
商务合作

动脉网APP
可切换为仅中文
AbstractAlveolar bone loss resulting from periodontal disease ultimately leads to tooth loss. Periodontal ligament mesenchymal stem cells (PDLMSCs) are the tissue-specific cells responsible for maintaining and repairing the periodontal ligament, cementum, and alveolar bone. In this study, we explored the role of aldehyde oxidase 1 (AOX1) in regulating the osteoinduction of human periodontal ligament stem cells (hPDLMSCs).
摘要牙周病引起的牙槽骨丢失最终导致牙齿脱落。牙周膜间充质干细胞(PDLMSCs)是负责维持和修复牙周膜,牙骨质和牙槽骨的组织特异性细胞。在这项研究中,我们探讨了醛氧化酶1(AOX1)在调节人牙周膜干细胞(hPDLMSCs)骨诱导中的作用。
hPDLMSCs were isolated from clinically healthy donors, and AOX1 expression was assessed by comparing inducted and non-inducted hPDLMSCs. Remarkably, we observed a significant upregulation of AOX1 expression during osteoinduction, while AOX1 silencing resulted in the enhanced osteogenic potential of hPDLMSCs.
从临床健康供体中分离hPDLMSC,并通过比较诱导的和未诱导的hPDLMSC来评估AOX1表达。值得注意的是,我们观察到在骨诱导过程中AOX1表达显着上调,而AOX1沉默导致hPDLMSC的成骨潜力增强。
Subsequent experiments and analysis unveiled the involvement of retinoid X receptor (RXR) signaling in the inhibition of osteogenesis in hPDLMSCs. Ligands targeting the RXR receptor mirrored the effects of AOX1 on osteogenesis, as evidenced by alterations in alkaline phosphatase (ALP) activity and bone formation levels.
随后的实验和分析揭示了类视黄醇X受体(RXR)信号传导参与抑制hPDLMSC中的成骨。靶向RXR受体的配体反映了AOX1对成骨的影响,碱性磷酸酶(ALP)活性和骨形成水平的改变证明了这一点。
Collectively, these findings underscore the potential regulatory role of AOX1 via RXR signaling in the osteogenesis of hPDLMSCs. This elucidation is pivotal for advancing hPDLMSC-based periodontal regeneration strategies and lays the groundwork for the development of targeted therapeutic interventions aimed at enhancing bone formation in the context of periodontal disease..
总的来说,这些发现强调了AOX1通过RXR信号传导在hPDLMSC成骨中的潜在调节作用。这一阐明对于推进基于hPDLMSC的牙周再生策略至关重要,并为开发旨在增强牙周病背景下骨形成的靶向治疗干预奠定了基础。。
IntroductionPeriodontitis is a chronic inflammatory disease affecting the supporting tissues of the teeth, including the gums, periodontal ligament, and alveolar bone. Traditional treatment approaches focus on controlling the infection and inflammation through mechanical debridement and antimicrobial therapy.
简介牙周炎是一种慢性炎症性疾病,影响牙齿的支持组织,包括牙龈,牙周韧带和牙槽骨。传统的治疗方法侧重于通过机械清创和抗菌治疗来控制感染和炎症。
However, these approaches may not always fully restore the damaged tissues1. Regenerative therapies aim to promote the regeneration of lost periodontal tissues, including the periodontal ligament, cementum, and alveolar bone. These approaches involve the use of various biomaterials, growth factors, and stem cells to stimulate tissue repair and regeneration.
。再生疗法旨在促进牙周组织(包括牙周膜,牙骨质和牙槽骨)的再生。这些方法涉及使用各种生物材料,生长因子和干细胞来刺激组织修复和再生。
Mesenchymal stem cells (MSCs) derived from sources such as the bone marrow, adipose tissue, or periodontal ligament have shown promise in periodontal regeneration due to their ability to differentiate into various cell types involved in tissue repair2,3.As a type of MSCs found within the periodontal ligament, PDLMSCs play a crucial role in maintaining the health and integrity of the periodontium, which includes the periodontal ligament, cementum, alveolar bone, and gingiva4,5,6.
源自骨髓,脂肪组织或牙周膜等来源的间充质干细胞(MSCs)由于能够分化为参与组织修复的各种细胞类型,因此在牙周再生中显示出前景2,3。作为一种在牙周膜内发现的MSCs,PDLMSCs在维持牙周组织的健康和完整性方面起着至关重要的作用,牙周组织包括牙周膜,牙骨质,牙槽骨和牙龈4,5,6。
One of the key functions of PDLMSCs is their potential for osteogenesis, which is the process of forming bone tissue. PDLMSCs have the capacity to differentiate into osteoblasts, the cells responsible for bone formation by secreting collagen and other proteins that form the organic matrix of bone, subsequently facilitating the mineralization process7.
PDLMSCs的关键功能之一是它们的成骨潜力,这是形成骨组织的过程。PDLMSCs具有分化成成骨细胞的能力,成骨细胞是通过分泌胶原蛋白和其他形成骨有机基质的蛋白质来负责骨形成的细胞,随后促进矿化过程7。
These functions of PDLMSCs indicate their roles in maintaining periodontal homeostasis or managing periodontal disease. And this differentiation process is regulated by various signaling pathways and molecular factors8,9. This prompts researchers to investigate potential pathways that can b.
PDLMSCs的这些功能表明它们在维持牙周稳态或管理牙周疾病中的作用。这种分化过程受各种信号通路和分子因素的调节8,9。这促使研究人员调查可能导致b的潜在途径。
Data availability
数据可用性
Data and materials supporting the findings of this study are available in the article and its Supplementary Figures. The RNA-seq datasets mentioned in this study have been deposited in the DNA Data Bank of Japan (DDBJ) Sequence Read Archive (DRA) under accession number DRA003917.
。本研究中提到的RNA-seq数据集已保存在日本DNA数据库(DDBJ)序列读取档案(DRA)中,登录号为DRA003917。
ReferencesSlots, J. Periodontitis: Facts, fallacies and the future. Periodontol 2000 75, 7–23 (2017).Article
Referenceslots,J。牙周炎:事实,谬误和未来。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, J. et al. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells. Cells https://doi.org/10.3390/cells8060537 (2019).Article
Liu,J。等人。通过支架和干细胞进行牙周骨韧带牙骨质再生。单元格https://doi.org/10.3390/cells8060537(2019年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, X. Y. et al. Concise review: Periodontal tissue regeneration using stem cells: Strategies and translational considerations. Stem Cell Transl. Med. 8, 392–403 (2019).Article
Xu,X.Y.等人。简要回顾:使用干细胞的牙周组织再生:策略和翻译考虑因素。干细胞转运。医学杂志8392-403(2019)。文章
Google Scholar
谷歌学者
Iwata, T. et al. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J. Clin. Periodontol. 37, 1088–1099 (2010).Article
Iwata,T。等人。验证人牙周膜衍生细胞作为细胞治疗用途的可靠来源。J、 临床。牙周病。371088-1099(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, S. H. et al. Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: A pilot study. J. Periodontol. 80, 1815–1823 (2009).Article
Kim,S.H.等人。牙周膜干细胞和骨髓干细胞移植在犬种植体周围缺损模型中的牙槽骨再生:一项初步研究。J、 牙周病。801815-1823(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, Y. L. et al. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells 29, 1804–1816 (2011).Article
Liu,Y。L。等人。MiR-17通过从牙周炎患者牙周韧带分离的间充质干细胞中的连贯前馈环调节成骨分化。干细胞291804-1816(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kato, H. et al. A synthetic oligopeptide derived from enamel matrix derivative promotes the differentiation of human periodontal ligament stem cells into osteoblast-like cells with increased mineralization. J. Periodontol. 84, 1476–1483 (2013).Article
Kato,H。等人。一种源自牙釉质基质衍生物的合成寡肽促进人牙周膜干细胞向成骨细胞样细胞的分化,并增加矿化。J、 牙周病。841476-1483(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chen, X. et al. Nuclear factor-κB modulates osteogenesis of periodontal ligament stem cells through competition with β-catenin signaling in inflammatory microenvironments. Cell Death Dis. https://doi.org/10.1038/cddis.2013.14 (2013).Article
Chen,X。等人。核因子-κB通过与炎症微环境中的β-连环蛋白信号传导竞争来调节牙周膜干细胞的成骨。细胞死亡Dis。https://doi.org/10.1038/cddis.2013.14(2013年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, W. et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments. Cell Death Dis. https://doi.org/10.1038/cddis.2013.65 (2013).Article
Liu,W。等人。TCF3是一种新型的成骨正调节剂,在miR-17调节经典Wnt信号在不同微环境中的多种作用中起着至关重要的作用。细胞死亡Dis。https://doi.org/10.1038/cddis.2013.65(2013年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Agrawal, A. et al. WikiPathways 2024: Next generation pathway database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad960 (2023).Article
Agrawal,A。等人,《WikiPathways 2024:下一代路径数据库》。核酸研究。https://doi.org/10.1093/nar/gkad960(2023年)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Peacock, J. D., Levay, A. K., Gillaspie, D. B., Tao, G. & Lincoln, J. Reduced Sox9 function promotes heart valve calcification phenotypes in vivo. Circ. Res. 106, 712–719 (2010).Article
Peacock,J.D.,Levay,A.K.,Gillaspie,D.B.,Tao,G。&Lincoln,J。减少的Sox9功能促进体内心脏瓣膜钙化表型。保监会。第106712-719号决议(2010年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
James, A. W., Levi, B., Xu, Y., Carre, A. L. & Longaker, M. T. Retinoic acid enhances osteogenesis in cranial suture-derived mesenchymal cells: Potential mechanisms of retinoid-induced craniosynostosis. Plast. Reconstr. Surg. 125, 1352–1361 (2010).Article
James,A.W.,Levi,B.,Xu,Y.,Carre,A.L。&Longaker,M.T。视黄酸增强颅缝间充质细胞的成骨作用:类维生素A诱导的颅缝早闭的潜在机制。塑料。重建。Surg.1251352–1361(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, L. T., Chen, L. R. & Chen, K. H. Hormone-related and drug-induced osteoporosis: A cellular and molecular overview. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24065814 (2023).Article
Wang,L.T.,Chen,L.R。&Chen,K.H。激素相关和药物诱导的骨质疏松症:细胞和分子概述。Int.J.Mol.Sci。https://doi.org/10.3390/ijms24065814(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, L. T., Ma, J. F., Chen, J., Pan, Z. J. & Li, L. J. Bioinformatics-guided analysis uncovers AOX1 as an osteogenic differentiation-relevant gene of human mesenchymal stem cells. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2022.800288 (2022).Article
Sun,L.T.,Ma,J.F.,Chen,J.,Pan,Z.J。&Li,L.J。生物信息学指导的分析揭示了AOX1是人间充质干细胞的成骨分化相关基因。正面。摩尔生物科学。https://doi.org/10.3389/fmolb.2022.800288(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yan, Z. & He, Q. LINC01234 sponging of the miR-513a-5p/AOX1 axis is upregulated in osteoporosis and regulates osteogenic differentiation of bone marrow mesenchymal stem cells. Mol. Biotechnol. 65, 2108–2118 (2023).Article
Yan,Z。&He,Q。LINC01234 miR-513a-5p/AOX1轴的海绵在骨质疏松症中上调并调节骨髓间充质干细胞的成骨分化。摩尔生物技术。652108-2118(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Onizuka, S. et al. ZBTB16 as a downstream target gene of osterix regulates osteoblastogenesis of human multipotent mesenchymal stromal cells. J. Cell. Biochem. 117, 2423–2434 (2016).Article
Onisuka,S。等人ZBTB16作为osterix的下游靶基因调节人多能间充质基质细胞的成骨细胞生成。J、 细胞。生物化学。1172423-2434(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Giguere, V. & Evans, R. M. Chronicle of a discovery: The retinoic acid receptor. J. Mol. Endocrinol. 69, T1–T11 (2022).Article
Giguere,V。&Evans,R.M。发现纪事:视黄酸受体。J、 分子内分泌。69,T1-T11(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Krezel, W., Ruhl, R. & de Lera, A. R. Alternative retinoid X receptor (RXR) ligands. Mol. Cell. Endocrinol. 491, 110436 (2019).Article
Krezel,W.,Ruhl,R。&de Lera,A.R。替代类视黄醇X受体(RXR)配体。摩尔电池。内分泌。491110436(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chang, R. C. et al. miR-223 plays a key role in obesogen-enhanced adipogenesis in mesenchymal stem cells and in transgenerational obesity. Endocrinology https://doi.org/10.1210/endocr/bqad027 (2023).Article
Chang,R.C。等人。miR-223在间充质干细胞中肥胖增强的脂肪形成和跨代肥胖中起关键作用。内分泌学https://doi.org/10.1210/endocr/bqad027(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shoucri, B. M., Hung, V. T., Chamorro-García, R., Shioda, T. & Blumberg, B. Retinoid X receptor activation during adipogenesis of female mesenchymal stem cells programs a dysfunctional adipocyte. Endocrinology 159, 2863–2883 (2018).Article
Shoucri,B.M.,Hung,V.T.,Chamorro-García,R.,Shioda,T。&Blumberg,B。女性间充质干细胞脂肪形成过程中的类视黄醇X受体激活编程功能失调的脂肪细胞。内分泌学1592863-2883(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shoucri, B. M. et al. Retinoid X receptor activation alters the chromatin landscape to commit mesenchymal stem cells to the adipose lineage. Endocrinology 158, 3109–3125 (2017).Article
Shoucri,B.M。等人。类视黄醇X受体激活改变染色质景观,使间充质干细胞向脂肪谱系转化。内分泌学1583109-3125(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shimo, T. et al. Expression and role of IL-1beta signaling in chondrocytes associated with retinoid signaling during fracture healing. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21072365 (2020).Article
Shimo,T。等人。骨折愈合过程中与类视黄醇信号相关的软骨细胞中IL-1β信号的表达和作用。Int.J.Mol.Sci。https://doi.org/10.3390/ijms21072365(2020年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, D. et al. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem. Biol. Interact. https://doi.org/10.1016/j.cbi.2023.110773 (2024).Article
Wu,D。等人。视黄酸信号在发育和分化承诺及其调控拓扑中的作用。化学。生物互动。https://doi.org/10.1016/j.cbi.2023.110773(2024年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Daruwalla, A., Choi, E. H., Palczewski, K. & Kiser, P. D. Structural biology of 11-retinaldehyde production in the classical visual cycle. Biochem. J. 475, 3171–3188 (2018).Article
Daruwalla,A.,Choi,E.H.,Palczewski,K。&Kiser,P.D。经典视觉周期中11种视黄醛产生的结构生物学。生物化学。J、 4753171-3188(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Guo, L. et al. All-trans retinoic acid inhibits the osteogenesis of periodontal ligament stem cells by promoting IL-1β production via NF-ΚB signaling. Int. Immunopharmacol. https://doi.org/10.1016/j.intimp.2022.108757 (2022).Article
Guo,L。等人。全反式维甲酸通过NF-κB信号传导促进IL-1β的产生来抑制牙周膜干细胞的成骨。国际免疫药理学。https://doi.org/10.1016/j.intimp.2022.108757(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Karakida, T., Yui, R., Suzuki, T., Fukae, M. & Oida, S. Retinoic acid receptor γ-dependent signaling cooperates with BMP2 to induce osteoblastic differentiation of C2C12 Cells. Connect. Tissue Res. 52, 365–372 (2011).Article
Karakida,T.,Yui,R.,Suzuki,T.,Fukae,M。&Oida,S。视黄酸受体γ依赖性信号传导与BMP2协同诱导C2C12细胞的成骨细胞分化。连接。Tissue Res.52365–372(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mahro, M. et al. Characterization and crystallization of mouse aldehyde oxidase 3: From mouse liver to heterologous protein expression. Drug Metab. Dispos. 39, 1939–1945 (2011).Article
Mahro,M.等人。小鼠醛氧化酶3的表征和结晶:从小鼠肝脏到异源蛋白表达。药物代谢。。391939-1945(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhong, G. et al. Aldehyde oxidase contributes to all-retinoic acid biosynthesis in human liver. Drug Metab. Dispos. 49, 202–211 (2021).Article
Zhong,G。等人。醛氧化酶有助于人类肝脏中所有视黄酸的生物合成。药物代谢。。49202-211(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, J. M. et al. Expression of GPR43 in brown adipogenesis is enhanced by rosiglitazone and controlled by PPARγ/RXR heterodimerization. PPAR Res. https://doi.org/10.1155/2018/1051074 (2018).Article
Hu,J.M.等人。罗格列酮增强GPR43在棕色脂肪形成中的表达,并受PPARγ/RXR异二聚化控制。PPAR决议。https://doi.org/10.1155/2018/1051074(2018年)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hamza, M. S. et al. Identification of PPARγ/rxr binding sites and direct targets during adipogenesis. PLoS One https://doi.org/10.1371/journal.pone.0004907 (2009).Article
Hamza,M.S.等人。脂肪形成过程中PPARγ/rxr结合位点和直接靶标的鉴定。公共科学图书馆一号https://doi.org/10.1371/journal.pone.0004907(2009年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, S., Li, A., Monti, S. & Schlezinger, J. J. Tributyltin induces a transcriptional response without a brite adipocyte signature in adipocyte models. Arch .Toxicol. 92, 2859–2874 (2018).Article
Kim,S.,Li,A.,Monti,S。&Schlezinger,J。J。三丁基锡在脂肪细胞模型中诱导转录反应而没有英国脂肪细胞特征。拱门。毒理学。922859-2874(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Langenbach, F. & Handschel, J. Effects of dexamethasone, ascorbic acid and beta-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res. Ther. 4, 117 (2013).Article
Langenbach,F。&Handschel,J。地塞米松,抗坏血酸和β-甘油磷酸对体外干细胞成骨分化的影响。。4117(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Giles, A. J. et al. Dexamethasone-induced immunosuppression: Mechanisms and implications for immunotherapy. J. Immunother. Cancer https://doi.org/10.1186/s40425-018-0371-5 (2018).Article
Giles,A.J.等人,《地塞米松诱导的免疫抑制:免疫治疗的机制和意义》。J、 免疫疗法。癌症https://doi.org/10.1186/s40425-018-0371-5(2018年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shangguan, Y. F. et al. Low-activity programming of the PDGFRβ/FAK pathway mediates H-type vessel dysplasia and high susceptibility to osteoporosis in female offspring rats after prenatal dexamethasone exposure. Biochem. Pharmacol. https://doi.org/10.1016/j.bcp.2021.114414 (2021).Article .
Shangguan,Y.F。等人。PDGFRβ/FAK途径的低活性编程介导产前地塞米松暴露后雌性后代大鼠的H型血管发育异常和对骨质疏松症的高度易感性。生物化学。。https://doi.org/10.1016/j.bcp.2021.114414(2021年)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Gould, B. S. & Woessner, J. F. Biosynthesis of collagen. The influence of ascorbic acid on the proline, hydroxyproline, glycine, and collagen content of regenerating guinea pig skin. J. Biol. Chem. 226, 289–300 (1957).Article
Gould,B.S。&Woessner,J.F。胶原蛋白的生物合成。抗坏血酸对再生豚鼠皮肤中脯氨酸,羟脯氨酸,甘氨酸和胶原蛋白含量的影响。J、 生物。化学。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Thaler, R. et al. Vitamin C epigenetically controls osteogenesis and bone mineralization. Nat. Commun. 13, 5883 (2022).Article
Thaler,R。等人。维生素C表观遗传学控制成骨和骨矿化。国家公社。135883(2022)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402–408 (2001).Article
Livak,K.J。&Schmittgen,T.D。使用实时定量PCR和2(-delta delta C(T))方法分析相对基因表达数据。方法25402-408(2001)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis study was supported by the Japan Society for the Promotion of Science, KAKENHI (grant number 23K24531 to Takanori Iwata). We thank Dr. Kazuki Morita and Dr. Jiacheng Wang at Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University for their kind supports.Author informationAuthors and AffiliationsDepartment of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, JapanShiwei Sun & Takanori IwataAuthorsShiwei SunView author publicationsYou can also search for this author in.
下载参考文献致谢本研究得到了日本科学促进会KAKENHI的支持(岩田隆的批准号为23K24531)。我们感谢东京医科牙科大学医学与牙科科学研究生院牙周学系的Kazuki Morita博士和Jiacheng Wang博士的大力支持。作者信息作者和附属机构东京医科牙科大学医学与牙科研究生院牙周病学系,东京文kyo ku Yushima 1-5-45,113-8549,JapanShiwei Sun&Takanori IwataAuthorsShiwei Sun View作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarTakanori IwataView author publicationsYou can also search for this author in
PubMed Google ScholarTakanori IwataView作者出版物您也可以在
PubMed Google ScholarContributionsS.S. performed the experiments, analyzed the data and drafted the manuscript. T.I. designed and supervised the study. All authors reviewed and approved the final manuscript.Corresponding authorCorrespondence to
PubMed谷歌学术贡献。S、 进行了实验,分析了数据并起草了手稿。T、 。所有作者都审查并批准了最终稿件。对应作者对应
Takanori Iwata.Ethics declarations
岩田隆。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Figures.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充数字。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
。
You do not have permission under this licence to share adapted material derived from this article or parts of it..
根据本许可证,您无权共享源自本文或其部分的改编材料。。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder..
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出了许可的用途,则您需要直接获得版权所有者的许可。。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissionsAbout this articleCite this articleSun, S., Iwata, T. Role of AOX1 on RXR signaling regulates osteoblastogenesis in hPDLMSCs.
转载和许可本文引用本文Sun,S.,Iwata,T。AOX1在RXR信号传导中的作用调节hPDLMSC中的成骨细胞生成。
Sci Rep 14, 16767 (2024). https://doi.org/10.1038/s41598-024-68009-2Download citationReceived: 20 May 2024Accepted: 18 July 2024Published: 22 July 2024DOI: https://doi.org/10.1038/s41598-024-68009-2Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1416767(2024)。https://doi.org/10.1038/s41598-024-68009-2Download引文接收日期:2024年5月20日接受日期:2024年7月18日发布日期:2024年7月22日OI:https://doi.org/10.1038/s41598-024-68009-2Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
Cell biologyMolecular biologyMolecular medicine
细胞生物分子生物分子医学
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。