登录

一种基于三价蛋白的泛冠状病毒疫苗引发针对一组冠状病毒伪病毒的交叉中和抗体

A trivalent protein-based panetacoronavirus vaccine elicits cross-neutralizing antibodies against a panel of coronavirus pseudoviruses

Nature 等信源发布 2024-07-22 13:56

可切换为仅中文


AbstractThe development of broad-spectrum coronavirus vaccines is essential to prepare for future respiratory virus pandemics. We demonstrated broad neutralization by a trivalent subunit vaccine, formulating the receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 XBB.1.5 with Alum and CpG55.2.

摘要广谱冠状病毒疫苗的开发对于准备未来的呼吸道病毒大流行至关重要。我们证明了三价亚单位疫苗的广泛中和作用,用明矾和CpG55.2配制了SARS-CoV,MERS-CoV和SARS-CoV-2 XBB.1.5的受体结合结构域。

Vaccinated mice produced cross-neutralizing antibodies against all three human Betacoronaviruses and others currently exclusive to bats, indicating the epitope preservation of the individual antigens during co-formulation and the potential for epitope broadening..

接种疫苗的小鼠产生了针对所有三种人类Betacoronaviruses和目前蝙蝠独有的其他病毒的交叉中和抗体,表明在共同配制过程中单个抗原的表位保存以及表位扩大的潜力。。

Given the emergence of three highly pathogenic and deadly human Betacoronaviruses—severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2— within the past two decades, together with the looming threat of additional zoonotic viral spillovers, creating a broadly protective coronavirus vaccine capable of safeguarding against the five major lineages of the virus (Embecovirus, Sarbecovirus, Merbecovirus, Nobecovirus, and Hibecovirus)1 remains an urgent global health challenge.

鉴于在过去二十年中出现了三种高致病性和致命性的人类β-冠状病毒-严重急性呼吸综合征(SARS)-冠状病毒,中东呼吸综合征(MERS)-冠状病毒和SARS-CoV-2-以及其他人畜共患病毒溢出的威胁,创造了一种广泛保护的冠状病毒疫苗,能够抵抗该病毒的五个主要谱系(Embecovirus,Sarbecovirus,Merbecovirus,Nobecovirus和Hibecovirus)1仍然是一个紧迫的全球健康挑战。

Compared to current vaccines, which are either species- or variant-specific, a more broadly protective pan-coronavirus vaccine could provide considerable epidemiological, clinical, and economic value to mitigate the global disease burden2.Early during the COVID-19 pandemic, the development of broadly protective coronavirus vaccines was motivated by the observation of cross-clade Sarbecovirus neutralizing antibodies in previously SARS-CoV-infected and then Pfizer BioNTech BNT162b2-vaccinated individuals3.

与目前的物种或变异特异性疫苗相比,更广泛的保护性泛冠状病毒疫苗可以提供相当大的流行病学,临床和经济价值,以减轻全球疾病负担2。在COVID-19大流行早期,广泛保护性冠状病毒疫苗的开发是由于在先前感染SARS-CoV的个体中观察到交叉进化枝沙伯病毒中和抗体,然后是辉瑞生物技术公司BNT162b2接种的个体3。

Now, with support from national and international funding agencies, multiple broadly protective vaccines are under development4,5.We focused our coronavirus vaccine development efforts on low-cost, easy-to-produce RBD-based vaccines6. In 2013, we developed RBD219-N1 as a SARS-CoV vaccine that protected in a mouse challenge model7, and when MERS-CoV emerged, we produced a MERS RBD vaccine that protected mice against a lethal MERS-CoV infection8,9.

现在,在国家和国际资助机构的支持下,正在开发多种广泛保护性疫苗4,5。我们将冠状病毒疫苗的开发工作重点放在低成本,易于生产的RBD疫苗6上。2013年,我们开发了RBD219-N1作为SARS-CoV疫苗,可在小鼠攻击模型中保护7,当MERS-CoV出现时,我们生产了一种MERS-RBD疫苗,可保护小鼠免受致命的MERS-CoV感染8,9。

In 2020, our RBD-based SARS-CoV-2 vaccine was efficacious in various animal models10,11 and transitioned into the clinic, where it was proven safe, immunogenic, and effective12. With our vaccine technology, two vaccines (Corbevax, Biological E Ltd, India; and Indovac, Bio Farma, Indonesia) were produced for les.

2020年,我们基于RBD的SARS-CoV-2疫苗在各种动物模型中都是有效的10,11,并过渡到临床,在那里它被证明是安全的,免疫原性的和有效的12。利用我们的疫苗技术,为les生产了两种疫苗(Corbevax,Biological E Ltd,印度;Indovac,Bio Farma,印度尼西亚)。

Data availability

数据可用性

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

根据合理的要求,通讯作者可以提供支持本研究结果的数据。

ReferencesLlanes, A. et al. Betacoronavirus genomes: how genomic information has been used to deal with past outbreaks and the COVID-19 pandemic. Int. J. Mol. Sci. 21, 4546 (2020).Article

ReferencesLlanes,A。等人,《Betacoronavirus基因组:如何利用基因组信息应对过去的疫情和新型冠状病毒肺炎大流行》。Int.J.Mol.Sci。214546(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dolgin, E. Pan-coronavirus vaccine pipeline takes form. Nat. Rev. Drug Discov. 21, 324–326 (2022).Article

多尔金(Dolgin),E。泛冠状病毒疫苗管道形成。21324-326(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tan, C.-W. et al. Pan-sarbecovirus neutralizing antibodies in BNT162b2-immunized SARS-CoV-1 survivors. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2108453 (2021).Cankat, S., Demael, M. U. & Swadling, L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms.

Tan,C.-W.等人。BNT162b2免疫的SARS-CoV-1幸存者中的泛沙伯病毒中和抗体。N、 英语。J、 医学。https://doi.org/10.1056/NEJMoa2108453(2021年)。Cankat,S.,Demael,M.U。和Swadling,L。寻找泛冠状病毒疫苗:下一代疫苗设计和免疫机制。

Cell. Mol. Immunol. https://doi.org/10.1038/s41423-023-01116-8 (2023).Cohen, A. A. et al. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 377, eabq0839 (2022).Article .

细胞。分子免疫。https://doi.org/10.1038/s41423-023-01116-8(2023年)。Cohen,A.A.等人。马赛克RBD纳米颗粒在动物模型中可以抵抗多种沙伯病毒的攻击。。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hotez, P. J. et al. From concept to delivery: a yeast-expressed recombinant protein-based COVID-19 vaccine technology suitable for global access. Expert Rev. Vaccines 22, 495–500 (2023).Article

Hotez,P.J.等人,《从概念到交付:一种酵母表达的基于重组蛋白的新型冠状病毒肺炎疫苗技术,适用于全球范围。专家版疫苗22495-500(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, W.-H. et al. Yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1) formulated with aluminum hydroxide induces protective immunity and reduces immune enhancement. Vaccine 38, 7533–7541 (2020).Article

Chen,W.-H.等人。用氢氧化铝配制的酵母表达的SARS-CoV重组受体结合结构域(RBD219-N1)诱导保护性免疫并降低免疫增强。疫苗387533-7541(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Du, L. et al. A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines. PLoS ONE 8, e81587 (2013).Article

Du,L。等人。MERS-CoV尖峰蛋白的截短受体结合结构域有效抑制MERS-CoV感染并诱导强烈的中和抗体反应:对开发治疗和疫苗的意义。PLoS ONE 8,e81587(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nyon, M. P. et al. Engineering a stable CHO cell line for the expression of a MERS-coronavirus vaccine antigen. Vaccine 36, 1853–1862 (2018).Article

Nyon,M.P.等人设计了一种稳定的CHO细胞系,用于表达MERS冠状病毒疫苗抗原。疫苗361853-1862(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pino, M. et al. A yeast expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human primates. Sci. Immunol. 6, eabh3634 (2021).Article

Pino,M。等人。用3M-052-明矾佐剂配制的酵母表达的基于RBD的SARS-CoV-2疫苗可促进非人灵长类动物的保护功效。科学。免疫。6,eabh3634(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pollet, J. et al. SARS‑CoV-2 RBD219-N1C1: a yeast-expressed SARS-CoV-2 recombinant receptor-binding domain candidate vaccine stimulates virus neutralizing antibodies and T-cell immunity in mice. Hum. Vaccines Immunother. 17, 2356–2366 (2023).Article

Pollet,J。等人。SARS-CoV-2 RBD219-N1C1:酵母表达的SARS-CoV-2重组受体结合域候选疫苗刺激小鼠的病毒中和抗体和T细胞免疫。嗯。疫苗免疫疗法。172356-2366(2023)。文章

Google Scholar

谷歌学者

Thuluva, S. et al. Immunogenicity and safety of Biological E’s CORBEVAXTM vaccine compared to COVISHIELDTM (ChAdOx1 nCoV-19) vaccine studied in a phase-3, single blind, multicentre, randomized clinical trial. Hum. Vaccines Immunother. 19, 2203632 (2023).Article

Thuluva,S.等人在一项3期、单盲、多中心、随机临床试验中研究了生物E的CORBEVAXTM疫苗与COVISHIELDTM(ChAdOx1-nCoV-19)疫苗的免疫原性和安全性。嗯。疫苗免疫疗法。192203632(2023)。文章

Google Scholar

谷歌学者

WHO - Prequalification of Medical Products (IVDs, Medicines, Vaccines and Immunization Devices, Vector Control). COVID-19 vaccines with WHO emergency use listing. https://extranet.who.int/prequal/vaccines/covid-19-vaccines-who-emergency-use-listing.Thimmiraju, S. R. et al. A recombinant protein XBB.1.5 RBD/Alum/CpG vaccine elicits high neutralizing antibody titers against omicron subvariants of SARS-CoV-2.

WHO-医疗产品(IVD、药物、疫苗和免疫装置、病媒控制)的资格预审。具有世卫组织紧急使用清单的新型冠状病毒疫苗。https://extranet.who.int/prequal/vaccines/covid-19-vaccines-who-emergency-use-listing.Thimmiraju重组蛋白XBB.1.5 RBD/明矾/CpG疫苗可引发针对SARS-CoV-2 omicron亚型的高中和抗体滴度。

Vaccines 11, 1557 (2023).Article .

疫苗111557(2023)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hu, B., Ge, X., Wang, L.-F. & Shi, Z. Bat origin of human coronaviruses. Virol. J. 12, 221 (2015).Article

。维罗尔。J、 12221(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Du, Y. et al. A broadly neutralizing humanized ACE2-targeting antibody against SARS-CoV-2 variants. Nat. Commun. 12, 5000 (2021).Article

Du,Y。等人。一种广泛中和的针对SARS-CoV-2变体的人源化ACE2靶向抗体。国家公社。125000(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mykytyn, A. Z. et al. Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Sci. Immunol. 7, eabq4450 (2022).Article

Mykytyn,A.Z.等人的SARS-CoV-2抗原图谱显示Omicron BA.1和BA.2在抗原性上是不同的。科学。免疫。7,eabq4450(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pollet, J. et al. Receptor-binding domain recombinant protein on alum-CpG induces broad protection against SARS-CoV-2 variants of concern. Vaccine 40, 3655–3663 (2022).Article

Pollet,J。等人。明矾CpG上的受体结合结构域重组蛋白诱导广泛的针对SARS-CoV-2变体的保护作用。疫苗403655-3663(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 369, 956–963 (2020).Article

Rogers,T.F.等人。在小动物模型中分离有效的SARS-CoV-2中和抗体和预防疾病。科学369956-963(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Garcia-Beltran, W. F. et al. COVID-19-neutralizing antibodies predict disease severity and survival. Cell 184, 476–488.e11 (2021).Article

Garcia-Beltran,W.F。等人,COVID-19中和抗体可预测疾病的严重程度和生存率。细胞184476-488.e11(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dacon, C. et al. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 377, 728–735 (2022).Article

Dacon,C。等人广泛中和抗体靶向冠状病毒融合肽。科学377728-735(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by Texas Children’s Hospital Center for Vaccine Development Intramural Funds, USA. In addition, we gratefully acknowledge the donations from various private individuals received in support of our vaccine development program. We thank Dr.

下载参考文献致谢这项工作得到了美国德克萨斯州儿童医院疫苗开发内部基金会的支持。此外,我们非常感谢为支持我们的疫苗开发计划而收到的各种私人捐款。我们感谢博士。

Nikolai Petrovsky (Vaxine Pty Ltd, Australia) for kindly sharing the CpG55.2 adjuvant. We thank Vincent Munster (NIAID) for providing the spike expression plasmid for SARS-CoV-2. All the authors would also like to extend their sincere gratitude to Diane Niño, Allan Ciciriello, and Kay Razavi for their invaluable contributions to the vaccine center’s COVID-19 vaccine program.Author informationAuthors and AffiliationsTexas Children’s Hospital Center for Vaccine Development, Houston, TX, 77030, USASyamala Rani Thimmiraju, Rakesh Adhikari, JeAnna R.

尼古拉·彼得罗夫斯基(澳大利亚Vaxine私人有限公司),感谢他分享CpG55.2佐剂。我们感谢Vincent Munster(NIAID)为SARS-CoV-2提供了尖峰表达质粒。所有作者还要衷心感谢黛安·尼诺,艾伦·西西里略和凯·拉扎维为疫苗中心的新型冠状病毒肺炎疫苗计划做出的宝贵贡献。作者信息作者和附属机构德克萨斯州休斯顿特克斯儿童医院疫苗开发中心,77030,USASyamala Rani Thimmiraju,Rakesh Adhikari,JeAnna R。

Redd, Maria Jose Villar, Jungsoon Lee, Zhuyun Liu, Yi-Lin Chen, Amandeep Kaur, Nestor L. Uzcategui, Shannon E. Ronca, Wen-Hsiang Chen, Bin Zhan, Ulrich Strych, Maria Elena Bottazzi, Peter J. Hotez & Jeroen PolletDepartment of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USASyamala Rani Thimmiraju, Rakesh Adhikari, JeAnna R.

里德(Redd)、玛利亚·何塞·维拉尔(MariaJoseVillar)、李俊顺(Jungsoon Lee)、刘朱云(Zhuyun Liu)、陈宜林(Yi Lin Chen)、阿曼迪普·考尔(Amandeep Kaur)、内斯特·乌兹卡特吉(Nestor L.Uzcategui)、香农·E·朗卡(Shannon E.Ronca)、陈文祥(Wen Xiang Chen)、詹斌(Bin Zhan)、乌尔里希·斯特里奇(UlrichStrych)、玛利亚·埃琳娜·博塔齐(MariaElenaBottazzi)、彼得·霍特斯(PeterJ。

Redd, Maria Jose Villar, Jungsoon Lee, Zhuyun Liu, Yi-Lin Chen, Amandeep Kaur, Nestor L. Uzcategui, Shannon E. Ronca, Wen-Hsiang Chen, Bin Zhan, Ulrich Strych, Maria Elena Bottazzi, Peter J. Hotez & Jeroen PolletDepartment of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USASuman Sharma, Shannon E.

里德(Redd),玛利亚·何塞·维拉尔(MariaJoseVillar),李俊顺(Jungsoon Lee),刘朱云(Zhuyun Liu),陈宜林(Yi Lin Chen),阿曼迪普·考尔(Amandeep Kaur),内斯特·乌兹卡特吉(Nestor L.Uzcategui),香农·E·朗卡(Shannon E.Ronca),陈文祥(Wen Xiang Chen),詹斌(Bin Zhan),乌尔里希·斯特里奇(UlrichStrych),玛利亚·埃琳娜·博塔齐(Maria。

Ronca, Jason T. Kimata & Jeroen PolletDepartment of Biology, Baylor University, Waco, TX, 76706, USAMaria Elena Bottazzi & Peter J. HotezJames A. Baker III Institute for Public Policy, Rice University, Houston, TX, 77.

Ronca,Jason T.Kimata和Jeroen PolletDepartment of Biology,Baylor University,Waco,TX,76706,USAMaria Elena Bottazzi和Peter J.HotezJames A.Baker III公共政策研究所,莱斯大学,休斯顿,TX,77。

PubMed Google ScholarRakesh AdhikariView author publicationsYou can also search for this author in

PubMed Google Scholarakesh AdhikariView作者出版物您也可以在

PubMed Google ScholarJeAnna R. ReddView author publicationsYou can also search for this author in

PubMed Google ScholarJeAnna R.ReddView作者出版物您也可以在

PubMed Google ScholarMaria Jose VillarView author publicationsYou can also search for this author in

PubMed Google ScholarMaria Jose VillarView作者出版物您也可以在

PubMed Google ScholarJungsoon LeeView author publicationsYou can also search for this author in

PubMed Google ScholarJungsoon LeeView作者出版物您也可以在

PubMed Google ScholarZhuyun LiuView author publicationsYou can also search for this author in

PubMed谷歌学者刘朱云查看作者出版物您也可以在

PubMed Google ScholarYi-Lin ChenView author publicationsYou can also search for this author in

PubMed Google ScholarYi Lin ChenView作者出版物您也可以在

PubMed Google ScholarSuman SharmaView author publicationsYou can also search for this author in

PubMed Google ScholarSuman SharmaView作者出版物您也可以在

PubMed Google ScholarAmandeep KaurView author publicationsYou can also search for this author in

PubMed Google ScholarAmandeep KaurView作者出版物您也可以在

PubMed Google ScholarNestor L. UzcateguiView author publicationsYou can also search for this author in

PubMed Google ScholarShannon E. RoncaView author publicationsYou can also search for this author in

PubMed Google ScholarShannon E.RoncaView作者出版物您也可以在

PubMed Google ScholarWen-Hsiang ChenView author publicationsYou can also search for this author in

PubMed Google ScholarWen Xiang ChenView作者出版物您也可以在

PubMed Google ScholarJason T. KimataView author publicationsYou can also search for this author in

PubMed谷歌学者Jason T.KimataView作者出版物您也可以在

PubMed Google ScholarBin ZhanView author publicationsYou can also search for this author in

PubMed Google ScholarBin ZhanView作者出版物您也可以在

PubMed Google ScholarUlrich StrychView author publicationsYou can also search for this author in

PubMed Google ScholarUlrich StrychView作者出版物您也可以在

PubMed Google ScholarMaria Elena BottazziView author publicationsYou can also search for this author in

PubMed Google ScholarMaria Elena BottazziView作者出版物您也可以在

PubMed Google ScholarPeter J. HotezView author publicationsYou can also search for this author in

PubMed Google ScholarPeter J.HotezView作者出版物您也可以在

PubMed Google ScholarJeroen PolletView author publicationsYou can also search for this author in

PubMed Google ScholarJeroen PolletView作者出版物您也可以在

PubMed Google ScholarContributionsConceptualization (Hypothesis and study design): S.R.T., W.-H.C., U.S., M.E.B., P.J.H., and J.P. Funding acquisition: M.E.B. and P.J.H. Lab experiments (Cloning): N.L.U., B.Z., S.S., J.T.K.; (Protein production): J.L., Z.L., A.K.; (Vaccine formulation): Y.-L.C.

PubMed谷歌学术贡献概念化(假设和研究设计):S.R.T.,W.-H.C.,美国,M.E.B.,P.J.H。和J.P.资金收购:M.E.B.和P.J.H.实验室实验(克隆):N.L.U.,B.Z.,S.S.,J.T.K。;(蛋白质生产):J.L.,Z.L.,A.K。;(疫苗配方):Y.-L.C。

and J.P.; (Animal work): R.A., J.R.R., and S.E.R.; (Immunology): S.R.T., R.A., and M.J.V. Formal analysis (Data analysis): S.R.T., R.A., W.-H.C., J.T.K., B.Z., U.S., and J.P. Supervision (Final responsibility of teamwork) J.K., S.E.R., U.S., M.E.B., P.J.H., and J.P. Writing: S.R.T., J.T.K., U.S., and J.P.

和J.P。;(动物工作):R.A.,J.R.R。和S.E.R。;(免疫学):S.R.T.,R.A。和M.J.V.正式分析(数据分析):S.R.T.,R.A.,W.H.C.,J.T.K.,B.Z.,美国和J.P.监督(团队合作的最终责任)J.K.,S.E.R.,U.S.,M.E.B.,P.J.H。和J.P.写作:S.R.T.,J.T.K.,U.S.,和J.P。

Visualization (Figures): S.R.T. and J.P. All authors have read, reviewed and agreed to the published version of the manuscript.Corresponding authorCorrespondence to.

可视化(数字):S.R.T.和J.P.所有作者都阅读,审查并同意稿件的发布版本。对应作者对应。

Jeroen Pollet.Ethics declarations

杰伦·波莱特。道德宣言

Competing interests

相互竞争的利益

Several of the authors are co-inventors of a COVID-19 recombinant protein vaccine technology held by Baylor College of Medicine (BCM). BCM has licensed this technology non-exclusively to multiple companies dedicated to improving vaccine access in low- and middle-income countries, with no patent restrictions.

几位作者是贝勒医学院(BCM)持有的新型冠状病毒-19重组蛋白疫苗技术的共同发明人。BCM已将这项技术非独家许可给多家致力于改善中低收入国家疫苗获取的公司,没有专利限制。

The authors themselves are not directly involved in the licensing negotiations led by BCM. None of the authors have additional competing financial or non-financial interests..

作者本人并不直接参与BCM领导的许可谈判。没有一位作者有其他相互竞争的财务或非财务利益。。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationRights and permissions

。补充信息补充信息权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleThimmiraju, S.R., Adhikari, R., Redd, J.R. et al. A trivalent protein-based pan-Betacoronavirus vaccine elicits cross-neutralizing antibodies against a panel of coronavirus pseudoviruses.

转载和许可本文引用本文Thimmiraju,S.R.,Adhikari,R.,Redd,J.R。等人。一种基于三价蛋白质的泛β-冠状病毒疫苗引发针对一组冠状病毒假病毒的交叉中和抗体。

npj Vaccines 9, 132 (2024). https://doi.org/10.1038/s41541-024-00924-xDownload citationReceived: 28 February 2024Accepted: 12 July 2024Published: 22 July 2024DOI: https://doi.org/10.1038/s41541-024-00924-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

npj疫苗9132(2024)。https://doi.org/10.1038/s41541-024-00924-xDownload引文接收日期:2024年2月28日接受日期:2024年7月12日发布日期:2024年7月22日OI:https://doi.org/10.1038/s41541-024-00924-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供