
商务合作

动脉网APP
可切换为仅中文
AbstractThe upper respiratory tract is the initial site of SARS-CoV-2 infection. Nasal spike-specific secretory immunoglobulin A (sIgA) correlates with protection against Omicron breakthrough infection. We report that intranasal vaccination using human adenovirus serotype 5 (Ad5) vectored Omicron spike in people who previously vaccinated with ancestral vaccine could induce robust neutralizing sIgA in the nasal passage.
摘要上呼吸道是SARS-CoV-2感染的初始部位。鼻刺特异性分泌型免疫球蛋白A(sIgA)与预防Omicron突破性感染相关。我们报告说,使用人类腺病毒血清型5(Ad5)载体的Omicron spike鼻内疫苗接种先前接种祖先疫苗的人可以在鼻道中诱导强烈的中和sIgA。
Nasal sIgA was predominantly present in dimeric and multimeric forms and accounted for nearly 40% of total proteins in nasal mucosal lining fluids (NMLFs). A low-level IgG could also be detected in NMLFs but not IgM, IgD, and IgE. After a complete nasal wash, sIgA in the nasal passage could be replenished rapidly within a few hours.
鼻sIgA主要以二聚体和多聚体形式存在,占鼻粘膜衬里液(NMLF)总蛋白的近40%。在NMLF中也可以检测到低水平的IgG,但不能检测到IgM,IgD和IgE。完全洗鼻后,鼻道中的sIgA可以在几个小时内迅速补充。
A comparison of purified paired serum IgA, serum IgG, and nasal sIgA from the same individuals showed that sIgA was up to 3-logs more potent than serum antibodies in binding to spikes and in neutralizing Omicron subvariants. Serum IgG and IgA failed to neutralize XBB and BA.2.86, while nasal sIgA retained potent neutralization against these newly emerged variants.
来自同一个体的纯化的成对血清IgA,血清IgG和鼻sIgA的比较表明,sIgA在结合尖峰和中和Omicron亚变体方面比血清抗体效力高达3个对数。血清IgG和IgA未能中和XBB和BA.2.86,而鼻sIgA保留了对这些新出现的变体的有效中和作用。
Further analysis showed that sIgA was more effective than IgG or IgA in blocking spike-mediated cell-to-cell transmission and protecting hACE2 mice from XBB challenge. Using a sIgA monoclonal antibody as a reference, we estimated that the total nasal sIgA contains about 2.6–3.9% spike-specific sIgA in NMLFs collected approximately one month after intranasal vaccination.
进一步的分析表明,sIgA在阻断尖峰介导的细胞间传播和保护hACE2小鼠免受XBB攻击方面比IgG或IgA更有效。使用sIgA单克隆抗体作为参考,我们估计鼻内疫苗接种后约一个月收集的NMLF中总鼻sIgA含有约2.6–3.9%的穗特异性sIgA。
Our study provided insights for developing intranasal vaccines that can induce sIgA to build an effective and mutation-resistant first-line immune barrier against constantly emerging variants..
我们的研究为开发鼻内疫苗提供了见解,该疫苗可以诱导sIgA建立针对不断出现的变体的有效且抗突变的一线免疫屏障。。
IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic that has claimed the lives of more than 7.05 million people worldwide since the outbreak in 2019.1 SARS-CoV-2 initially infects epithelial cells in the nasopharynx by using the receptor-binding domain (RBD) of spike protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor.
引言严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是2019年冠状病毒病(COVID-19)大流行的病原体,自2019年爆发以来,全世界已有750多万人死亡。SARS-CoV-2最初通过使用穗蛋白的受体结合结构域(RBD)与血管紧张素转换酶2(ACE2)受体相互作用来感染鼻咽上皮细胞。
Since the end of 2021, Omicron subvariants have become the dominant circulating strains, capable of immune evasion and rapid transmission. Omicron subvariants preferentially infect the upper respiratory tract, particularly the nasal passage. Intramuscularly administered vaccines can reduce COVID-19 disease severity and mortality, but are ineffective in blocking infection with Omicron variants that first infect and replicate in the upper airway mucosa, especially in the nasal cavity.
自2021年底以来,Omicron亚型已成为主要的循环菌株,能够免疫逃避和快速传播。Omicron亚变体优先感染上呼吸道,特别是鼻道。肌肉注射疫苗可以降低COVID-19疾病的严重程度和死亡率,但对于阻断首先在上呼吸道粘膜(尤其是鼻腔)感染和复制的Omicron变体的感染无效。
It is reported that one month after the fourth dose of mRNA vaccine, vaccine efficacy against symptomatic Omicron infection was 11–30%. Most of these Omicron infected individuals have a high viral load in the nasopharyngeal tract and can therefore be highly contagious.2,3People who had multiple doses of vaccination plus a previous infection developed the so-called “hybrid immunity”, and were best protected against future symptomatic Omicron infection than people who only received mRNA vaccines.2 Anti-RBD IgA in saliva with neutralizing activities can be detected in SARS-CoV-2-infected patients.4 Spike-specific mucosal sIgA can be detected in the nasal swabs of individuals who recovered from a SARS-CoV-2 infection.5 After recovery from a previous SARS-CoV-2 infection, people with a lower level of SARS-CoV-2-specific sIgA in the nasal passage have a higher ris.
据报道,第四剂mRNA疫苗接种后一个月,针对症状性Omicron感染的疫苗效力为11-30%。这些Omicron感染者中的大多数在鼻咽道中具有高病毒载量,因此具有高度传染性。2,3多次接种疫苗加上先前感染的人产生了所谓的“混合免疫力”,并且比仅接受mRNA疫苗的人更好地防止了未来的症状性Omicron感染。2在SARS-CoV-2感染的患者中可以检测到唾液中具有中和活性的抗RBD IgA。4在从SARS-CoV-2感染中恢复的个体的鼻拭子中可以检测到尖峰特异性粘膜sIgA。5从先前的SARS-CoV-2感染中恢复后,SARS-CoV-2感染水平较低的人鼻道中的2特异性sIgA具有较高的ris。
Data availability
数据可用性
All data generated or analyzed during this study are available from the corresponding authors upon reasonable request.
本研究期间生成或分析的所有数据均可根据合理要求从通讯作者处获得。
ReferencesWHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Number of COVID-19 deaths reported to WHO (cumulative total). (2024)Altarawneh, H. N. et al. Effects of previous infection and vaccination on symptomatic Omicron infections. N. Engl. J. Med. 387, 21–34 (2022).Article
参考世卫组织冠状病毒(COVID-19)仪表板和疫苗接种数据。向世卫组织报告的新型冠状病毒肺炎死亡人数(累积总数)。(2024)Altarawneh,H.N.等人。先前感染和疫苗接种对症状性Omicron感染的影响。N、 英语。J、 医学387,21-34(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Regev-Yochay, G. et al. Efficacy of a fourth dose of Covid-19 mRNA vaccine against Omicron. N. Engl. J. Med. 386, 1377–1380 (2022).Article
Regev Yochay,G。等人。第四剂Covid-19 mRNA疫苗对Omicron的疗效。N、 英语。J、 医学3861377-1380(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, eabd2223 (2021).Article
Sterlin,D。等人。IgA主导了对SARS-CoV-2的早期中和抗体反应。科学。翻译。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liew, F. et al. SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination. EBioMedicine 87, 104402 (2023).Article
Liew,F。等人。SARS-CoV-2特异性鼻IgA在使用新型冠状病毒肺炎住院9个月后消退,并且不会被随后的疫苗接种诱导。EBioMedicine 87104402(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Marking, U. et al. 7-month duration of SARS-CoV-2 mucosal immunoglobulin-A responses and protection. Lancet Infect. Dis. 23, 150–152 (2023).Article
Marking,U.等人。SARS-CoV-2粘膜免疫球蛋白A反应和保护的7个月持续时间。柳叶刀感染。Dis。23150-152(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Havervall, S. et al. Anti-spike mucosal IgA protection against SARS-CoV-2 Omicron infection. N. Engl. J. Med. 387, 1333–1336 (2022).Article
Havervall,S。等人。抗SARS-CoV-2 Omicron感染的抗尖峰粘膜IgA保护。N、 英语。J、 医学3871333-1336(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zuo, F., Marcotte, H., Hammarstrom, L. & Pan-Hammarstrom, Q. Mucosal IgA against SARS-CoV-2 Omicron infection. N. Engl. J. Med. 387, e55 (2022).PubMed
Zuo,F.,Marcotte,H.,Hammarstrom,L。和Pan Hammarstrom,Q。针对SARS-CoV-2 Omicron感染的粘膜IgA。N、 英语。J、 医学387,e55(2022)。PubMed出版社
Google Scholar
谷歌学者
Mudgal, R., Nehul, S. & Tomar, S. Prospects for mucosal vaccine: shutting the door on SARS-CoV-2. Hum. Vaccin Immunother. 16, 2921–2931 (2022).Article
Mudgal,R.,Nehul,S。和Tomar,S。粘膜疫苗的前景:关闭SARS-CoV-2的大门。。162921–2931(2022)。文章
Google Scholar
谷歌学者
Lin, M., Du, L., Brandtzaeg, P. & Pan-Hammarstrom, Q. IgA subclass switch recombination in human mucosal and systemic immune compartments. Mucosal Immunol. 7, 511–520 (2014).Article
Lin,M.,Du,L.,Brandtzaeg,P。&Pan Hammarstrom,Q。人类粘膜和全身免疫区室中的IgA亚类开关重组。粘膜免疫。7511-520(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Oh, J. E. et al. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Sci. Immunol. 6, eabj5129 (2021).Article
Oh,J.E.等人,鼻内引发诱导局部肺部驻留的B细胞群分泌保护性粘膜抗病毒IgA。科学。免疫。6,eabj5129(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tasker, S. et al. Safety and immunogenicity of a novel intranasal influenza vaccine (NasoVAX): a phase 2 randomized, controlled trial. Vaccines 9, 224 (2021).Article
新型鼻内流感疫苗(NasoVAX)的安全性和免疫原性:一项2期随机对照试验。疫苗9224(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Van Kampen, K. R. et al. Safety and immunogenicity of adenovirus-vectored nasal and epicutaneous influenza vaccines in humans. Vaccine 23, 1029–1036 (2005).Article
Van Kampen,K.R.等人。腺病毒载体鼻腔和表皮流感疫苗在人体内的安全性和免疫原性。疫苗231029-1036(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Feng, L. et al. An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques. Nat. Commun. 11, 4207 (2020).Article
Feng,L。等人。腺病毒载体的COVID-19疫苗可以保护恒河猴免受SARS-COV-2攻击。国家公社。114207(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Q. et al. Intranasal booster using an Omicron vaccine confers broad mucosal and systemic immunity against SARS-CoV-2 variants. Signal Transduct. Target Ther. 8, 167 (2023).Article
Wang,Q。等人。使用Omicron疫苗的鼻内增强剂赋予针对SARS-CoV-2变体的广泛粘膜和全身免疫力。信号传输管。目标Ther。8167(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zeng, C. et al. SARS-CoV-2 spreads through cell-to-cell transmission. Proc. Natl Acad. Sci. USA 119, e2111400119 (2022).Article
。程序。国家科学院。科学。美国119,e2111400119(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, Z. et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci. Transl. Med. 13, eabf155 (2021).Article
Wang,Z.等人通过二聚体IgA增强SARS-CoV-2中和。科学。翻译。。文章
Google Scholar
谷歌学者
Planchais, C. et al. Potent human broadly SARS-CoV-2-neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. J. Exp. Med 219, e20220638 (2022).Article
Planchais,C。等人。有效的人类广泛SARS-CoV-2中和IgA和IgG抗体,对Omicron BA.1和BA.2有效。J、 实验医学219,e20220638(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Woof, J. M. Immunology. Tipping the scales toward more effective antibodies. Science 310, 1442–1443 (2005).Article
Woof,J.M。免疫学。向更有效的抗体倾斜。科学3101442-1443(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Beucher, G. et al. Bronchial epithelia from adults and children: SARS-CoV-2 spread via syncytia formation and type III interferon infectivity restriction. Proc. Natl Acad. Sci. USA 119, e2202370119 (2022).Article
。程序。国家科学院。科学。美国119,e2202370119(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, M. & Ruprecht, R. M. Are anti-HIV IgAs good guys or bad guys? Retrovirology 11, 109 (2014).Article
Zhou,M.和Ruprecht,R.M.抗HIV IgA是好人还是坏人?逆转录病毒学11109(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Madhavan, M. et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: An open-label partially-randomised ascending dose phase I trial. EBioMedicine 85, 104298 (2022).Article
Madhavan,M。等人。鼻内施用腺病毒载体的COVID-19疫苗的耐受性和免疫原性:开放标签部分随机递增剂量I期试验。EBioMedicine 85104298(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, X. et al. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat. Microbiol. 7, 1063–1074 (2022).Article
Sun,X。等人。具有包括SARS-CoV-2在内的泛冠状病毒反应性的人抗体的中和机制。自然微生物。71063-1074(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
He, W. T. et al. Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nat. Immunol. 23, 960–970 (2022).Article
He,W.T.等人靶向分离针对SARS样病毒的多种人类保护性广泛中和抗体。自然免疫。23960-970(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nie, J. et al. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg. Microbes Infect. 9, 680–686 (2020).Article
Nie,J.等人。SARS-CoV-2假病毒中和试验的建立和验证。紧急微生物感染。9680-686(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang, R. D. et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58.e58 (2020).Article
Jiang,R.D.等人。SARS-CoV-2在表达人血管紧张素转换酶2的转基因小鼠中的发病机制。细胞182,50-58.e58(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, S. et al. Identification of potent human neutralizing antibodies against SARS-CoV-2 implications for development of therapeutics and prophylactics. Nat. Commun. 12, 4887 (2021).Article
。国家公社。124887(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe are grateful to Yichu Liu, Zhixia Li for their technical assistance in this study. The study was supported by the National Natural Science Foundation (92269201), Youth Innovation Promotion Association of CAS (2022361), Grants from Guangzhou National Laboratory (GZNL2024A01012, GZNL2023A01009), State Key Laboratory of Respiratory Disease (SKLRD-Z-202106, SKLRD-Z-202328), and Science and Technology Projects in Guangzhou (SL2022A04J00604).Author informationAuthor notesThese authors contributed equally: Si Chen, Zhengyuan Zhang, Qian Wang, Qi YangAuthors and AffiliationsGuangzhou Institute of Infectious Disease, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, ChinaSi Chen, Feng Li & Ling ChenGuangzhou National Laboratory, Guangzhou, ChinaSi Chen, Qian Wang, Qi Yang, Jielin Tang, Ping He, Hengchun Li, Yijun Deng, Baoqing Sun, Nanshan Zhong, Xinwen Chen & Ling ChenState Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, ChinaZhengyuan Zhang, Li Yin, Lishan Ning, Weiqi Deng, Linjing Shi, Zijian Liu, Hemeng Bu, Yaohui Zhu, Wenming Liu, Linbing Qu, Liqiang Feng, Xiaoli Xiong, Pingchao Li & Ling ChenUniversity of Chinese Academy of Sciences, Beijing, ChinaZhengyuan Zhang, Li Yin, Lishan Ning, Weiqi Deng, Linjing Shi, Zijian Liu, Hemeng Bu & Yaohui ZhuState Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, ChinaQian Wang, Baoqing Sun, Nanshan Zhong, Xinwen Chen & Ling ChenXiamen United Institute of Respiratory Health, Xiamen, Chi.
下载参考文献致谢我们感谢刘一楚,李志霞在本研究中提供的技术援助。该研究得到了国家自然科学基金(92269201),中国科学院青年创新促进会(2022361),广州国家实验室(GZNL2024A01012,GZNL2023A01009),呼吸系统疾病国家重点实验室(SKLRD-Z-202106,SKLRD-Z-202328)和广州科技项目(SL2022A04J00604)的资助。作者信息作者注意到,这些作者做出了同样的贡献:陈思晨,张正元,钱旺,祁阳作者和附属机构广州医科大学广州市第八人民医院广州传染病研究所陈思晨,冯丽和凌凌陈光州国家实验室,广州,陈思晨,钱旺,祁阳,唐杰林,何平,李恒春,邓益军,孙宝清,钟南山,陈新文和凌晨中国科学院广州生物医学与健康研究所细胞谱系研究中心呼吸系统疾病国家重点实验室,广州,张正元,李寅,李山宁,邓伟奇,石林静,刘自健,布荷梦,朱耀辉,刘文明,瞿林兵,冯立强,熊晓丽,李平超,中国科学院北京大学,张正元,李寅,李山宁,邓伟奇,石林静,刘自健,广州医科大学第一附属医院广州呼吸健康研究所国家呼吸疾病临床研究中心呼吸系统疾病国家重点实验室,广州,中国广州,王倩,孙宝清,钟南山,陈新文,陈玲厦门呼吸健康联合研究所,厦门,池。
PubMed Google ScholarZhengyuan ZhangView author publicationsYou can also search for this author in
PubMed谷歌学者张正元查看作者出版物您也可以在
PubMed Google ScholarQian WangView author publicationsYou can also search for this author in
PubMed Google ScholarQian WangView作者出版物您也可以在
PubMed Google ScholarQi YangView author publicationsYou can also search for this author in
PubMed Google ScholarQi YangView作者出版物您也可以在
PubMed Google ScholarLi YinView author publicationsYou can also search for this author in
PubMed谷歌学术评论作者出版物您也可以在
PubMed Google ScholarLishan NingView author publicationsYou can also search for this author in
PubMed Google ScholarLishan NingView作者出版物您也可以在
PubMed Google ScholarZhilong ChenView author publicationsYou can also search for this author in
PubMed Google ScholarZhilong ChenView作者出版物您也可以在
PubMed Google ScholarJielin TangView author publicationsYou can also search for this author in
PubMed Google ScholarWeiqi DengView author publicationsYou can also search for this author in
PubMed Google ScholarWeiqi DengView作者出版物您也可以在
PubMed Google ScholarPing HeView author publicationsYou can also search for this author in
PubMed Google ScholarPing HeView作者出版物您也可以在
PubMed Google ScholarHengchun LiView author publicationsYou can also search for this author in
PubMed Google ScholarHengchun LiView作者出版物您也可以在
PubMed Google ScholarLinjing ShiView author publicationsYou can also search for this author in
PubMed Google ScholarLinjing ShiView作者出版物您也可以在
PubMed Google ScholarYijun DengView author publicationsYou can also search for this author in
PubMed Google ScholarYijun DengView作者出版物您也可以在
PubMed Google ScholarZijian LiuView author publicationsYou can also search for this author in
PubMed Google ScholarZijian LiuView作者出版物您也可以在
PubMed Google ScholarHemeng BuView author publicationsYou can also search for this author in
PubMed Google ScholarHemeng BuView作者出版物您也可以在
PubMed Google ScholarYaohui ZhuView author publicationsYou can also search for this author in
PubMed Google ScholarWenming LiuView author publicationsYou can also search for this author in
PubMed谷歌学者刘文明查看作者出版物您也可以在
PubMed Google ScholarLinbing QuView author publicationsYou can also search for this author in
PubMed Google ScholarLinbing QuView作者出版物您也可以在
PubMed Google ScholarLiqiang FengView author publicationsYou can also search for this author in
PubMed谷歌学者Liqiang FengView作者出版物您也可以在
PubMed Google ScholarXiaoli XiongView author publicationsYou can also search for this author in
PubMed Google ScholarXiaoli XiongView作者出版物您也可以在
PubMed Google ScholarBaoqing SunView author publicationsYou can also search for this author in
PubMed Google ScholarBaoqing SunView作者出版物您也可以在
PubMed Google ScholarNanshan ZhongView author publicationsYou can also search for this author in
PubMed Google ScholarNanshan ZhongView作者出版物您也可以在
PubMed Google ScholarFeng LiView author publicationsYou can also search for this author in
PubMed Google ScholarFeng LiView作者出版物您也可以在
PubMed Google ScholarPingchao LiView author publicationsYou can also search for this author in
PubMed Google ScholarPingchao LiView作者出版物您也可以在
PubMed Google ScholarXinwen ChenView author publicationsYou can also search for this author in
PubMed谷歌学者陈新文查看作者出版物您也可以在
PubMed Google ScholarLing ChenView author publicationsYou can also search for this author in
PubMed Google ScholarLing ChenView作者出版物您也可以在
PubMed Google ScholarContributionsSi Chen, Zhengyuan Zhang, and Li Yin purified serum IgA, serum IgG, and nasal sIgA. Qian Wang, Yijun Deng, and Hengchun Li performed pseudovirus neutralization assays. Qian Wang and Yijun Deng conducted MSD and ELISA analyses. Si Chen, Zhengyuan Zhang, Li Yin, and Wenming Liu performed western blot and size exclusion chromatography assays.
PubMed谷歌学术贡献Si Chen,Zhengyuan Zhang和Li Yin纯化了血清IgA,血清IgG和鼻sIgA。Qian Wang,Yijun Deng和Hengchun Li进行了假病毒中和试验。。Si Chen,Zhengyuan Zhang,Li Yin和Wemming Liu进行了蛋白质印迹和尺寸排阻色谱分析。
Qian Wang, Zhengyuan Zhang, Zijian Liu, Linjing Shi, Li Yin, Weiqi Deng, Hemeng Bu, and Yaohui Zhu collected human samples. Qi Yang and Jielin Tang performed an authentic virus neutralization assay. Qi Yang, Jielin Tang, and Qian Wang performed a mouse challenge study and analysis of lung virus load.
王倩,张正元,刘子建,石林静,李寅,邓伟奇,布何梦和朱耀辉收集了人类样本。Qi Yang和Jielin Tang进行了真正的病毒中和试验。Qi Yang,Jielin Tang和Qian Wang进行了小鼠攻击研究和肺病毒载量分析。
Zhilong Chen, Lishan Ning, and Ping He provided spike proteins and preparation of monoclonal antibodies. Liqiang Feng, Linbing Qu, Baoqing Sun, Xiaoli Xiong, and Nanshan Zhong reviewed the manuscript. Si Chen, Pingchao Li, Feng Li, Xinwen Chen, and Ling Chen wrote the paper with all co-authors. All authors have read and approved the article.Corresponding authorsCorrespondence to.
陈志龙,宁立山和何平提供了穗蛋白和单克隆抗体的制备。冯立强,瞿林兵,孙宝清,熊晓丽和钟南山审阅了手稿。Si Chen,Pingchao Li,Feng Li,Xinwen Chen和Ling Chen与所有合著者一起撰写了这篇论文。所有作者都阅读并批准了这篇文章。通讯作者通讯。
Pingchao Li, Xinwen Chen or Ling Chen.Ethics declarations
李平超,陈新文或陈玲。道德宣言
Competing interests
相互竞争的利益
Ling Chen serves as scientific advisor for Guangzhou nBiomed Ltd, which provided NB2155 (Ad5-S-Omicron BA.1) for this study. The remaining authors declare no competing interests.
陈玲是广州nBiomed有限公司的科学顾问,该公司为本研究提供了NB2155(Ad5-S-Omicron BA。1)。其余作者声明没有利益冲突。
Supplementary informationSigtrans_Supplementary_Materials_SIGTRANS-12586R1Rights and permissions
补充信息SIGTRANS\u Supplementary\u Materials\u SIGTRANS-12586R1权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleChen, S., Zhang, Z., Wang, Q. et al. Intranasal adenovirus-vectored Omicron vaccine induced nasal immunoglobulin A has superior neutralizing potency than serum antibodies.
转载和许可本文引用本文Chen,S.,Zhang,Z.,Wang,Q。等人。鼻内腺病毒载体的Omicron疫苗诱导的鼻免疫球蛋白A具有比血清抗体更好的中和效力。
Sig Transduct Target Ther 9, 190 (2024). https://doi.org/10.1038/s41392-024-01906-0Download citationReceived: 20 February 2024Revised: 03 June 2024Accepted: 22 June 2024Published: 22 July 2024DOI: https://doi.org/10.1038/s41392-024-01906-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sig Transduct Target Ther 9190(2024)。https://doi.org/10.1038/s41392-024-01906-0Download引文收到日期:2024年2月20日修订日期:2024年6月3日接受日期:2024年6月22日发布日期:2024年7月22日OI:https://doi.org/10.1038/s41392-024-01906-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供