAc双特异性抗体和免疫增强模块的肿瘤选择性载体NG-641进行了人类1a期研究。J、 免疫疗法。癌症10,A794(2022)。

Google Scholar

谷歌学者

Lillie, T. et al. Abstract CT214: A multicenter phase 1a/b study of NG-641, a tumor-selective transgene-expressing adenoviral vector, and nivolumab in patients with metastatic or advanced epithelial tumors (NEBULA). Cancer Res. 82, CT214 (2022).Article

Lillie,T。et al。摘要CT214:NG-641(一种肿瘤选择性转基因表达腺病毒载体)和nivolumab在转移性或晚期上皮肿瘤(NEBULA)患者中的多中心1a/b期研究。癌症研究82,CT214(2022)。文章

Google Scholar

谷歌学者

Wang, X. et al. A novel recombinant protein of IP10-EGFRvIIIscFv and CD8(+) cytotoxic T lymphocytes synergistically inhibits the growth of implanted glioma in mice. Cancer Immunol. Immunother. 62, 1261–1272 (2013).Article

Wang,X。等人。IP10 EGFRvIIIscFv和CD8(+)细胞毒性T淋巴细胞的新型重组蛋白协同抑制小鼠植入胶质瘤的生长。癌症免疫。免疫疗法。621261-1272(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yamano, T. et al. Enhancement of immunity by a DNA melanoma vaccine against TRP2 with CCL21 as an adjuvant. Mol. Ther. 13, 194–202 (2006).Article

Yamano,T。等人。以CCL21为佐剂的针对TRP2的DNA黑素瘤疫苗增强免疫力。摩尔热。13194-202(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yamano, T. et al. Immunity against breast cancer by TERT DNA vaccine primed with chemokine CCL21. Cancer Gene Ther. 14, 451–459 (2007).Article

Yamano,T。等人。用趋化因子CCL21引发的TERT DNA疫苗对乳腺癌的免疫力。癌症基因治疗。14451-459(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gray, J. E. et al. A phase I/randomized phase II study of GM.CD40L vaccine in combination with CCL21 in patients with advanced lung adenocarcinoma. Cancer Immunol. Immunother. 67, 1853–1862 (2018).Article

Gray,J.E.等人,GM.CD40L疫苗联合CCL21治疗晚期肺腺癌的I期/随机II期研究。癌症免疫。免疫疗法。671853-1862(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goto, S. et al. Enhanced anti-tumor efficacy of IL-7/CCL19-producing human CAR-T cells in orthotopic and patient-derived xenograft tumor models. Cancer Immunol. Immunother. 70, 2503–2515 (2021).Article

Goto,S.等人。在原位和患者来源的异种移植肿瘤模型中增强产生IL-7/CCL19的人CAR-T细胞的抗肿瘤功效。癌症免疫。免疫疗法。702503-2515(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).Article

Adachi,K。等人。CAR-T细胞中IL-7和CCL19的表达可改善肿瘤中的免疫细胞浸润和CAR-T细胞存活。美国国家生物技术公司。36346-351(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lesch, S. et al. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat. Biomed. Eng. 5, 1246–1260 (2021).Article

Lesch,S。等人。携带C-X-C趋化因子受体6型的T细胞增强了胰腺肿瘤的过继细胞疗法。自然生物医学。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Savage, T. M. et al. Chemokines expressed by engineered bacteria recruit and orchestrate antitumor immunity. Sci. Adv. 9, eadc9436 (2023).Article

Savage,T.M.等人。由工程细菌表达的趋化因子募集并协调抗肿瘤免疫。科学。Adv.9,eadc9436(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pang, N. et al. IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin. J. Hematol. Oncol. 14, 118 (2021).Article

Pang,N。等人。分泌IL-7和CCL19的CAR-T细胞治疗磷脂酰肌醇蛋白聚糖-3或间皮素阳性的肿瘤。J、 血液学。Oncol公司。14118(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Claesson-Welsh, L. & Welsh, M. VEGFA and tumour angiogenesis. J. Intern. Med. 273, 114–127, (2013).Article

Claesson-Welsh,L。&Welsh,M。VEGFA和肿瘤血管生成。J、 实习生。医学273114-127,(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sigismund, S., Avanzato, D. & Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 12, 3–20 (2018).Article

Sigismund,S.,Avanzato,D。&Lanzetti,L。EGFR在癌症中的新兴功能。。12,3-20(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bai, X. et al. Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. Onco Targets Ther. 12, 9527–9538 (2019).Article

Bai,X。等人。阻断TGF-β信号传导以增强免疫检查点抑制剂的功效。Onco以Ther为目标。129527-9538(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wozney, J. L. & Antonarakis, E. S. Growth factor and signaling pathways and their relevance to prostate cancer therapeutics. Cancer Metastasis Rev. 33, 581–594, (2014).Article

Wozney,J。L。和Antonarakis,E。S。生长因子和信号通路及其与前列腺癌治疗的相关性。癌症转移Rev.33581-594,(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Derynck, R. & Budi, E. H. Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 12, eaav5183 (2019).Article

Derynck,R。&Budi,E.H。TGF-β家族信号传导的特异性,多功能性和控制。科学。信号。12,eaav5183(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wilson, S. E. TGF beta -1, -2 and -3 in the modulation of fibrosis in the cornea and other organs. Exp. Eye Res. 207, 108594 (2021).Article

Wilson,S.E。TGF-β-1,-2和-3在调节角膜和其他器官纤维化中的作用。Exp.Eye Res.207108594(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Robertson, I. B. et al. Latent TGF-β-binding proteins. Matrix Biol. 47, 44–53 (2015).Article

Robertson,I.B.等人。潜在的TGF-β结合蛋白。矩阵生物学。47,44-53(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lawrence, D. A. Latent-TGF-beta: an overview. Mol. Cell Biochem. 219, 163–170, (2001).Article

Lawrence,D.A。潜在的TGF-β:概述。分子细胞生物化学。219163-170,(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kusakabe, M. et al. The structure of the TGF-beta latency associated peptide region determines the ability of the proprotein convertase furin to cleave TGF-betas. J. Cell Biochem. 103, 311–320 (2008).Article

Kusakabe,M。等人。TGF-β潜伏期相关肽区域的结构决定了前蛋白转化酶弗林蛋白酶切割TGF-β的能力。J、 细胞生物化学。103311-320(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shi, M. et al. Latent TGF-β structure and activation. Nature 474, 343–349 (2011).Article

Shi,M。等人。潜在的TGF-β结构和激活。自然474343-349(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Munger, J. S. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).Article

Munger,J.S.等人。整合素αvβ6结合并激活潜在的TGFβ1:一种调节肺部炎症和纤维化的机制。细胞96319-328(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Syed, V. TGF-β signaling in cancer. J. Cell Biochem. 117, 1279–1287 (2016).Article

Syed,V。癌症中的TGF-β信号传导。J、 细胞生物化学。1171279-1287(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425, 577–584, (2003).Article

Derynck,R。&Zhang,Y.E。TGF-β家族信号传导中的Smad依赖性和Smad非依赖性途径。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Aomatsu, K. et al. TGF-β induces sustained upregulation of SNAI1 and SNAI2 through Smad and non-Smad pathways in a human corneal epithelial cell line. Invest. Ophthalmol. Vis. Sci. 52, 2437–2443, (2011).Article

Aomatsu,K。等人。TGF-β通过人角膜上皮细胞系中的Smad和非Smad途径诱导SNAI1和SNAI2的持续上调。投资。眼科。可见。科学。522437-2443,(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cho, K. H. et al. STAT3 mediates TGF-β1-induced TWIST1 expression and prostate cancer invasion. Cancer Lett. 336, 167–173 (2013).Article

Cho,K.H.等人,STAT3介导TGF-β1诱导的TWIST1表达和前列腺癌侵袭。癌症Lett。336167-173(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y. E. Non-smad signaling pathways of the TGF-β family. Cold Spring Harb. Perspect. Biol. 9, a022129 (2017).Zhang, Y. E. Non-Smad pathways in TGF-beta signaling. Cell Res 19, 128–139 (2009).Article

Zhang,Y.E。TGF-β家族的非smad信号通路。冷泉兔。透视图。生物学杂志9,a022129(2017)。Zhang,Y.E。TGF-β信号传导中的非Smad途径。细胞研究19128-139(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Morikawa, M., Derynck, R. & Miyazono, K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol. 8, a021873 (2016).Article

Morikawa,M.,Derynck,R。&Miyazono,K。TGF-β和TGF-β家族:细胞和组织生理学中上下文相关的作用。冷泉兔。透视图。生物学杂志8,a021873(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Peng, D. et al. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer 21, 104 (2022).Article

Peng,D.等。靶向TGF-β信号转导用于纤维化和癌症治疗。分子癌症21104(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gough, N. R., Xiang, X. & Mishra, L. TGF-β signaling in liver, pancreas, and gastrointestinal diseases and cancer. Gastroenterology 161, 434–452.e415 (2021).Article

Gough,N.R.,Xiang,X。&Mishra,L。肝脏,胰腺,胃肠道疾病和癌症中的TGF-β信号传导。胃肠病学161434-452.e415(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, J., Gingold, J. A. & Su, X. Immunomodulatory TGF-β signaling in hepatocellular carcinoma. Trends Mol. Med. 25, 1010–1023 (2019).Article

Chen,J.,Gingold,J.A。&Su,X。肝细胞癌中的免疫调节TGF-β信号传导。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shi, X. et al. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J. Hematol. Oncol. 15, 135 (2022).Article

Shi,X。等。肿瘤代谢微环境中的TGF-β信号传导和靶向治疗。J、 血液学。Oncol公司。15135(2022年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Niu, M. et al. Synergistic efficacy of simultaneous anti-TGF-β/VEGF bispecific antibody and PD-1 blockade in cancer therapy. J. Hematol. Oncol. 16, 94 (2023).Article

Niu,M.等人。同时抗TGF-β/VEGF双特异性抗体和PD-1阻断剂在癌症治疗中的协同作用。J、 血液学。Oncol公司。16,94(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morris, J. C. et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE 9, e90353 (2014).Article

Morris,J.C.等。GC1008(fresolimumab)的I期研究:一种用于晚期恶性黑色素瘤或肾细胞癌患者的人抗转化生长因子β(TGFβ)单克隆抗体。PLoS ONE 9,e90353(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Formenti, S. C. et al. Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin. Cancer Res. 24, 2493–2504 (2018).Article

Formenti,S.C.等人。转移性乳腺癌的局部照射和全身TGFβ阻断。临床。癌症研究242493-2504(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Melisi, D. et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br. J. Cancer 119, 1208–1214 (2018).Article

Melisi,D。等人。Galunisertib联合吉西他滨与吉西他滨用于不可切除胰腺癌患者的一线治疗。Br.J.Cancer 1191208-1214(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yamazaki, T. et al. Galunisertib plus neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a single-arm, phase 2 trial. Lancet Oncol. 23, 1189–1200 (2022).Article

Yamazaki,T。等。Galunisertib联合新辅助放化疗治疗局部晚期直肠癌:单臂2期临床试验。柳叶刀Oncol。231189-1200(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brandes, A. A. et al. A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol. 18, 1146–1156 (2016).Article

Brandes,A.A.等人对复发性胶质母细胞瘤患者进行了galunisertib单药治疗或galunisertib联合洛莫司汀与洛莫司汀单药治疗的II期随机研究。神经肿瘤学。181146-1156(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harding, J. J. et al. Phase 1b study of galunisertib and ramucirumab in patients with advanced hepatocellular carcinoma. Cancer Med. 10, 3059–3067 (2021).Article

。癌症医学103059-3067(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Herbertz, S. et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des. Dev. Ther. 9, 4479–4499, (2015).CAS

Herbertz,S.等人。转化生长因子β信号通路的小分子抑制剂galunisertib(LY2157299一水合物)的临床开发。药物Des。。94479–4499,(2015年)。中科院

Google Scholar

谷歌学者

Scagliotti, G. V. et al. Tasisulam sodium (LY573636 sodium) as third-line treatment in patients with unresectable, metastatic non-small-cell lung cancer: a phase-II study. J. Thorac. Oncol. 7, 1053–1057 (2012).Article

Scagliotti,G。V。等人。Tasisulam钠(LY573636钠)作为不可切除的转移性非小细胞肺癌患者的三线治疗:II期研究。J、 胸部。Oncol公司。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lan, Y. et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci. Transl. Med. 10, eaan5488 (2018).Strauss, J. et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors.

Lan,Y。等人。增强M7824的临床前抗肿瘤活性,M7824是一种同时靶向PD-L1和TGF-β的双功能融合蛋白。科学。翻译。医学杂志10,eaan5488(2018)。Strauss,J。等人。M7824(MSB0011359C)是一种靶向PD-L1和TGFβ的双功能融合蛋白,在晚期实体瘤中的I期试验。

Clin. Cancer Res. 24, 1287–1295 (2018).Article .

临床。癌症研究241287-1295(2018)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Paz-Ares, L. et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in second-line treatment of patients with NSCLC: results from an expansion cohort of a phase 1 trial. J. Thorac. Oncol. 15, 1210–1222 (2020).Article

Paz-Ares,L。等人。Bintrafusp alfa,一种靶向TGF-β和PD-L1的双功能融合蛋白,用于NSCLC患者的二线治疗:来自1期试验扩展队列的结果。J、 胸部。Oncol公司。151210-1222(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, D. et al. Bifunctional anti-PD-L1/TGF-βRII agent SHR-1701 in advanced solid tumors: a dose-escalation, dose-expansion, and clinical-expansion phase 1 trial. BMC Med. 20, 408 (2022).Article

Liu,D.等。双功能抗PD-L1/TGF-βRII药物SHR-1701在晚期实体瘤中的应用:剂量递增,剂量扩展和临床扩展1期试验。BMC医学杂志20408(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Feng, J. et al. SHR-1701, a Bifunctional Fusion Protein Targeting PD-L1 and TGFβ, for Recurrent or Metastatic Cervical Cancer: A Clinical Expansion Cohort of a Phase I Study. Clin. Cancer Res. 28, 5297–5305 (2022).Article

Feng,J。等人。针对复发或转移性宫颈癌的靶向PD-L1和TGFβ的双功能融合蛋白SHR-1701:I期研究的临床扩展队列。临床。癌症研究285297-5305(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yi, M. et al. The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. J. Hematol. Oncol. 14, 27 (2021).Article

Yi101的构建、表达和增强的抗肿瘤活性:一种同时靶向TGF-β和PD-L1的双特异性抗体。J、 血液学。Oncol公司。14、27(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yi, M. et al. Anti-TGF-β/PD-L1 bispecific antibody promotes T cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. J. Immunother. Cancer 10, e005543 (2022).Article

Yi,M。等人。抗TGF-β/PD-L1双特异性抗体促进T细胞浸润,并在三阴性乳腺癌中表现出增强的抗肿瘤活性。J、 免疫疗法。癌症10,e005543(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bogdahn, U. et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol. 13, 132–142 (2011).Article

Bogdahn,U。等人。用TGF-β2抑制剂trabedersen靶向治疗高级别胶质瘤:一项随机对照IIb期研究的结果。神经肿瘤学。13132-142(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Giaccone, G. et al. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur. J. Cancer 51, 2321–2329 (2015).Article

Giaccone,G。等人。belagenpumatucel-L(一种同种异体肿瘤细胞疫苗)作为非小细胞肺癌维持治疗的III期研究。《欧洲癌症杂志》512321-2329(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lugano, R., Ramachandran, M. & Dimberg, A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol. Life Sci. 77, 1745–1770 (2020).Article

Lugano,R.,Ramachandran,M。&Dimberg,A。肿瘤血管生成:原因,后果,挑战和机遇。细胞分子生命科学。771745-1770(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fukumura, D. et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).Article

Fukumura,D.等人,《使用抗血管生成药物增强癌症免疫治疗:机遇与挑战》。国家修订临床。Oncol公司。15325-340(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ronca, R. et al. Tumor angiogenesis revisited: Regulators and clinical implications. Med. Res. Rev. 37, 1231–1274 (2017).Article

Ronca,R.等人,《肿瘤血管生成:调节因子和临床意义》。《医学决议》第371231-1274版(2017年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Z. et al. Vascular normalization in immunotherapy: a promising mechanisms combined with radiotherapy. Biomed. Pharmacother. 139, 111607 (2021).Article

Liu,Z.等。免疫治疗中的血管正常化:与放疗相结合的有前途的机制。生物医学。药剂师。139111607(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Goel, S. et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011).Article

Goel,S.等人。用于治疗癌症和其他疾病的脉管系统正常化。生理学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Choi, Y. & Jung, K. Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy. Exp. Mol. Med. 55, 2308–2319 (2023).Article

Choi,Y。&Jung,K。通过利用血管和免疫调节来实现肿瘤微环境的正常化,以实现增强的癌症治疗。实验分子医学552308-2319(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, P. et al. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer. Front. Immunol. 14, 1276694 (2023).Article

Yu,P。等。血管正常化:重塑肿瘤微环境并增强卵巢癌的抗肿瘤免疫力。正面。免疫。141276694(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ye, W. The complexity of translating anti-angiogenesis therapy from basic science to the clinic. Dev. Cell 37, 114–125 (2016).Article

。Dev.Cell 37114-125(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Viallard, C. & Larrivée, B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20, 409–426 (2017).Article

Viallard,C。&Larrivée,B。肿瘤血管生成和血管正常化:替代治疗靶点。血管生成20409-426(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, Y. et al. Improving immune-vascular crosstalk for cancer immunotherapy. Nat. Rev. Immunol. 18, 195–203 (2018).Article

Huang,Y.等人。改善癌症免疫治疗的免疫血管串扰。国家免疫修订版。18195-203(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).Article

Voron,T。等人。VEGF-A调节肿瘤中CD8+T细胞上抑制性检查点的表达。J、 实验医学212139-148(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).Article

Gabrilovich,D.I.等人。人类肿瘤产生血管内皮生长因子抑制树突状细胞的功能成熟。《自然医学杂志》21096-1103(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475, 226–230 (2011).Article

Facciabene,A。等人。肿瘤缺氧通过CCL28和T(reg)细胞促进耐受性和血管生成。自然475226-230(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 70, 5728–5739 (2010).Article

Movahedi,K。等人。不同的肿瘤微环境含有来自Ly6C(高)单核细胞的功能不同的巨噬细胞亚群。癌症研究705728-5739(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Du Four, S. et al. Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs. Am. J. Cancer Res. 6, 2514–2531 (2016).PubMed

Du Four,S.等人联合VEGFR和CTLA-4阻断可增加肿瘤内DC的抗原呈递功能,并降低肿瘤内MDSC的抑制能力。Am.J.Cancer Res.62514–2531(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).Article

PD-L1是HIF-1α的一个新的直接靶点,其在缺氧条件下的阻断增强了MDSC介导的T细胞活化。J、 实验医学211781-790(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jain, R. K. et al. Leukocyte-endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev. 15, 195–204 (1996).Article

Jain,R.K.等人。肿瘤中的白细胞-内皮粘附和血管生成。癌症转移Rev.15195-204(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Melder, R. J. et al. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med. 2, 992–997 (1996).Article

在血管生成过程中,血管内皮生长因子和碱性成纤维细胞生长因子调节自然杀伤细胞与肿瘤内皮的粘附。《自然医学杂志》2992-997(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hendry, S. A. et al. The role of the tumor vasculature in the host immune response: implications for therapeutic strategies targeting the tumor microenvironment. Front. Immunol. 7, 621 (2016).Article

Hendry,S.A.等人。肿瘤脉管系统在宿主免疫反应中的作用:对靶向肿瘤微环境的治疗策略的影响。正面。免疫。7621(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramjiawan, R. R., Griffioen, A. W. & Duda, D. G. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis 20, 185–204 (2017).Article

Ramjiawan,R.R.,Griffioen,A.W。&Duda,D.G。重新审视癌症的抗血管生成:与免疫疗法联合使用是否有作用?血管生成20185-204(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tu, J. et al. The application and research progress of anti-angiogenesis therapy in tumor immunotherapy. Front. Immunol. 14, 1198972 (2023).Article

Tu,J。等。抗血管生成疗法在肿瘤免疫治疗中的应用和研究进展。正面。免疫。141198972(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, F. T. H. et al. Pre- and post-operative anti-PD-L1 plus anti-angiogenic therapies in mouse breast or renal cancer models of micro- or macro-metastatic disease. Br. J. Cancer 120, 196–206 (2019).Article

Wu,F.T.H.等人。微转移性或大转移性疾病的小鼠乳腺癌或肾癌模型中的术前和术后抗PD-L1加抗血管生成疗法。Br.J.Cancer 120196-206(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Meder, L. et al. Combined VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer. Cancer Res. 78, 4270–4281 (2018).Article

Meder,L。等人联合VEGF和PD-L1阻断剂在小细胞肺癌的原位小鼠模型中显示出协同治疗效果。癌症研究784270-4281(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yasuda, S. et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin. Exp. Immunol. 172, 500–506 (2013).Article

Yasuda,S.等人。同时阻断程序性死亡1和血管内皮生长因子受体2(VEGFR2)在体内诱导协同抗肿瘤作用。临床。实验免疫。172500–506(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tran, T. T. et al. Lenvatinib or anti-VEGF in combination with anti-PD-1 differentially augments antitumor activity in melanoma. JCI Insight 8, e157347 (2023).Article

。JCI Insight 8,e157347(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Song, Y. et al. Anti-angiogenic agents in combination with immune checkpoint inhibitors: a promising strategy for cancer treatment. Front. Immunol. 11, 1956 (2020).Article

Song,Y.等人,《抗血管生成药物联合免疫检查点抑制剂:一种有前途的癌症治疗策略》。正面。免疫。111956(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yi, M. et al. Regulation of PD-L1 expression in the tumor microenvironment. J. Hematol. Oncol. 14, 10 (2021).Article

Yi,M。等人。肿瘤微环境中PD-L1表达的调节。J、 血液学。Oncol公司。14,10(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017).Hodi, F. S. et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res. 2, 632–642 (2014).Article

联合抗血管生成和抗PD-L1治疗通过HEV形成刺激肿瘤免疫。科学。翻译。医学杂志9,eaak9679(2017)。Hodi,F.S.等人。贝伐单抗联合ipilimumab治疗转移性黑色素瘤患者。癌症免疫。第2632-642号决议(2014年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, X. et al. Combined anti-VEGF and anti-CTLA-4 therapy elicits humoral immunity to galectin-1 which is associated with favorable clinical outcomes. Cancer Immunol. Res. 5, 446–454 (2017).Article

Wu,X。等人。联合抗VEGF和抗CTLA-4治疗可引起对半乳糖凝集素-1的体液免疫,这与良好的临床结果相关。癌症免疫。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ren, Z. et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. Lancet Oncol. 22, 977–990 (2021).Article

。柳叶刀Oncol。22977-990(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, J. F. et al. Assessment of combined nivolumab and bevacizumab in relapsed ovarian cancer: a phase 2 clinical trial. JAMA Oncol. 5, 1731–1738 (2019).Article

Liu,J.F.等人。联合使用nivolumab和贝伐单抗治疗复发性卵巢癌的评估:2期临床试验。JAMA Oncol。51731-1738(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).Article

Socinski,M.A。等人,Atezolizumab用于转移性非鳞状细胞癌的一线治疗。N、 英语。J、 。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, K. et al. Recent advances in, and challenges of, anti-angiogenesis agents for tumor chemotherapy based on vascular normalization. Drug Discov. Today 26, 2743–2753 (2021).Article

Wang,K.等人。基于血管正常化的肿瘤化疗抗血管生成药物的最新进展和挑战。药物发现。今天262743-2753(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).Article

Motzer,R.J.等人,Avelumab加axitinib与舒尼替尼治疗晚期肾细胞癌。N、 英语。J、 医学3801103-1115(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Choueiri, T. K. et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol. 19, 451–460 (2018).Article

Choueiri,T.K.等人。avelumab加axitinib作为晚期透明细胞肾细胞癌(JAVELIN renal 100)患者一线治疗的初步结果:开放标签,剂量发现和剂量扩展,1b期试验。柳叶刀Oncol。19451-460(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xu, J. et al. Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study. Clin. Cancer Res. 25, 515–523 (2019).Article

Xu,J.等。抗PD-1抗体SHR-1210联合阿帕替尼治疗晚期肝细胞癌,胃癌或食管胃交界癌:一项开放标签,剂量递增和扩展研究。临床。癌症研究25515-523(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cohen, S. The stimulation of epidermal proliferation by a specific protein (EGF). Dev. Biol. 12, 394–407 (1965).Article

Cohen,S。特定蛋白质(EGF)刺激表皮增殖。开发生物。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Carpenter, G., Lembach, K. J., Morrison, M. M. & Cohen, S. Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J. Biol. Chem. 250, 4297–4304, (1975).Article

Carpenter,G.,Lembach,K.J.,Morrison,M.M。&Cohen,S。表征125-I标记的表皮生长因子与人成纤维细胞的结合。J、 生物。化学。2504297-4304(1975)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yarden, Y. & Shilo, B. Z. SnapShot: EGFR signaling pathway. Cell 131, 1018 (2007).Article

Yarden,Y。&Shilo,B.Z。快照:EGFR信号通路。细胞1311018(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

da Cunha Santos, G., Shepherd, F. A. & Tsao, M. S. EGFR mutations and lung cancer. Annu Rev. Pathol. 6, 49–69 (2011).Article

da Cunha Santos,G.,Shepherd,F.A。&Tsao,M.S。EGFR突变和肺癌。年度修订Pathol。6,49-69(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ray, K., Ujvari, B., Ramana, V. & Donald, J. Cross-talk between EGFR and IL-6 drives oncogenic signaling and offers therapeutic opportunities in cancer. Cytokine Growth Factor Rev. 41, 18–27 (2018).Article

Ray,K.,Ujvari,B.,Ramana,V。&Donald,J。EGFR和IL-6之间的串扰驱动致癌信号传导并为癌症提供治疗机会。细胞因子生长因子Rev.41,18-27(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lo, H. W., Hsu, S. C. & Hung, M. C. EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res Treat. 95, 211–218, (2006).Article

Lo,H.W.,Hsu,S.C。&Hung,M.C。乳腺癌中的EGFR信号通路:从传统的信号转导到直接的核转位。乳腺癌Res治疗。95211-218,(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hu, T. & Li, C. Convergence between Wnt-β-catenin and EGFR signaling in cancer. Mol. Cancer 9, 236 (2010).Article

Hu,T。&Li,C。Wnt-β-连环蛋白与EGFR信号在癌症中的融合。摩尔癌症9236(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y. et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol. 23, 743–756 (2021).Article

Liu,Y。等人。滚动翻译的EGFR变体维持EGFR信号传导并促进胶质母细胞瘤的致瘤性。神经肿瘤学。23743-756(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, X. et al. Can EGFR be a therapeutic target in breast cancer? Biochim. Biophys. Acta Rev. Cancer 1877, 188789 (2022).Article

Li,X。等。EGFR能否成为乳腺癌的治疗靶点?生物化学。生物物理。《癌症学报》1877188789(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Strickler, J. H. et al. Diagnosis and treatment of ERBB2-positive metastatic colorectal cancer: a review. JAMA Oncol. 8, 760–769 (2022).Article

Strickler,J.H.等。ERBB2阳性转移性结直肠癌的诊断和治疗:综述。JAMA Oncol。8760-769(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Remon, J., Steuer, C. E., Ramalingam, S. S. & Felip, E. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann. Oncol. 29, i20–i27 (2018).Article

Remon,J.,Steuer,C.E.,Ramalingam,S.S。&Felip,E.Osimertinib和其他EGFR突变NSCLC患者的第三代EGFR TKI。安科。29,i20-i27(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, S. G. & Shih, J. Y. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol. Cancer 17, 38 (2018).Article

Wu,S.G.&Shih,J.Y。晚期非小细胞肺癌对EGFR TKI靶向治疗获得性耐药的管理。Mol.Cancer 17,38(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Passaro, A., Jänne, P. A., Mok, T. & Peters, S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat. Cancer 2, 377–391 (2021).Article

Passaro,A.,Jänne,P.A.,Mok,T。&Peters,S。克服EGFR突变型肺癌的治疗耐药性。《自然癌症》2377-391(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Q. et al. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol. Cancer 17, 53 (2018).Article

Liu,Q。等人。通过不依赖EGFR的信号传导途径对EGFR-TKIs产生耐药性。Mol.Cancer 17,53(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chong, C. R. & Jänne, P. A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med. 19, 1389–1400 (2013).Article

Chong,C.R.&Jänne,P.A。寻求克服癌症对EGFR靶向治疗的耐药性。《自然医学杂志》191389-1400(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guardiola, S., Varese, M., Sánchez-Navarro, M. & Giralt, E. A third shot at EGFR: new opportunities in cancer therapy. Trends Pharm. Sci. 40, 941–955 (2019).Article

瓜迪奥拉,S.,瓦雷泽,M.,桑切斯-纳瓦罗,M。和吉拉特,E。EGFR的第三次尝试:癌症治疗的新机会。。40941-955(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hailing, T., Yonghong, P., Yufeng, Z. & Haitao, T. Challenges for the application of EGFR-targeting peptide GE11 in tumor diagnosis and treatment. J. Control Release 349, 592–605 (2022).Article

Hailing,T.,Yonghong,P.,Yufeng,Z。&Haitao,T。EGFR靶向肽GE11在肿瘤诊断和治疗中应用的挑战。J、 控制版本349592–605(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, L. et al. Anti-EGFR binding nanobody delivery system to improve the diagnosis and treatment of solid tumours. Recent Pat. Anticancer Drug Discov. 15, 200–211 (2020).Article

Wang,L.等人。抗EGFR结合纳米体递送系统,以改善实体瘤的诊断和治疗。最近的Pat。抗癌药物Discov。15200–211(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sharifi, J., Khirehgesh, M. R., Safari, F. & Akbari, B. EGFR and anti-EGFR nanobodies: review and update. J. Drug Target 29, 387–402 (2021).Article

Sharifi,J.,Khirehgesh,M.R.,Safari,F。&Akbari,B。EGFR和抗EGFR纳米体:回顾和更新。J、 药物目标29387-402(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, M. et al. Targeting glutamine metabolism to enhance immunoprevention of EGFR-driven lung cancer. Adv. Sci. 9, e2105885 (2022).Article

Huang,M.等。靶向谷氨酰胺代谢以增强EGFR驱动的肺癌的免疫预防。高级科学。9,e2105885(2022)。文章

Google Scholar

谷歌学者

Sabbah, D. A., Hajjo, R. & Sweidan, K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem. 20, 815–834 (2020).Article

Sabbah,D.A.,Hajjo,R。&Sweidan,K。表皮生长因子受体(EGFR)结构,信号通路,相互作用和EGFR抑制剂最新进展的综述。货币。顶部。医学化学。20815-834(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ramalingam, S. S. et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41–50 (2020).Article

Ramalingam,S.S.等人。未经治疗的EGFR突变晚期NSCLC中使用osimertinib的总生存率。N、 英语。J、 医学382,41-50(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).Article

Soria,J.C。等人,未经治疗的EGFR突变的晚期非小细胞肺癌中的Osimertinib。N、 英语。J、 。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fakih, M. G. et al. Sotorasib plus panitumumab in refractory colorectal cancer with mutated KRAS G12C. N. Engl. J. Med. 389, 2125–2139 (2023).Article

Fakih,M.G.等人,Sotorasib联合帕尼单抗治疗KRAS G12C突变的难治性结直肠癌。N、 英语。J、 医学3892125-2139(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, L. & Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B 5, 390–401 (2015).Article

Huang,L。&Fu,L。对EGFR酪氨酸激酶抑制剂的抗性机制。药学学报。B 5390-401(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, S., Cang, S. & Liu, D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J. Hematol. Oncol. 9, 34 (2016).Article

Wang,S.,Cang,S。&Liu,D。针对晚期非小细胞肺癌中EGFR T790M突变的第三代抑制剂。J、 血液学。Oncol公司。9,34(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, X. et al. Targeting EGFR(L858R/T790M) and EGFR(L858R/T790M/C797S) resistance mutations in NSCLC: current developments in medicinal chemistry. Med. Res. Rev. 38, 1550–1581 (2018).Article

Lu,X。等人。靶向NSCLC中的EGFR(L858R/T790M)和EGFR(L858R/T790M/C797S)抗性突变:药物化学的最新发展。《医学研究》第381550-1581版(2018年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, S., Song, Y. & Liu, D. EAI045: the fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett. 385, 51–54 (2017).Article

Wang,S.,Song,Y。&Liu,D。EAI045:克服T790M和C797S抗性的第四代EGFR抑制剂。癌症Lett。385,51-54(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Du, X. et al. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation 2, 100103 (2021).CAS

Du,X.等人获得了对第三代EGFR TKIs和新兴的下一代EGFR抑制剂的耐药性。创新2100103(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Syed, Y. Y. Amivantamab: first approval. Drugs 81, 1349–1353 (2021).Article

Syed,Y.Y.Amivantamab:首次批准。药物811349-1353(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mazzarella, L., Guida, A. & Curigliano, G. Cetuximab for treating non-small cell lung cancer. Expert Opin. Biol. Ther. 18, 483–493 (2018).Article

Mazzarella,L.,Guida,A。和Curigliano,G。西妥昔单抗治疗非小细胞肺癌。。生物疗法。18483-493(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Baysal, H. et al. The right partner in crime: unlocking the potential of the anti-EGFR antibody cetuximab via combination with natural killer cell chartering immunotherapeutic strategies. Front. Immunol. 12, 737311 (2021).Article

Baysal,H.等人,《犯罪的正确伴侣:通过与自然杀伤细胞包涵免疫治疗策略的结合,释放抗EGFR抗体西妥昔单抗的潜力》。正面。免疫。12737311(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Battaglin, F. et al. Anti-EGFR monoclonal antibody panitumumab for the treatment of patients with metastatic colorectal cancer: an overview of current practice and future perspectives. Expert Opin. Biol. Ther. 17, 1297–1308 (2017).Article

。。生物疗法。171297-1308(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Garnock-Jones, K. P. Necitumumab: first global approval. Drugs 76, 283–289, (2016).Article

Garnock-Jones,K.P.Necitumumab:首次获得全球批准。药物76283-289,(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

di Noia, V. et al. Necitumumab in the treatment of non-small-cell lung cancer: clinical controversies. Expert Opin. Biol. Ther. 18, 937–945 (2018).Article

di Noia,V。等人。Necitumumab治疗非小细胞肺癌:临床争议。。生物疗法。18937-945(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cai, W. Q. et al. The latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front. Oncol. 10, 1249 (2020).Article

Cai,W.Q.等人。EGFR单克隆抗体与耐药肿瘤细胞之间的最新斗争。正面。Oncol公司。101249(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brand, T. M., Iida, M. & Wheeler, D. L. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biol. Ther. 11, 777–792 (2011).Article

Brand,T.M.,Iida,M。&Wheeler,D.L。对EGFR单克隆抗体西妥昔单抗耐药的分子机制。癌症生物学。他们。11777-792(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Montagut, C. et al. Efficacy of Sym004 in patients with metastatic colorectal cancer with acquired resistance to anti-EGFR therapy and molecularly selected by circulating tumor DNA analyses: a phase 2 randomized clinical trial. JAMA Oncol. 4, e175245 (2018).Article

Montagut,C.等人。Sym004对获得性抗EGFR治疗耐药的转移性结直肠癌患者的疗效,并通过循环肿瘤DNA分析进行分子选择:2期随机临床试验。JAMA Oncol。4,e175245(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sacco, A. G. et al. Pembrolizumab plus cetuximab in patients with recurrent or metastatic head and neck squamous cell carcinoma: an open-label, multi-arm, non-randomised, multicentre, phase 2 trial. Lancet Oncol. 22, 883–892 (2021).Article

Sacco,A.G.等人,Pembrolizumab联合西妥昔单抗治疗复发或转移性头颈部鳞状细胞癌:一项开放标签,多组,非随机,多中心,2期临床试验。柳叶刀Oncol。22883-892(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lu, S. et al. Sintilimab plus chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer with disease progression after EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): second interim analysis from a double-blind, randomised, placebo-controlled, phase 3 trial.

Lu,S.等人。Sintilimab联合化疗治疗EGFR突变的非鳞状非小细胞肺癌患者,EGFR酪氨酸激酶抑制剂治疗后疾病进展(ORIENT-31):双盲,随机,安慰剂对照,3期临床试验的第二次中期分析。

Lancet Respir. Med. 11, 624–636 (2023).Article .

。医学杂志11624-636(2023)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Noronha, V. et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J. Clin. Oncol. 38, 124–136 (2020).Article

Noronha,V。等人。吉非替尼与吉非替尼联合培美曲塞和卡铂化疗治疗EGFR突变肺癌的比较。J、 临床。Oncol公司。38124-136(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hosomi, Y. et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J. Clin. Oncol. 38, 115–123 (2020).Article

Hosomi,Y.等人。单独使用吉非替尼与吉非替尼联合化疗治疗表皮生长因子受体突变的非小细胞肺癌:NEJ009研究。J、 临床。Oncol公司。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Saito, H. et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 20, 625–635 (2019).Article

Saito,H。等人。厄洛替尼联合贝伐单抗与单独使用厄洛替尼治疗EGFR阳性晚期非鳞状非小细胞肺癌(NEJ026):开放标签,随机,多中心,3期临床试验的中期分析。柳叶刀Oncol。20625-635(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Raghav, K. P. S. & Moasser, M. M. Molecular pathways and mechanisms of HER2 in cancer therapy. Clin. Cancer Res. 29, 2351–2361 (2023).Article

Raghav,K.P.S。&Moasser,M.M。HER2在癌症治疗中的分子途径和机制。临床。癌症研究292351-2361(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moasser, M. M. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26, 6469–6487, (2007).Article

Moasser,M.M。癌基因HER2:其信号传导和转化功能及其在人类癌症发病机制中的作用。癌基因266469-6487,(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, Y. et al. HER2-targeted therapies in gastric cancer. Biochim. Biophys. Acta Rev. Cancer 1876, 188549 (2021).Article

Zhu,Y。等。胃癌的HER2靶向治疗。生物化学。生物物理。《癌症学报》1876188549(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Krishnamurti, U. & Silverman, J. F. HER2 in breast cancer: a review and update. Adv. Anat. Pathol. 21, 100–107, (2014).Article

Krishnamurti,U。和Silverman,J.F。HER2在乳腺癌中的作用:综述和更新。高级解剖学。病理学。21100–107,(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhou, B. P. & Hung, M. C. Dysregulation of cellular signaling by HER2/neu in breast cancer. Semin. Oncol. 30, 38–48 (2003).Article

Zhou,B.P。&Hung,M.C。乳腺癌中HER2/neu对细胞信号传导的失调。塞米。Oncol公司。30,38-48(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ménard, S., Tagliabue, E., Campiglio, M. & Pupa, S. M. Role of HER2 gene overexpression in breast carcinoma. J. Cell Physiol. 182, 150–162, (2000).Article

Ménard,S.,Tagliabue,E.,Campiglio,M。&Pupa,S.M。HER2基因过表达在乳腺癌中的作用。J、 细胞生理学。182150-162,(2000)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Maximiano, S., Magalhães, P., Guerreiro, M. P. & Morgado, M. Trastuzumab in the treatment of breast cancer. BioDrugs 30, 75–86 (2016).Article

Maximiano,S.,Magalhães,P.,Guerreiro,M.P。&Morgado,M.曲妥珠单抗治疗乳腺癌。生物药物30,75-86(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gerratana, L. et al. Pertuzumab and breast cancer: another piece in the anti-HER2 puzzle. Expert Opin. Biol. Ther. 17, 365–374 (2017).Article

Gerratana,L.等人,《帕妥珠单抗与乳腺癌:抗HER2难题中的另一块。。生物疗法。17365-374(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bilancia, D. et al. Lapatinib in breast cancer. Ann. Oncol. 18, vi26–30 (2007).Article

Bilancia,D。等人,拉帕替尼治疗乳腺癌。安科。18,vi26–30(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Laskin, J. et al. NRG1 fusion-driven tumors: biology, detection, and the therapeutic role of afatinib and other ErbB-targeting agents. Ann. Oncol. 31, 1693–1703 (2020).Article

Laskin,J.等人,《NRG1融合驱动的肿瘤:生物学,检测以及阿法替尼和其他ErbB靶向药物的治疗作用》。安科。311693-1703(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hunter, F. W. et al. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br. J. Cancer 122, 603–612 (2020).Article

Hunter,F.W.等人。HER2阳性乳腺癌对曲妥珠单抗emtansine(T-DM1)的耐药机制。《癌症杂志》122603-612(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xu, Z. et al. Novel HER2-targeting antibody-drug conjugates of trastuzumab beyond T-DM1 in breast cancer: trastuzumab deruxtecan(DS-8201a) and (Vic-)trastuzumab duocarmazine (SYD985). Eur. J. Med. Chem. 183, 111682 (2019).Article

Xu,Z.等人。乳腺癌中T-DM1以外曲妥珠单抗的新型HER2靶向抗体-药物偶联物:曲妥珠单抗-德鲁替康(DS-8201a)和(Vic-)曲妥珠单抗-杜卡马嗪(SYD985)。欧洲医学化学杂志。183111682(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tarantino, P. et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies. CA Cancer J. Clin. 72, 165–182 (2022).Article

Tarantino,P。等。抗体-药物偶联物:跨越肿瘤组织学的智能化疗递送。CA Cancer J.Clin。72165-182(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Swain, S. M. et al. Multidisciplinary clinical guidance on trastuzumab deruxtecan (T-DXd)-related interstitial lung disease/pneumonitis—focus on proactive monitoring, diagnosis, and management. Cancer Treat. Rev. 106, 102378 (2022).Article

关于曲妥珠单抗-德鲁替康(T-DXd)相关性间质性肺病/肺炎的多学科临床指南侧重于主动监测,诊断和管理。癌症治疗。修订版106102378(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yu, S. et al. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment. Exp. Hematol. Oncol. 6, 31 (2017).Article

Yu,S.等人。用于癌症治疗的抗HER2单克隆和双特异性抗体的开发和临床应用。实验血液学。Oncol公司。6,31(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meric-Bernstam, F. et al. Advances in HER2-targeted therapy: novel agents and opportunities beyond breast and gastric cancer. Clin. Cancer Res. 25, 2033–2041 (2019).Article

Meric-Bernstam,F。等。HER2靶向治疗的进展:乳腺癌和胃癌以外的新药和机会。临床。癌症研究252033-2041(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Swain, S. M., Shastry, M. & Hamilton, E. Targeting HER2-positive breast cancer: advances and future directions. Nat. Rev. Drug Discov. 22, 101–126 (2023).Article

。《药物目录》修订版。22101-126(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Oh, D. Y. & Bang, Y. J. HER2-targeted therapies—a role beyond breast cancer. Nat. Rev. Clin. Oncol. 17, 33–48 (2020).Article

Oh,D.Y.&Bang,Y.J。HER2靶向治疗-超越乳腺癌的作用。国家修订临床。Oncol公司。17,33-48(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lev, S. Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis. Biochem. Soc. Trans. 48, 657–665 (2020).Article

Lev,S。三阴性乳腺癌的靶向治疗和耐药性:EGFR轴。生物化学。社会事务。48657-665(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chioni, A. M. & Grose, R. P. Biological significance and targeting of the FGFR axis in cancer. Cancers (Basel) 13, 5681 (2021).Article

Chioni,A.M。&Grose,R.P。生物学意义和癌症中FGFR轴的靶向。癌症(巴塞尔)135681(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xie, Y. et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target Ther. 5, 181 (2020).Article

Xie,Y。等人。FGF/FGFR信号在健康和疾病中的作用。信号传输管。目标Ther。5181(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

De Luca, A., Frezzetti, D., Gallo, M. & Normanno, N. FGFR-targeted therapeutics for the treatment of breast cancer. Expert Opin. Investig. Drugs 26, 303–311 (2017).Article

De Luca,A.,Frezzetti,D.,Gallo,M。&Normanno,N。FGFR靶向治疗乳腺癌。。调查。药物26303-311(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Loriot, Y. et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 381, 338–348 (2019).Article

。N、 英语。J、 医学381338-348(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pant, S. et al. Erdafitinib in patients with advanced solid tumours with FGFR alterations (RAGNAR): an international, single-arm, phase 2 study. Lancet Oncol. 24, 925–935 (2023).Article

Pant,S。等人。Erdafitinib治疗FGFR改变的晚期实体瘤患者(RAGNAR):一项国际性单臂2期研究。柳叶刀Oncol。24925-935(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Javle, M. et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol. Hepatol. 6, 803–815 (2021).Article .

Javle,M。等人。Infiglatinib(BGJ398)治疗先前接受FGFR2融合或重排治疗的晚期或转移性胆管癌患者:多中心,开放标签,单臂,2期研究的成熟结果。柳叶刀肠胃病。肝病。6803-815(2021)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Lassman, A. B. et al. Infigratinib in patients with recurrent gliomas and FGFR alterations: a multicenter phase II study. Clin. Cancer Res. 28, 2270–2277 (2022).Article

Lassman,A.B.等人。复发性神经胶质瘤和FGFR改变患者的Infiglatinib:一项多中心II期研究。临床。癌症研究282270-2277(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Loriot, Y. et al. Erdafitinib or chemotherapy in advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 389, 1961–1971 (2023).Article

Loriot,Y。等人。厄达非尼或化疗治疗晚期或转移性尿路上皮癌。N、 英语。J、 医学3891961-1971(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yue, S. et al. FGFR-TKI resistance in cancer: current status and perspectives. J. Hematol. Oncol. 14, 23 (2021).Article

Yue,S.等人。癌症中的FGFR-TKI耐药性:现状和前景。J、 血液学。Oncol公司。14、23(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fu, J. et al. HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene 40, 4625–4651 (2021).Article

Fu,J。等人。癌症中的HGF/c-MET途径:从分子表征到临床证据。癌基因404625-4651(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Stella, M. C. & Comoglio, P. M. HGF: a multifunctional growth factor controlling cell scattering. Int. J. Biochem. Cell Biol. 31, 1357–1362, (1999).Article

Stella,M.C.&Comoglio,P.M。HGF:一种控制细胞散射的多功能生长因子。Int.J.Biochem。细胞生物学。311357-1362,(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y. et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer 17, 45 (2018).Article

Zhang,Y。等。c-Met受体酪氨酸激酶在癌发生和相关治疗机会中的功能。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vimalraj, S. A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int. J. Biol. Macromol. 221, 1428–1438 (2022).Article

Vimalraj,S。肿瘤血管生成中VEGF,PDGF,FGF,Notch,血管生成素和HGF信号传导的简要综述,重点是替代方法和未来方向。国际生物学杂志。大分子。2211428-1438(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Raghav, K. P., Gonzalez-Angulo, A. M. & Blumenschein, G. R. Jr. Role of HGF/MET axis in resistance of lung cancer to contemporary management. Transl. Lung Cancer Res. 1, 179–193 (2012).PubMed

Raghav,K.P.,Gonzalez-Angulo,A.M。和Blumenschein,G.R。Jr。HGF/MET轴在肺癌对当代管理的抵抗中的作用。翻译。肺癌研究1179-193(2012)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pasquini, G. & Giaccone, G. C-MET inhibitors for advanced non-small cell lung cancer. Expert Opin. Investig. Drugs 27, 363–375 (2018).Article

Pasquini,G。&Giaccone,G。C-MET抑制剂治疗晚期非小细胞肺癌。。调查。药物27363-375(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Recondo, G., Che, J., Jänne, P. A. & Awad, M. M. Targeting MET dysregulation in cancer. Cancer Discov. 10, 922–934 (2020).Article

Recondo,G.,Che,J.,Jänne,P.A。和Awad,M.M。针对癌症中的MET失调。癌症发现。10922-934(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Drilon, A., Cappuzzo, F., Ou, S. I. & Camidge, D. R. Targeting MET in lung cancer: will expectations finally be MET? J. Thorac. Oncol. 12, 15–26 (2017).Article

Drilon,A.,Cappuzzo,F.,Ou,S.I。和Camidge,D.R。针对肺癌的MET:最终会达到预期吗?J、 胸部。Oncol公司。12,15-26(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Forde, P. M. & Rudin, C. M. Crizotinib in the treatment of non-small-cell lung cancer. Expert Opin. Pharmacother. 13, 1195–1201, (2012).Article

Forde,P.M。&Rudin,C.M。克唑替尼治疗非小细胞肺癌。。药剂师。131195-1201,(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Morris, T. A., Khoo, C. & Solomon, B. J. Targeting ROS1 rearrangements in non-small cell lung cancer: crizotinib and newer generation tyrosine kinase inhibitors. Drugs 79, 1277–1286 (2019).Article

Morris,T.A.,Khoo,C。&Solomon,B.J。靶向非小细胞肺癌中的ROS1重排:克唑替尼和新一代酪氨酸激酶抑制剂。药物791277-1286(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Abdelaziz, A. & Vaishampayan, U. Cabozantinib for the treatment of kidney cancer. Expert Rev. Anticancer Ther. 17, 577–584 (2017).Article

Abdelaziz,A。&Vaishampayan,U。Cabozantinib用于治疗肾癌。抗癌治疗专家。17577-584(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brose, M. S. et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 22, 1126–1138 (2021).Article

Brose,M.S.等人,卡博替尼治疗放射性碘难治性分化型甲状腺癌(COSMIC-311):一项随机、双盲、安慰剂对照的3期临床试验。柳叶刀Oncol。221126-1138(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, Y. L. et al. Phase II study of crizotinib in East Asian patients with ROS1-positive advanced non-small-cell lung cancer. J. Clin. Oncol. 36, 1405–1411 (2018).Article

Wu,Y.L.等。克唑替尼在东亚ROS1阳性晚期非小细胞肺癌患者中的II期研究。J、 临床。Oncol公司。361405-1411(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Abou-Alfa, G. K. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63 (2018).Article

Abou Alfa,G.K.等人,Cabozantinib治疗晚期和进展期肝细胞癌患者。N、 英语。J、 医学杂志379,54-63(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Motzer, R. J. et al. Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol. 23, 888–898 (2022).Article

Motzer,R。J。等人。Nivolumab加cabozantinib与舒尼替尼一线治疗晚期肾细胞癌(CheckMate 9ER):一项开放标签随机3期试验的长期随访结果。柳叶刀Oncol。23888-898(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, H. et al. Preclinical development of a humanized neutralizing antibody targeting HGF. Exp. Mol. Med. 49, e309 (2017).Article

Kim,H.等人。靶向HGF的人源化中和抗体的临床前开发。实验分子医学49,e309(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Modica, C. et al. A receptor-antibody hybrid hampering MET-driven metastatic spread. J. Exp. Clin. Cancer Res. 40, 32 (2021).Article

Modica,C。等人。一种阻碍MET驱动的转移扩散的受体-抗体杂交体。J、 实验临床。癌症研究40,32(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, X. et al. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy 15, 1258–1279 (2019).Article

Huang,X。等人。HGF-MET轴协调肝癌代谢和自噬以产生化疗耐药性。自噬151258-1279(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).Article

Engelman,J.A。等人。MET扩增通过激活ERBB3信号传导导致肺癌中吉非替尼耐药。科学3161039-1043(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Suzuki, S. et al. KRAS inhibitor resistance in MET-amplified KRAS (G12C) non-small cell lung cancer induced by RAS- and non-RAS-mediated cell signaling mechanisms. Clin. Cancer Res. 27, 5697–5707 (2021).Article

Suzuki,S。等人。RAS和非RAS介导的细胞信号传导机制诱导的MET扩增的KRAS(G12C)非小细胞肺癌中的KRAS抑制剂抗性。临床。癌症研究275697-5707(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Aebersold, D. M. et al. Prevalence and clinical impact of Met Y1253D-activating point mutation in radiotherapy-treated squamous cell cancer of the oropharynx. Oncogene 22, 8519–8523 (2003).Article

Aebersold,D.M.等人。放疗治疗的口咽鳞状细胞癌中Met Y1253D激活点突变的患病率和临床影响。癌基因228519-8523(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zou, X. et al. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: a review. Int. J. Biol. Macromol. 202, 539–557 (2022).Article

Zou,X。等人。针对癌症治疗的PDGF/PDGFR信号通路:综述。国际生物学杂志。大分子。202539-557(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pandey, P. et al. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomed. Pharmacother. 161, 114491 (2023).Article

Pandey,P。等人。关于PDGF/PDGFR信号通路作为开发癌症治疗策略的有希望的靶标的新见解。生物医学。药剂师。161114491(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Conlon, K. C., Miljkovic, M. D. & Waldmann, T. A. Cytokines in the treatment of cancer. J. Interferon Cytokine Res. 39, 6–21 (2019).Article

Conlon,K.C.,Miljkovic,M.D。和Waldmann,T.A。细胞因子在癌症治疗中的作用。J、 干扰素细胞因子研究39,6-21(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, I. K. et al. GM-CSF promotes antitumor immunity by inducing Th9 cell responses. Cancer Immunol. Res. 7, 498–509 (2019).Article

GM-CSF通过诱导Th9细胞反应来促进抗肿瘤免疫。癌症免疫。第7498-509号决议(2019年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ushach, I. & Zlotnik, A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J. Leukoc. Biol. 100, 481–489 (2016).Article

Ushach,I。&Zlotnik,A。粒细胞-巨噬细胞集落刺激因子(GM-CSF)和巨噬细胞集落刺激因子(M-CSF)对髓系细胞的生物学作用。J、 白血病。生物学100481-489(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Van Overmeire, E. et al. M-CSF and GM-CSF receptor signaling differentially regulate monocyte maturation and macrophage polarization in the tumor microenvironment. Cancer Res. 76, 35–42 (2016).Article

Van Overmeire,E。等人。M-CSF和GM-CSF受体信号传导差异调节肿瘤微环境中的单核细胞成熟和巨噬细胞极化。癌症研究76,35-42(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Urdinguio, R. G. et al. Immune-dependent and independent antitumor activity of GM-CSF aberrantly expressed by mouse and human colorectal tumors. Cancer Res. 73, 395–405 (2013).Article

Urdinguio,R.G.等人。小鼠和人结直肠肿瘤异常表达的GM-CSF的免疫依赖性和非依赖性抗肿瘤活性。癌症研究73395-405(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Parmiani, G. et al. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann. Oncol. 18, 226–232 (2007).Article

Parmiani,G。等人。在癌症患者中作为疫苗佐剂施用的GM-CSF的相反免疫功能。安科。18226-232(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tian, H. et al. A novel cancer vaccine with the ability to simultaneously produce anti-PD-1 antibody and GM-CSF in cancer cells and enhance Th1-biased antitumor immunity. Signal Transduct. Target Ther. 1, 16025 (2016).Article

Tian,H。等人。一种新型癌症疫苗,能够在癌细胞中同时产生抗PD-1抗体和GM-CSF,并增强Th1偏向的抗肿瘤免疫力。信号传输管。目标Ther。116025(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rangsitratkul, C. et al. Intravesical immunotherapy with a GM-CSF armed oncolytic vesicular stomatitis virus improves outcome in bladder cancer. Mol. Ther. Oncolyt. 24, 507–521 (2022).Article

Rangsitratkul,C。等人。用GM-CSF武装的溶瘤性水泡性口炎病毒进行膀胱内免疫治疗可改善膀胱癌的预后。摩尔热。Oncolyt公司。24507-521(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Thomas, S. et al. Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1. J. Immunother. Cancer 7, 214 (2019).Article

Thomas,S.等人。基于单纯疱疹病毒1型的新型融合增强溶瘤免疫治疗平台的开发。J、 免疫疗法。癌症7214(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Varghese, B. et al. Invariant NKT cell-augmented GM-CSF-secreting tumor vaccine is effective in advanced prostate cancer model. Cancer Immunol. Immunother. 71, 2943–2955 (2022).Article

Varghese,B。等人。不变NKT细胞增强的GM-CSF分泌肿瘤疫苗在晚期前列腺癌模型中有效。癌症免疫。免疫疗法。712943-2955(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thorn, M. et al. Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther. 23, 188–198 (2016).Article

肿瘤相关GM-CSF过表达通过STAT3在浸润肝转移的髓样抑制细胞中诱导免疫抑制分子。癌症基因治疗。23188-198(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cho, H. et al. Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM activation via IL6 and GM-CSF secretion. Clin. Cancer Res. 24, 5407–5421 (2018).Article

Cho,H。等人。癌症刺激的CAF通过IL6和GM-CSF分泌增强单核细胞分化和原发性TAM活化。临床。癌症研究245407-5421(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kumar, A., Taghi Khani, A., Sanchez Ortiz, A. & Swaminathan, S. GM-CSF: a double-edged sword in cancer immunotherapy. Front. Immunol. 13, 901277 (2022).Article

Kumar,A.,Taghi Khani,A.,Sanchez-Ortiz,A。&Swaminathan,S。GM-CSF:癌症免疫治疗中的一把双刃剑。正面。免疫。13901277(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anderson, K. S. et al. The feasibility of using an autologous GM-CSF-secreting breast cancer vaccine to induce immunity in patients with stage II-III and metastatic breast cancers. Breast Cancer Res. Treat. 194, 65–78 (2022).Article

Anderson,K.S.等人。使用分泌自体GM-CSF的乳腺癌疫苗诱导II-III期和转移性乳腺癌患者免疫的可行性。乳腺癌研究治疗。194,65-78(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kong, Y. et al. PD-1 inhibitor combined with radiotherapy and GM-CSF (PRaG) in patients with metastatic solid tumors: an open-label phase II study. Front. Immunol. 13, 952066 (2022).Article

Kong,Y.等。PD-1抑制剂联合放疗和GM-CSF(PRaG)治疗转移性实体瘤:开放标签II期研究。正面。免疫。13952066(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mody, R. et al. Irinotecan, temozolomide, and dinutuximab with GM-CSF in children with refractory or relapsed neuroblastoma: a report from the Children’s Oncology Group. J. Clin. Oncol. 38, 2160–2169 (2020).Article

Mody,R.等人。伊立替康、替莫唑胺和地妥昔单抗联合GM-CSF治疗儿童难治性或复发性神经母细胞瘤:儿童肿瘤学小组的报告。J、 临床。Oncol公司。382160-2169(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by the National Natural Science Foundation of China (Nos. 82373281 and 82272794), Natural Science Foundation of Zhejiang Province (Nos. LQ24H160007 and LZ22H160005), and China Postdoctoral Science Foundation (Nos. GZB20230642, 2022M722766, and 2023M743016).Author informationAuthor notesThese authors contributed equally: Ming Yi, Tianye LiAuthors and AffiliationsDepartment of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People’s Republic of ChinaMing Yi & Zhijun DaiDepartment of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of ChinaTianye LiDepartment of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of ChinaMengke Niu, Yuze Wu & Kongming WuDepartment of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People’s Republic of ChinaHaoxiang ZhangAuthorsMing YiView author publicationsYou can also search for this author in.

下载参考文献致谢这项工作得到了国家自然科学基金(编号82373281和82272794),浙江省自然科学基金(编号LQ24H16007和LZ22H160005)和中国博士后科学基金(编号GZB20230642,2022M722766和2023M743016)的支持。作者信息作者注意到,这些作者做出了同样的贡献:明毅,天业作者和附属机构浙江大学医学院第一附属医院乳腺外科,杭州310000,中华人民共和国明毅和戴志军浙江大学医学院第二附属医院妇产科,杭州310000,中华人民共和国华中科技大学同济医学院同济医院肿瘤科,武汉430030,中华人民共和国蒙科牛,吴玉泽和吴孔明福建省医院肝胆外科中华人民共和国福州350001张浩翔作者Ming YiView作者出版物您也可以在中搜索此作者。

PubMed Google ScholarTianye LiView author publicationsYou can also search for this author in

PubMed Google ScholarTianye LiView作者出版物您也可以在

PubMed Google ScholarMengke NiuView author publicationsYou can also search for this author in

PubMed Google Scholarmangenke NiuView作者出版物您也可以在

PubMed Google ScholarHaoxiang ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张浩翔查看作者出版物您也可以在

PubMed Google ScholarYuze WuView author publicationsYou can also search for this author in

PubMed Google ScholarYuze WuView作者出版物您也可以在

PubMed Google ScholarKongming WuView author publicationsYou can also search for this author in

PubMed Google ScholarKongming WuView作者出版物您也可以在

PubMed Google ScholarZhijun DaiView author publicationsYou can also search for this author in

PubMed Google ScholarZhijun DaiView作者出版物您也可以在

PubMed Google ScholarContributionsM.Y. and T.L. performed the selection of literature, drafted the paper and prepared the figures. M.N., Y.W., and H.Z. collected the related references and participated in discussion. K.W. and Z.D. designed the work. All authors read and approved the final paper.Corresponding authorsCorrespondence to.

PubMed谷歌学术贡献。Y、 T.L.进行了文献选择,起草了论文并准备了数字。M、 N.,Y.W。和H.Z.收集了相关参考文献并参加了讨论。K、 W.和Z.D.设计了这项工作。所有作者都阅读并批准了最终论文。通讯作者通讯。

Kongming Wu or Zhijun Dai.Ethics declarations

吴孔明或戴志军。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Rights and permissions

权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleYi, M., Li, T., Niu, M. et al. Targeting cytokine and chemokine signaling pathways for cancer therapy.

Sig Transduct Target Ther 9, 176 (2024). https://doi.org/10.1038/s41392-024-01868-3Download citationReceived: 28 February 2024Revised: 30 April 2024Accepted: 11 May 2024Published: 22 July 2024DOI: https://doi.org/10.1038/s41392-024-01868-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sig Transduct Target Ther 9176(2024)。https://doi.org/10.1038/s41392-024-01868-3Download引文收到日期:2024年2月28日修订日期:2024年4月30日接受日期:2024年5月11日发布日期:2024年7月22日OI:https://doi.org/10.1038/s41392-024-01868-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

Cancer microenvironmentCancer therapy

癌症微环境癌症治疗