
商务合作

动脉网APP
可切换为仅中文
AbstractGrowing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones.
摘要对核糖体靶向大环内酯类抗生素的耐药性不断增加,限制了它们的临床应用,并敦促寻找更好的化合物。大环内酯类是具有喹诺酮侧链的合成大环内酯类衍生物,结构类似于靶向氟喹诺酮类的DNA拓扑异构酶。
While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel.
虽然macrolones显示出增强的活性,但它们的作用方式仍然未知。在这里,我们介绍了核糖体结合的大环内酯的第一个结构,表明大环内酯部分占据了核糖体出口通道中的大环内酯结合位点,而喹诺酮部分与通道建立了新的相互作用。
Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes.
Macrolones在体外有效抑制核糖体和DNA拓扑异构酶。然而,在细胞中,它们靶向核糖体或DNA旋转酶或同时靶向两者。。
Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes..
此外,由于一些大分子克隆与Erm修饰的核糖体结合,因此即使对具有组成型Erm抗性基因的菌株也能保持活性。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springer link上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Macrolones inhibit DNA gyrase and protein synthesis in vivo.Fig. 2: Macrolones inhibit protein synthesis and DNA gyrase in vitro.Fig. 3: Structures of MCX-66, MCX-91 and MCX-128 in complex with the wild-type T. thermophilus 70S ribosome.Fig. 4: Identification of cellular targets of macrolones by selecting resistant mutants.Fig.
图1:Macrolones在体内抑制DNA旋转酶和蛋白质合成。图2:Macrolones在体外抑制蛋白质合成和DNA促旋酶。图3:MCX-66,MCX-91和MCX-128与野生型嗜热链球菌70S核糖体复合的结构。图4:通过选择抗性突变体鉴定大分子克隆的细胞靶标。图。
5: Macrolones are poor inducers of the expression of inducible macrolide resistance genes.Fig. 6: Structure of macrolone MCX-128 bound to the Erm-methylated 70S ribosome..
5: 大环内酯类是诱导型大环内酯类耐药基因表达的不良诱导剂。图6:与Erm甲基化的70S核糖体结合的macrolone MCX-128的结构。。
Data availability
数据可用性
Coordinates and structure factors were deposited to the Research Collaboratory for Structural Bioinformatics (RCSB) PDB under the following accession codes: 8VTU for the wild-type T. thermophilus 70S ribosome in complex with macrolone MCX-66, mRNA, aminoacylated A-site Phe-tRNAPhe, aminoacylated P-site fMet-tRNAiMet and deacylated E-site tRNAPhe; 8VTV for the wild-type T. thermophilus 70S ribosome in complex with macrolone MCX-91, mRNA, aminoacylated A-site Phe-tRNAPhe, aminoacylated P-site fMet-tRNAiMet and deacylated E-site tRNAPhe; 8VTW for the wild-type T. thermophilus 70S ribosome in complex with macrolone MCX-128 and protein Y; 8VTX for the m26A2058 T. thermophilus 70S ribosome in complex with macrolone MCX-128, mRNA, aminoacylated A-site Phe-tRNAPhe, aminoacylated P-site fMet-tRNAiMet and deacylated E-site tRNAPhe; 8VTY for the wild-type T. thermophilus 70S ribosome in complex with CIP and protein Y.
坐标和结构因子以以下登录号保藏到结构生物信息学研究合作组织(RCSB)PDB:野生型嗜热链球菌70S核糖体的8VTU与macrolone MCX-66,mRNA,氨基酰化的A位点Phe-tRNAPhe,氨基酰化的P位点fMet-tRNAPhe和脱酰基的E位点tRNAPhe复合;8VTV用于野生型嗜热链球菌70S核糖体与macrolone MCX-91,mRNA,氨基酰化的A位点Phe-tRNAPhe,氨基酰化的P位点fMet-tRNAPhe和脱酰的E位点tRNAPhe复合;8VTW用于与macrolone MCX-128和蛋白Y复合的野生型嗜热链球菌70S核糖体;8VTX用于m26A2058嗜热链球菌70S核糖体与macrolone MCX-128,mRNA,氨基酰化的A位点Phe-tRNAPhe,氨基酰化的P位点fMet-tRNAPhe和脱酰的E位点tRNAPhe复合;8VTY用于与CIP和蛋白Y复合的野生型嗜热链球菌70S核糖体。
All previously published structures that were used in this work for structural comparisons were retrieved from the RCSB PDB under accession codes 6XHW, 6XHX and 7ZTA. No sequence data were generated in this study. Source data are provided with this paper..
本工作中用于结构比较的所有先前发布的结构均以登录号6XHW,6XHX和7ZTA从RCSB PDB中检索。本研究未产生序列数据。本文提供了源数据。。
ReferencesFernandes, P. Use of antibiotic core structures to generate new and useful macrolide antibiotics. In Antibiotics Current Innovations and Future Trends (eds Sánchez, S. & Demain, A. L.) (Caister Academic Press, 2015).Bush, N. G., Diez-Santos, I., Abbott, L. R. & Maxwell, A. Quinolones: mechanism, lethality and their contributions to antibiotic resistance.
参考文献Fernandes,P。使用抗生素核心结构产生新的有用的大环内酯类抗生素。在抗生素当前的创新和未来趋势(eds Sánchez,S.&Demain,A.L。)(Caister Academic Press,2015)。Bush,N.G.,Diez-Santos,I.,Abbott,L.R。&Maxwell,A。喹诺酮类药物:机制,致死率及其对抗生素耐药性的贡献。
Molecules 25, 5662 (2020).Article .
分子255662(2020)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Agouridas, C. et al. Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): a new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. J. Med. Chem. 41, 4080–4100 (1998).Article
Agouridas,C。等人。酮内酯类(6-O-甲基-3-氧代红霉素衍生物)的合成和抗菌活性:一类新的抗菌药物,对大环内酯类耐药和易感呼吸道病原体具有高度效力。J、 医学化学。414080-4100(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Seiple, I. B. et al. A platform for the discovery of new macrolide antibiotics. Nature 533, 338–345 (2016).Article
Seiple,I.B.等人。发现新大环内酯类抗生素的平台。自然533338-345(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pavlovic, D., Fajdetic, A. & Mutak, S. Novel hybrids of 15-membered 8a- and 9a-azahomoerythromycin A ketolides and quinolones as potent antibacterials. Bioorg. Med. Chem. 18, 8566–8582 (2010).Article
Pavlovic,D.,Fajdetic,A。&Mutak,S。15元8a和9a氮杂高红霉素A酮内酯和喹诺酮类作为有效抗菌药物的新型杂交体。生物组织医学化学。188566-8582(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fan, B. Z. et al. Design, synthesis and structure–activity relationships of novel 15-membered macrolides: quinolone/quinoline-containing sidechains tethered to the C-6 position of azithromycin acylides. Eur. J. Med. Chem. 193, 112222 (2020).Article
Fan,B.Z.等人。新型15元大环内酯类的设计,合成和构效关系:与阿奇霉素酰基内酯类的C-6位相连的含喹诺酮/喹啉的侧链。欧洲医学化学杂志。193112222(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Barry, A. L. & Jones, R. N. Comparative in vitro activity of amifloxacin and five other fluoroquinolone antimicrobial agents and preliminary criteria for the disk susceptibility test. Eur. J. Clin. Microbiol. 6, 179–182 (1987).Article
Barry,A.L.&Jones,R.N。阿米沙星和其他五种氟喹诺酮类抗菌剂的体外活性比较以及纸片敏感性试验的初步标准。欧洲临床杂志。微生物。6179-182(1987)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yourassowsky, E., Van der Linden, M. P., Crokaert, F. & Glupczynski, Y. In vitro activity of pefloxacin compared to other antibiotics. J. Antimicrob. Chemother. 17, 19–28 (1986).Article
Yourassowsky,E.,Van der Linden,M.P.,Crokaert,F。&Glupczynski,Y。培氟沙星与其他抗生素相比的体外活性。J、 抗菌剂。化学疗法。17,19-28(1986)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dinos, G. P. The macrolide antibiotic renaissance. Br. J. Pharmacol. 174, 2967–2983 (2017).Article
Dinos,G.P。大环内酯类抗生素复兴。Br.J.药理学。1742967-2983(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vazquez-Laslop, N. & Mankin, A. S. How macrolide antibiotics work. Trends Biochem. Sci. 43, 668–684 (2018).Article
Vazquez-Laslop,N.&Mankin,A.S。大环内酯类抗生素的工作原理。趋势生物化学。科学。43668-684(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, J., Zhou, D., Steitz, T. A., Polikanov, Y. S. & Gagnon, M. G. Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem. 87, 451–478 (2018).Article
Lin,J.,Zhou,D.,Steitz,T.A.,Polikanov,Y.S.&Gagnon,M.G。核糖体靶向抗生素:作用模式,耐药机制以及对药物设计的影响。年。生物化学评论。87451-478(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schlunzen, F. et al. Structural basis for the antibiotic activity of ketolides and azalides. Structure 11, 329–338 (2003).Article
Schlunzen,F.等人。酮内酯类和氮杂内酯类抗生素活性的结构基础。结构11329-338(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dunkle, J. A., Xiong, L., Mankin, A. S. & Cate, J. H. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl Acad. Sci. USA 107, 17152–17157 (2010).Article
Dunkle,J.A.,Xiong,L.,Mankin,A.S。&Cate,J.H。大肠杆菌核糖体的结构与肽基转移酶中心附近结合的抗生素解释了药物作用的光谱。。国家科学院。科学。美国10717152-17157(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bulkley, D., Innis, C. A., Blaha, G. & Steitz, T. A. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl Acad. Sci. USA 107, 17158–17163 (2010).Article
Bulkley,D.,Innis,C.A.,Blaha,G。&Steitz,T.A。重新审视与细菌核糖体结合的几种抗生素的结构。。国家科学院。科学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Svetlov, M. S. et al. Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. Nat. Chem. Biol. 17, 412–420 (2021).Article
Svetlov,M.S。等人。Erm修饰的70S核糖体的结构揭示了大环内酯类耐药的机制。自然化学。生物学17412-420(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Beckert, B. et al. Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Nat. Commun. 12, 4466 (2021).Article
Beckert,B.等人。大环内酯类和酮内酯类抗生素抑制翻译的结构和机制基础。国家公社。124466(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tu, D., Blaha, G., Moore, P. B. & Steitz, T. A. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121, 257–270 (2005).Article
Tu,D.,Blaha,G.,Moore,P.B。&Steitz,T.A。与突变的大核糖体亚基结合的MLSBK抗生素的结构为耐药性提供了结构解释。细胞121257-270(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hansen, J. L. et al. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10, 117–128 (2002).Article
Hansen,J.L.等人。与大核糖体亚基结合的四种大环内酯类抗生素的结构。摩尔细胞10117-128(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Svetlov, M. S. et al. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. RNA 25, 600–606 (2019).Article
核糖体结合氯霉素和红霉素的高分辨率晶体结构为它们的竞争提供了最终的基础。RNA 25600-606(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, C. W. et al. Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A. Nat. Commun. 14, 4196 (2023).Article
Chen,C.W.等人。大环内酯类药物与潮霉素-A.Nat.Commun共同作用克服Erm介导的耐药性机制的结构见解。144196(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jenni, S. & Ban, N. The chemistry of protein synthesis and voyage through the ribosomal tunnel. Curr. Opin. Struct. Biol. 13, 212–219 (2003).Article
Jenni,S。&Ban,N。蛋白质合成的化学和通过核糖体隧道的航行。货币。奥平。结构。生物学13212-219(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kannan, K., Vázquez-Laslop, N. & Mankin, A. S. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151, 508–520 (2012).Article
Kannan,K.,Vázquez-Laslop,N。&Mankin,A.S。通过具有药物阻塞的出口通道的核糖体选择性蛋白质合成。细胞151508-520(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Davis, A. R., Gohara, D. W. & Yap, M. N. Sequence selectivity of macrolide-induced translational attenuation. Proc. Natl Acad. Sci. USA 111, 15379–15384 (2014).Article
Davis,A.R.,Gohara,D.W。&Yap,M.N。大环内酯诱导的翻译衰减的序列选择性。。国家科学院。科学。美国11115379–15384(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kannan, K. et al. The general mode of translation inhibition by macrolide antibiotics. Proc. Natl Acad. Sci. USA 111, 15958–15963 (2014).Article
。。国家科学院。科学。美国11115958–15963(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sothiselvam, S. et al. Binding of macrolide antibiotics leads to ribosomal selection against specific substrates based on their charge and size. Cell Rep. 16, 1789–1799 (2016).Article
Sothiselvam,S。等人。大环内酯类抗生素的结合导致核糖体根据其电荷和大小针对特定底物进行选择。Cell Rep.161789–1799(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Almutairi, M. M. et al. Co-produced natural ketolides methymycin and pikromycin inhibit bacterial growth by preventing synthesis of a limited number of proteins. Nucleic Acids Res. 45, 9573–9582 (2017).Article
Almutairi,M.M.等人共同生产的天然酮内酯类甲氧霉素和匹克罗霉素通过阻止有限数量蛋白质的合成来抑制细菌生长。核酸研究459573-9582(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Franceschi, F., Kanyo, Z., Sherer, E. C. & Sutcliffe, J. Macrolide resistance from the ribosome perspective. Curr. Drug Targets Infect. Disord. 4, 177–191 (2004).Article
Franceschi,F.,Kanyo,Z.,Sherer,E.C。&Sutcliffe,J。从核糖体的角度来看,大环内酯类药物的耐药性。货币。药物靶标感染。混乱。4177-191(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Versalovic, J. et al. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 40, 477–480 (1996).Article
Versalovic,J。等人。23S rRNA突变与幽门螺杆菌的克拉霉素耐药性有关。抗微生物。化学试剂。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wand, G. & Taylor, D. E. Site-specific mutations in the 23S rRNA gene of Helicobacter pylori confer two types of resistance to macrolide-lincosamide-streptogramin B antibiotics. Antimicrob. Agents Chemother. 42, 1952–1958 (1998).Article
Wand,G。&Taylor,D。E。幽门螺杆菌23S rRNA基因的位点特异性突变赋予对大环内酯类林可酰胺-链霉素B抗生素的两种类型的抗性。抗菌剂。化学试剂。421952-1958(1998)。文章
Google Scholar
谷歌学者
Shallom, S. J. & Zelazny, A. M. Detection of mixed populations of clarithromycin-susceptible and -resistant Mycobacterium abscessus strains. J. Clin. Microbiol. 60, e0169421 (2022).Article
Shallom,S.J.&Zelazny,A.M.检测克拉霉素敏感和耐药脓肿分枝杆菌菌株的混合种群。J、 临床。微生物。60,e0169421(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
McGuire, J. M. et al. Ilotycin, a new antibiotic. Antibiot. Chemother. (Northfield) 2, 281–283 (1952).CAS
McGuire,J.M。等人。伊洛霉素,一种新的抗生素。抗生素。化学疗法。(Northfield)2281-283(1952)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kirst, H. A. Introduction to the macrolide antibiotics. In Macrolide Antibiotics (eds Schönfeld, W. & Kirst, H. A.) (Birkhäuser Verlag, 2002).Iacoviello, V. R. & Zinner, S. H. Macrolides: a clinical overview. In Macrolide Antibiotics (eds Parnham, M. J. & Bruinvels, J.) (Birkhäuser Verlag, 2002).Tanikawa, T.
Kirst,H.A。大环内酯类抗生素简介。大环内酯类抗生素(eds Schönfeld,W.&Kirst,H.A。)(Birkhäuser-Verlag,2002)。Iacoviello,V.R。&Ziner,S.H。大环内酯类:临床概述。大环内酯类抗生素(eds Parnham,M.J。&Bruinvels,J。)(Birkhäuser Verlag,2002)。田川,T。
et al. Synthesis and antibacterial activity of acylides (3-O-acyl-erythromycin derivatives): a novel class of macrolide antibiotics. J. Med. Chem. 44, 4027–4030 (2001).Article .
酰基内酯(3-O-酰基-红霉素衍生物)的合成和抗菌活性:一类新型大环内酯类抗生素。J、 医学化学。444027-4030(2001)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liang, J. H. et al. Structure–activity relationships of novel alkylides: 3-O-arylalkyl clarithromycin derivatives with improved antibacterial activities. Eur. J. Med. Chem. 49, 289–303 (2012).Article
Liang,J.H.等人。新型烷基化物的结构-活性关系:具有改进的抗菌活性的3-O-芳烷基克拉霉素衍生物。欧洲医学化学杂志。49289-303(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Magee, T. V. et al. Novel 3-O-carbamoyl erythromycin A derivatives (carbamolides) with activity against resistant staphylococcal and streptococcal isolates. Bioorg. Med. Chem. Lett. 23, 1727–1731 (2013).Article
Magee,T.V.等人。具有抗耐药葡萄球菌和链球菌分离株活性的新型3-O-氨基甲酰基红霉素A衍生物(卡巴酰胺)。生物组织医学化学。利特。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tang, D. et al. Design, synthesis, and antibacterial activities of novel 3,6-bicyclolide oximes: length optimization and zero carbon linker oximes. Bioorg. Med. Chem. Lett. 18, 5078–5082 (2008).Article
Tang,D.等人。新型3,6-双环内酯肟的设计,合成和抗菌活性:长度优化和零碳接头肟。生物组织医学化学。利特。185078-5082(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bryskier, A. & Denis, A. Ketolides: novel antibacterial agents designed to overcome resistance to erythromycin A within Gram-positive cocci. In Macrolide Antibiotics (eds Schönfeld, W. & Kirst, H. A.) (Birkhäuser Verlag, 2002).Fernandes, P., Martens, E., Bertrand, D. & Pereira, D. The solithromycin journey—it is all in the chemistry.
Bryskier,A。&Denis,A。Ketolides:旨在克服革兰氏阳性球菌对红霉素A的耐药性的新型抗菌剂。大环内酯类抗生素(eds Schönfeld,W.&Kirst,H.A。)(Birkhäuser-Verlag,2002)。Fernandes,P.,Martens,E.,Bertrand,D。&Pereira,D。solithromycin之旅它都在化学中。
Bioorg. Med. Chem. 24, 6420–6428 (2016).Article .
生物组织医学化学。24, 6420–6428 (2016).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Capobianco, J. O. et al. Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44, 1562–1567 (2000).Article
Capobianco,J.O.等人。新型酮内酯ABT-773的研究:转运,与核糖体的结合以及抑制肺炎链球菌中的蛋白质合成。抗菌剂。化学试剂。441562-1567(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Llano-Sotelo, B. et al. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob. Agents Chemother. 54, 4961–4970 (2010).Article
Llano Sotelo,B。等人。抑制蛋白质合成的新型氟酮内酯类抗生素CEM-101的结合和作用。抗菌剂。化学试剂。544961-4970(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Douthwaite, S. Structure–activity relationships of ketolides vs. macrolides. Clin. Microbiol. Infect. 7, 11–17 (2001).Article
Douthwaite,S。酮内酯类与大环内酯类的结构-活性关系。临床。微生物。感染。7,11-17(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Svetlov, M. S., Cohen, S., Alsuhebany, N., Vazquez-Laslop, N. & Mankin, A. S. A long-distance rRNA base pair impacts the ability of macrolide antibiotics to kill bacteria. Proc. Natl Acad. Sci. USA 117, 1971–1975 (2020).Article
Svetlov,M.S.,Cohen,S.,Alsuhebany,N.,Vazquez-Laslop,N。&Mankin,A.S。长距离rRNA碱基对影响大环内酯类抗生素杀死细菌的能力。国家科学院。科学。美国1171971-1975(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, C. X. et al. Design, synthesis and structure–activity relationships of novel macrolones: hybrids of 2-fluoro 9-oxime ketolides and carbamoyl quinolones with highly improved activity against resistant pathogens. Eur. J. Med. Chem. 169, 1–20 (2019).Article
Ma,C.X.等人。新型大环内酯类药物的设计、合成和构效关系:2-氟-9-肟酮内酯类和氨基甲酰基喹诺酮类药物的混合物,对耐药病原体的活性大大提高。欧洲医学化学杂志。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, X. P. et al. Design and synthesis of novel macrolones bridged with linkers from 11,12-positions of macrolides. Bioorg. Med. Chem. Lett. 68, 128761 (2022).Article
Liu,X.P.等人。设计和合成与来自大环内酯类11,12-位的接头桥接的新型大环内酯。生物组织医学化学。利特。68128761(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hutinec, A. et al. Novel 8a-aza-8a-homoerythromycin–4′-(3-substituted-amino)propionates with broad spectrum antibacterial activity. Bioorg. Med. Chem. Lett. 20, 3244–3249 (2010).Article
Hutinec,A。等人。具有广谱抗菌活性的新型8a-氮杂-8a-高红霉素-4'-(3-取代氨基)丙酸酯。生物组织医学化学。利特。203244-3249(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Drlica, K., Malik, M., Kerns, R. J. & Zhao, X. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. 52, 385–392 (2008).Article
Drlica,K.,Malik,M.,Kerns,R.J。&Zhao,X。喹诺酮介导的细菌死亡。抗菌剂。化学试剂。52385-392(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aldred, K. J., Kerns, R. J. & Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 53, 1565–1574 (2014).Article
Aldred,K.J.,Kerns,R.J。和Osheroff,N。喹诺酮作用和耐药性的机制。生物化学531565-1574(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Miotto, P., Cirillo, D. M. & Migliori, G. B. Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest 147, 1135–1143 (2015).Article
Miotto,P.,Cirillo,D.M。&Migliori,G.B。结核分枝杆菌的耐药性:挑战氟喹诺酮类药物和吡嗪酰胺有效性的分子机制。胸部1471135-1143(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Machalek, D. A. et al. Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in Mycoplasma genitalium: a systematic review and meta-analysis. Lancet Infect. Dis. 20, 1302–1314 (2020).Article
Machalek,D.A.等人。生殖支原体中与大环内酯类和氟喹诺酮类耐药相关突变的发生率:系统评价和荟萃分析。柳叶刀感染。Dis。201302-1314(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lungu, I. A., Moldovan, O. L., Biris, V. & Rusu, A. Fluoroquinolones hybrid molecules as promising antibacterial agents in the fight against antibacterial resistance. Pharmaceutics 14, 1749 (2022).Article
Lungu,I.A.,Moldovan,O.L.,Biris,V。和Rusu,A。氟喹诺酮类杂化分子作为对抗抗菌耐药性的有前途的抗菌剂。药剂学141749(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pavlovic, D. & Mutak, S. Discovery of 4′-ether linked azithromycin–quinolone hybrid series: influence of the central linker on the antibacterial activity. ACS Med. Chem. Lett. 2, 331–336 (2011).Article
Pavlovic,D。&Mutak,S。发现4'-醚连接的阿奇霉素-喹诺酮杂化系列:中央接头对抗菌活性的影响。ACS医学化学。利特。2331-336(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cipcic Paljetak, H. et al. Macrolones are a novel class of macrolide antibiotics active against key resistant respiratory pathogens in vitro and in vivo. Antimicrob. Agents Chemother. 60, 5337–5348 (2016).Article
Cipcic Paljetak,H。等人。大环内酯类是一类新型的大环内酯类抗生素,在体外和体内对关键的耐药呼吸道病原体具有活性。抗菌剂。化学试剂。605337-5348(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Weisblum, B. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob. Agents Chemother. 39, 797–805 (1995).Article
Weisblum,B。从红霉素作为抗性诱导剂的活性研究中了解红霉素的作用。抗菌剂。化学试剂。39797-805(1995)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramu, H., Mankin, A. & Vazquez-Laslop, N. Programmed drug-dependent ribosome stalling. Mol. Microbiol. 71, 811–824 (2009).Article
Ramu,H.,Mankin,A。&Vazquez-Laslop,N。程序性药物依赖性核糖体停滞。分子微生物。71811-824(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Subramanian, S. L., Ramu, H. & Mankin, A. S. Inducible resistance to macrolide antibiotics. In Antibiotic Drug Discovery and Development (eds Dougherty, T. J. & Pucci, M. J.) (Springer Publishing Company, 2011).Vazquez-Laslop, N. et al. Role of antibiotic ligand in nascent peptide-dependent ribosome stalling.
Subramanian,S.L.,Ramu,H。&Mankin,A.S。诱导对大环内酯类抗生素的耐药性。抗生素药物发现和开发(编辑Dougherty,T.J。&Pucci,M.J。)(Springer Publishing Company,2011)。Vazquez-Laslop,N。等人。抗生素配体在新生肽依赖性核糖体停滞中的作用。
Proc. Natl Acad. Sci. USA 108, 10496–10501 (2011).Article .
Proc. Natl Acad. Sci. USA 108, 10496–10501 (2011).Article .
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liang, J. H. et al. Synthesis and antibacterial activities of 6-O-methylerythromycin A 9-O-(3-aryl-2-propenyl) oxime ketolide, 2,3-enol ether, and alkylide analogues. Eur. J. Med. Chem. 45, 3627–3635 (2010).Article
Liang,J.H.等人。6-O-甲基红霉素A 9-O-(3-芳基-2-丙烯基)肟酮内酯,2,3-烯醇醚和烷基化物类似物的合成和抗菌活性。欧洲医学化学杂志。453627-3635(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Osterman, I. A. et al. Sorting out antibiotics’ mechanisms of action: a double fluorescent protein reporter for high-throughput screening of ribosome and DNA biosynthesis inhibitors. Antimicrob. Agents Chemother. 60, 7481–7489 (2016).Article
Osterman,I.A.等人,《整理抗生素的作用机制:用于高通量筛选核糖体和DNA生物合成抑制剂的双荧光蛋白报告基因》。抗菌剂。化学试剂。607481-7489(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Orelle, C. et al. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob. Agents Chemother. 57, 5994–6004 (2013).Article
Orelle,C.等人。表征细菌蛋白质合成抑制剂的工具。抗菌剂。化学试剂。575994-6004(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Morgan-Linnell, S. K., Becnel Boyd, L., Steffen, D. & Zechiedrich, L. Mechanisms accounting for fluoroquinolone resistance in Escherichia coli clinical isolates. Antimicrob. Agents Chemother. 53, 235–241 (2009).Article
Morgan Linnell,S.K.,Becnel Boyd,L.,Steffen,D。&Zechiedrich,L。解释大肠杆菌临床分离株中氟喹诺酮耐药性的机制。抗菌剂。化学试剂。53235-241(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hooper, D. C. & Jacoby, G. A. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 6, a025320 (2016).Article
Hooper,D.C。&Jacoby,G.A。拓扑异构酶抑制剂:氟喹诺酮类作用和耐药机制。冷泉兔。透视图。医学杂志6,a025320(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gellert, M., Mizuuchi, K., O’Dea, M. H. & Nash, H. A. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl Acad. Sci. USA 73, 3872–3876 (1976).Article
Gellert,M.,Mizuuchi,K.,O'Dea,M.H。和Nash,H.A。DNA旋转酶:一种将超螺旋体转化为DNA的酶。。国家科学院。科学。美国733872-3876(1976)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Paton, J. H. & Reeves, D. S. Fluoroquinolone antibiotics. Microbiology, pharmacokinetics and clinical use. Drugs 36, 193–228 (1988).Article
Paton,J.H。&Reeves,D.S。氟喹诺酮类抗生素。微生物学,药代动力学和临床应用。药物36193-228(1988)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Quan, S., Skovgaard, O., McLaughlin, R. E., Buurman, E. T. & Squires, C. L. Markerless Escherichia coli rrn deletion strains for genetic determination of ribosomal binding sites. G3 (Bethesda) 5, 2555–2557 (2015).Article
Quan,S.,Skovgaard,O.,McLaughlin,R.E.,Buurman,E.T。&Squires,C.L。无标记大肠杆菌rrn缺失菌株,用于核糖体结合位点的遗传测定。G3(贝塞斯达)52555-2557(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Triman, K. L., Peister, A. & Goel, R. A. Expanded versions of the 16S and 23S ribosomal RNA mutation databases (16SMDBexp and 23SMDBexp). Nucleic Acids Res. 26, 280–284 (1998).Article
Triman,K.L.,Peister,A。&Goel,R.A。扩展版本的16S和23S核糖体RNA突变数据库(16SMDBexp和23SMDBexp)。核酸研究26280-284(1998)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Malik, M. et al. Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones. Nucleic Acids Res. 44, 3304–3316 (2016).Article
Malik,M.等人。C7芳基氟喹诺酮类药物抑制促旋酶介导的耐药性。核酸研究443304-3316(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gupta, P., Sothiselvam, S., Vazquez-Laslop, N. & Mankin, A. S. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nat. Commun. 4, 1984 (2013).Article
Gupta,P.,Sothiselvam,S.,Vazquez-Laslop,N。&Mankin,A.S。由于rRNA的转录后修饰导致的翻译失调解释了为什么erm基因是可诱导的。国家公社。1984年4月(2013年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Vazquez-Laslop, N. & Mankin, A. S. Context-specific action of ribosomal antibiotics. Annu. Rev. Microbiol. 72, 185–207 (2018).Article
Vazquez-Laslop,N。&Mankin,A.S。核糖体抗生素的背景特异性作用。年。微生物修订版。72185-207(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Horinouchi, S. & Weisblum, B. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc. Natl Acad. Sci. USA 77, 7079–7083 (1980).Article
Horinouchi,S。&Weisblum,B。mRNA构象的转录后修饰:调节红霉素诱导的抗性的机制。。国家科学院。科学。美国777079-7083(1980)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gryczan, T. J., Grandi, G., Hahn, J., Grandi, R. & Dubnau, D. Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance. Nucleic Acids Res. 8, 6081–6097 (1980).Article
Gryczan,T.J.,Grandi,G.,Hahn,J.,Grandi,R。&Dubnau,D。mRNA结构的构象改变和红霉素诱导的耐药性的转录后调控。核酸Res.86081–6097(1980)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sutcliffe, J. & Leclercq, R. Mechanisms of resistance to macrolides, lincosamides, and ketolides. In Macrolide Antibiotics (eds Schönfeld, W. & Kirst, H. A.) (Birkhäuser Verlag, 2002).Mitcheltree, M. J. et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 599, 507–512 (2021).Article .
Sutcliffe,J。&Leclercq,R。对大环内酯类,林可酰胺类和酮内酯类的耐药机制。大环内酯类抗生素(eds Schönfeld,W.&Kirst,H.A。)(Birkhäuser-Verlag,2002)。Mitchelletree,M.J.等人。一种克服细菌多药耐药性的合成抗生素类。自然599507-512(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Osterman, I. A. et al. Tetracenomycin X inhibits translation by binding within the ribosomal exit tunnel. Nat. Chem. Biol. 16, 1071–1077 (2020).Article
Osterman,I.A。等人,四环素X通过在核糖体出口通道内结合来抑制翻译。自然化学。生物学161071-1077(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Leroy, E. C., Perry, T. N., Renault, T. T. & Innis, C. A. Tetracenomycin X sequesters peptidyl-tRNA during translation of QK motifs. Nat. Chem. Biol. 19, 1091–1096 (2023).Article
Leroy,E.C.,Perry,T.N.,Renault,T.T。&Innis,C.A。四环素X在QK基序的翻译过程中隔离肽基-tRNA。自然化学。生物学191091-1096(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).Article
Baba,T.等人。大肠杆菌K-12框内单基因敲除突变体的构建:庆应义塾收集。分子系统。生物学22006.0008(2006)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).Article
Datsenko,K.A。&Wanner,B.L。使用PCR产物一步灭活大肠杆菌K-12中的染色体基因。。国家科学院。科学。美国976640–6645(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bundy, B. C. & Swartz, J. R. Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein–protein click conjugation. Bioconjug. Chem. 21, 255–263 (2010).Article
。生物共轭。化学。21255-263(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Svetlov, M. S., Vazquez-Laslop, N. & Mankin, A. S. Kinetics of drug–ribosome interactions defines the cidality of macrolide antibiotics. Proc. Natl Acad. Sci. USA 114, 13673–13678 (2017).Article
Svetlov,M.S.,Vazquez-Laslop,N。和Mankin,A.S。药物-核糖体相互作用的动力学定义了大环内酯类抗生素的杀灭性。。国家科学院。科学。美国11413673–13678(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).Article
Cheng,Y.&Prusoff,W.H。抑制常数(KI)与抑制剂浓度之间的关系,抑制剂浓度对酶促反应产生50%的抑制(I50)。生物化学。。223099-3108(1973)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Orelle, C. et al. Identifying the targets of aminoacyl-tRNA synthetase inhibitors by primer extension inhibition. Nucleic Acids Res. 41, e144 (2013).Article
Orelle,C。等人。通过引物延伸抑制鉴定氨酰基-tRNA合成酶抑制剂的靶标。核酸研究41,e144(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bailey, M., Chettiath, T. & Mankin, A. S. Induction of ermC expression by ‘non-inducing’ antibiotics. Antimicrob. Agents Chemother. 52, 866–874 (2008).Article
Bailey,M.,Chettiath,T。&Mankin,A.S。通过“非诱导性”抗生素诱导ermC表达。抗菌剂。化学试剂。52866-874(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).Article
吉布森(Gibson,D.G.)等人。酶促组装高达数百千碱基的DNA分子。《自然方法》6343-345(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).Article
Selmer,M.等人,《70S核糖体与mRNA和tRNA复合的结构》,《科学》3131935-1942(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Polikanov, Y. S., Blaha, G. M. & Steitz, T. A. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336, 915–918 (2012).Article
Polikanov,Y.S.,Blaha,G.M。和Steitz,T.A。冬眠因子RMF,HPF和YfiA如何关闭蛋白质合成。科学336915-918(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Polikanov, Y. S., Steitz, T. A. & Innis, C. A. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21, 787–793 (2014).Article
Polikanov,Y.S.,Steitz,T.A。和Innis,C.A。一种质子线,用于偶联核糖体上的氨酰基-tRNA调节和肽键形成。自然结构。分子生物学。21787-793(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Polikanov, Y. S., Melnikov, S. V., Soll, D. & Steitz, T. A. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat. Struct. Mol. Biol. 22, 342–344 (2015).Article
Polikanov,Y.S.,Melnikov,S.V.,Soll,D。&Steitz,T.A。对rRNA修饰在蛋白质合成和核糖体组装中的作用的结构见解。自然结构。分子生物学。22342-344(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Syroegin, E. A., Aleksandrova, E. V. & Polikanov, Y. S. Insights into the ribosome function from the structures of non-arrested ribosome-nascent chain complexes. Nat. Chem. 15, 143–153 (2023).Article
Syroegin,E.A.,Aleksandrova,E.V。&Polikanov,Y.S。从未停滞的核糖体新生链复合物的结构洞察核糖体功能。自然化学。15143-153(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aleksandrova, E. V. et al. Structural basis of Cfr-mediated antimicrobial resistance and mechanisms to evade it. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01525-w (2024).Article
Aleksandrova,E.V.等人。Cfr介导的抗微生物耐药性的结构基础和逃避机制。自然化学。生物。https://doi.org/10.1038/s41589-023-01525-w(2024年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).Article
卡布希,W.XDS。晶体学报。D生物晶体学。66125-132(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).Article
McCoy,A.J.等人,Phaser晶体学软件。J、 应用。晶体学。40658-674(2007)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).Article
Adams,P.D.等人。PHENIX:一个基于Python的大分子结构解决方案综合系统。晶体学报。D生物晶体学。66213-221(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).Article
Emsley,P。&Cowtan,K。Coot:分子图形的模型构建工具。晶体学报。D生物晶体学。602126-2132(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schuttelkopf, A. W. & van Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).Article
Schuttelkopf,A。W。和van Aalten,D。M。PRODRG:蛋白质-配体复合物高通量晶体学的工具。晶体学报。D生物晶体学。601355-1363(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank M. Svetlov for valuable discussions and assistance with the data processing. We thank the Analysis and Testing Center at the Beijing Institute of Technology for collecting and analyzing the spectral data. We thank the staff at Northeastern Collaborative Access Team (NE-CAT) beamlines 24ID-C and 24ID-E for help with X-ray diffraction data collection, especially M.
下载参考文献致谢我们感谢M.Svetlov在数据处理方面的宝贵讨论和帮助。我们感谢北京理工大学分析测试中心收集和分析光谱数据。我们感谢东北合作访问团队(NE-CAT)光束线24ID-C和24ID-E的工作人员在X射线衍射数据收集方面的帮助,尤其是M。
Capel, F. Murphy, S. Banerjee, I. Kourinov, D. Neau, J. Schuermann, N. Sukumar, A. Lynch, J. Withrow, K. Perry, A. Kaya and C. Salbego. This work is based upon research conducted at the NE-CAT beamlines, which are funded by the National Institute of General Medical Sciences from the National Institutes of Health (NIH; grant P30-GM124165 to NE-CAT).
卡佩尔(Capel)、F.墨菲(F.Murphy)、S.班纳吉(S.Banerjee)、I.库里诺夫(I.Kourinov)、D.尼奥(D.Neau)、J.舒尔曼(J.Schuermann)、N.苏库马尔(N.Sukumar)、A.林奇(A.Lynch)、J.维思罗(J.Withrow)、K.佩里(K.Perry。这项工作是基于在NE-CAT光束线上进行的研究,该光束线由美国国立卫生研究院(NIH;授予NE-CAT P30-GM124165)的国家普通医学科学研究所资助。
The Eiger 16M detector on the 24ID-E beamline is funded by an NIH-ORIP HEI grant (S10-OD021527 to NE-CAT). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no.
24ID-E光束线上的Eiger 16M探测器由NIH-ORIP HEI资助(NE-CAT的S10-OD021527)。这项研究使用了先进光子源的资源,这是美国能源部(DOE)科学办公室用户设施,由阿贡国家实验室根据合同号为DOE科学办公室运营。
DE-AC02-06CH11357. This work was supported by the National Institute of General Medical Sciences of the NIH (grant R35-GM127134 to A.S.M.), the National Institute of Allergy and Infectious Diseases of the NIH (grant R21-AI137584 to A.S.M. and Y.S.P.), the Illinois State startup funds (to Y.S.P.), the National Key Research and Development Program of China (grant 2018YFA0901800 to J.-H.L.) and the National Natural Science Foundation of China (grant 81673335 to J.-H.L.).
DE-AC02-06CH11357。这项工作得到了美国国立卫生研究院国家普通医学科学研究所的支持,美国国立卫生研究院国家过敏与传染病研究所的支持,美国国立卫生研究院和美国国立卫生研究院的支持,伊利诺伊州启动资金,中国国家重点研究与发展计划,中国国家自然科学委员会的支持,美国国立卫生研究院和美国国立卫生研究院的支持,美国伊利诺伊州国家重点研究与发展计划,中国国家自然科学基金,美国国立卫生研究院的支持,美国国立卫生研究院的支持,美国国立卫生研究院的支持,美国国立卫生研究院的支持,美国国立卫生研究院的支持,美国伊利诺伊州国家重点研究与发展计划的支持,美国国立卫生研究院的支持2018YFA0901800,美国国立卫生研究院。
The funders had no role in study design, data collection and analysis, decision to publish or manuscript preparation.Author informationAuthor notesThese authors contributed equally: Elena V. Aleksandrova, Cong-Xuan Ma, Dorota Klep.
资助者在研究设计,数据收集和分析,决定出版或稿件准备方面没有任何作用。作者信息作者注意到这些作者做出了同样的贡献:Elena V.Aleksandrova,Cong Xuan Ma,Dorota Klep。
PubMed Google ScholarCong-Xuan MaView author publicationsYou can also search for this author in
PubMed Google ScholarCong Xuan MaView作者出版物您也可以在
PubMed Google ScholarDorota KlepackiView author publicationsYou can also search for this author in
PubMed Google ScholarDorota KlepackiView作者出版物您也可以在
PubMed Google ScholarFaezeh AlizadehView author publicationsYou can also search for this author in
PubMed Google ScholarFaezeh AlizadehView作者出版物您也可以在
PubMed Google ScholarNora Vázquez-LaslopView author publicationsYou can also search for this author in
PubMed Google ScholarNora Vázquez Lasloview作者出版物您也可以在
PubMed Google ScholarJian-Hua LiangView author publicationsYou can also search for this author in
PubMed Google ScholarYury S. PolikanovView author publicationsYou can also search for this author in
PubMed Google ScholarYury S.PolikanovView作者出版物您也可以在
PubMed Google ScholarAlexander S. MankinView author publicationsYou can also search for this author in
PubMed Google ScholarAlexander S.MankinView作者出版物您也可以在
PubMed Google ScholarContributionsC.-X.M. performed the chemical synthesis, purification and microbiological characterization of MCX compounds. D.K. and F.A. performed the in vivo dual-reporter assay, mutant selection and microbiological characterization of the selected MCX-resistant mutant strains.
-十、 M.进行了MCX化合物的化学合成,纯化和微生物表征。D、 K.和F.A.对所选MCX抗性突变株进行了体内双报告基因测定,突变体选择和微生物学表征。
D.K. also performed the in vitro translation inhibition, gyrase inhibition and toeprinting assays. E.V.A. and Y.S.P. designed and performed X-ray crystallography experiments. A.S.M., N.V.-L., Y.S.P. and J.-H.L. designed and supervised the experiments. All authors interpreted the results. A.S.M., N.V.-L., Y.S.P.
D、 K.还进行了体外翻译抑制,促旋酶抑制和脚趾印试验。E、 V.A.和Y.S.P.设计并进行了X射线晶体学实验。A、 S.M.,N.V.L.,Y.S.P.和J.H.L.设计并监督了实验。所有作者都解释了结果。A、 S.M.,N.V.-L.,Y.S.P。
and J.-H.L. wrote the manuscript.Corresponding authorsCorrespondence to.
J.-H.L.写了手稿。通讯作者通讯。
Jian-Hua Liang, Yury S. Polikanov or Alexander S. Mankin.Ethics declarations
梁建华、尤里·S·波利卡诺夫或亚历山大·S·曼金。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Chemical Biology thanks Graeme Conn, Suparna Sanyal and the other, anonymous reviewer(s) for their contribution to the peer review of this work.
自然化学生物学感谢Graeme Conn,Suparna Sanyal和其他匿名审稿人对这项工作的同行评议做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Inhibition of translation and ribosome binding of macrolones.(a) Inhibition of production of the green flourescent protein (GFP) in cell-free translation system by varying concentrations of macrolones relative to uninhibited reaction.
。扩展数据扩展数据图1抑制大分子克隆的翻译和核糖体结合。(a) 相对于不受抑制的反应,通过改变大分子克隆的浓度来抑制无细胞翻译系统中绿色荧光蛋白(GFP)的产生。
Shown are the results of two independent experiments. (b) Competitive binding of [14C]-ERY and macrolones to the E. coli ribosome. Unlabeled ERY was used as a control (black circles). Experimental details are presented in the Online Methods section. Shown are the results of two independent experiments.Extended Data Fig.
显示了两个独立实验的结果。(b) [14C]-ERY和大分子克隆与大肠杆菌核糖体的竞争性结合。未标记的ERY用作对照(黑色圆圈)。在线方法部分介绍了实验细节。显示了两个独立实验的结果。扩展数据图。
2 Effects of macrolones on in vitro translation.Mapping the sites of macrolone-mediated ribosome arrests (blue arrows) at the early codons of the model ORF derived from the E. coli yrbA gene. The classic macrolide ERY is included for comparison. Due to the presence of the Thr-RS inhibitor borrelidin, the ribosomes that did not stall at the early codons are eventually trapped at the Gln12 codon when Thr13 needs to be incorporated into the growing protein (grey arrow).
2 macrolones对体外翻译的影响。在源自大肠杆菌yrbA基因的模型ORF的早期密码子处绘制大分子介导的核糖体停滞(蓝色箭头)的位点。包括经典的大环内酯类ERY用于比较。由于存在Thr-RS抑制剂borrelidin,当Thr13需要掺入生长中的蛋白质中时,在早期密码子处不停滞的核糖体最终被捕获在Gln12密码子处(灰色箭头)。
The AUG start codon is marked with a black arrow. The sample labeled as ‘NONE’ contained only borrelidin but no ERY or macrolones. Amino acid and nucleotide sequences of yrbA gene are shown on the left. Sequencing lanes are marked as C, U, A, G. This experiment was repeated independently twice and produced similar results.Extended Data Fig.
AUG起始密码子用黑色箭头标记。标记为“无”的样品仅含有borrelidin,但不含ERY或macrolones。yrbA基因的氨基酸和核苷酸序列显示在左侧。测序泳道标记为C,U,A,G。该实验独立重复两次并产生相似的结果。扩展数据图。
3 Electron density maps of ribosome-bound MCX-66, MCX-91, and MCX-128.(a-c) 2Fo-Fc Fourier electron density maps of MCX-66 (a, magenta), MCX-91 (b, green), and MCX-128 (c, yellow) in complex with the T. thermophilus 70S ribosome (blue me.
3核糖体结合的MCX-66,MCX-91和MCX-128的电子密度图。(a-c)MCX-66(a,品红色),MCX-91(b,绿色)和MCX-128(c,黄色)与嗜热链球菌70S核糖体(蓝色me)复合。
Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01685-3Download citationReceived: 27 February 2024Accepted: 19 June 2024Published: 22 July 2024DOI: https://doi.org/10.1038/s41589-024-01685-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Chem Biol(2024)。https://doi.org/10.1038/s41589-024-01685-3Download引文收到日期:2024年2月27日接受日期:2024年6月19日发布日期:2024年7月22日OI:https://doi.org/10.1038/s41589-024-01685-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供