登录

MouseGoggles:一款用于小鼠神经科学和行为的沉浸式虚拟现实耳机

MouseGoggles: an immersive virtual reality headset for mouse neuroscience and behavior

Nature 等信源发布 2024-12-12 23:28

可切换为仅中文


AbstractSmall-animal virtual reality (VR) systems have become invaluable tools in neuroscience for studying complex behavior during head-fixed neural recording, but they lag behind commercial human VR systems in terms of miniaturization, immersivity and advanced features such as eye tracking. Here we present MouseGoggles, a miniature VR headset for head-fixed mice that delivers independent, binocular visual stimulation over a wide field of view while enabling eye tracking and pupillometry in VR.

摘要小动物虚拟现实(VR)系统已成为神经科学中研究头部固定神经记录过程中复杂行为的宝贵工具,但在小型化,沉浸感和眼球追踪等高级功能方面,它们落后于商业人类VR系统。在这里,我们介绍MouseGoggles,一种用于头部固定小鼠的微型VR耳机,可在广阔的视野内提供独立的双目视觉刺激,同时在VR中实现眼球跟踪和瞳孔测量。

Neural recordings in the visual cortex validate the quality of image presentation, while hippocampal recordings, associative reward learning and innate fear responses to virtual looming stimuli demonstrate an immersive VR experience. Our open-source system’s simplicity and compact size will enable the broader adoption of VR methods in neuroscience..

视觉皮层中的神经记录验证了图像呈现的质量,而海马记录,联想奖励学习和对虚拟隐现刺激的先天恐惧反应表现出沉浸式VR体验。我们的开源系统的简单性和紧凑性将使VR方法在神经科学中得到更广泛的采用。。

MainVirtual reality (VR) systems for laboratory animals have enabled fundamental neuroscience research, supporting the study of neural processes underlying complex cognitive tasks using neural recording strategies that require head fixation1,2,3,4. VR gives the experimenter full control over the subject’s visual experience and allows experimental manipulations infeasible with real-world experiments, including teleportation and visuomotor mismatch paradigms4.

用于实验动物的主要虚拟现实(VR)系统已经实现了基础神经科学研究,支持使用需要头部固定的神经记录策略研究复杂认知任务的神经过程1,2,3,4。VR使实验者能够完全控制受试者的视觉体验,并允许在现实世界的实验中不可行的实验操作,包括隐形传态和视觉运动不匹配范式4。

VR with head-fixed mice has traditionally relied on panoramic displays composed of projector screens1,3 or arrays of light-emitting diode (LED) displays2,4 positioned 10–30 cm away from the eyes to remain within the mouse’s depth of field. This necessitates displays that are orders of magnitude larger than the mouse, resulting in complex, costly and light-polluting systems that can be challenging to integrate into many neural recording setups.

具有头部固定鼠标的VR传统上依赖于由投影仪屏幕1,3或发光二极管(LED)显示器阵列2,4组成的全景显示器,这些显示器距离眼睛10-30厘米,以保持在鼠标的景深内。这需要比鼠标大几个数量级的显示器,从而导致复杂,昂贵和光污染的系统,这可能难以集成到许多神经记录设置中。

In addition, fixed experimental equipment (for example, cameras, lick ports and microscope objectives) can obstruct the mouse’s visual field, potentially reducing immersion in the virtual environment. Inspired by modern VR solutions for humans, we set out to design a headset-based VR system for mice to overcome the constraints of panoramic VR.ResultsMiniature VR headset designUsing small circular displays and short-focal length Fresnel lenses, we designed eyepieces suited to mouse eye physiology (Fig.

此外,固定的实验设备(例如相机、舔孔和显微镜物镜)会阻碍鼠标的视野,从而可能减少虚拟环境中的沉浸感。受现代人类VR解决方案的启发,我们着手为鼠标设计基于耳机的VR系统,以克服全景VR的限制。结果微型VR耳机设计使用小型圆形显示器和短焦距菲涅耳透镜,我们设计了适合小鼠眼睛生理的目镜(图)。

1a). Spherical distortion of the display by the lens results in a near-constant angular resolution of 1.57 pixels per degree and Nyquist frequency of 0.78 cycles per degree (c.p.d.)—just above the 0.5 c.p.d. spatial acuity of mouse vision5—and a field of view (FOV) coverage spanning up to 140° (Fig.

1a)。透镜对显示器的球形失真导致每度1.57像素的近乎恒定的角度分辨率和每度0.78个周期的奈奎斯特频率(c.p.d.)-略高于鼠标vision5的0.5 c.p.d.空间敏锐度,视野(FOV)覆盖范围可达140°(图)。

1b,c) per mouse eye. The optical design positions the display near infinity focus.

1b,c)每只小鼠的眼睛。光学设计将显示器置于接近无限焦点的位置。

Days 1–2: liquid reward is automatically delivered when the mouse reaches the reward location.

第1-2天:当鼠标到达奖励位置时,液体奖励会自动传递。

Day 3: for the first three trials, liquid reward is automatically given. For trials 4+, the mouse must first lick in the reward zone (no farther than 0.25 m away from the reward location) before a reward is delivered at the mouse’s location of licking.

第三天:对于前三次试验,自动给予液体奖励。对于试验4+,鼠标必须首先在奖励区域(距离奖励位置不超过0.25米)舔,然后才能在鼠标舔的位置传递奖励。

Days 4–5: similar to day 3 (trials 1–3 guarantee reward; trials 4+ require licks), with a random 20% of trials unrewarded (probe trials).

第4-5天:类似于第3天(试验1-3保证奖励;试验4+需要舔),随机20%的试验未得到回报(探针试验)。

Mice performed one session of track traversals per day, where each session consisted of 40 laps down the track. Once mice reached the end of the track (located at 1.46 m), the traversal finished, and the mice were teleported back to the beginning to start a new lap. If mice did not reach the track end within 60 s, the trial data were discarded but still counted toward the 40-lap session limit.

老鼠每天进行一次轨道穿越,每次穿越由40圈组成。一旦老鼠到达轨道的末端(位于1.46米处),遍历就完成了,老鼠被远程传送回起点开始新的一圈。如果小鼠在60秒内未到达轨道末端,则丢弃试验数据,但仍将其计入40圈的会话限制。

Licks were detected by the rising edge of the lick sensor and were recorded alongside mouse position during each traversal. All licking data was binned by location into 5-cm-wide bins, while the first and last bin were excluded due the mouse’s constrained position away from the walls. Lick rates were calculated by dividing the number of licks in each binned position by the time spent at that position.

。所有舔数据都按位置分为5厘米宽的箱子,而第一个和最后一个箱子由于鼠标远离墙壁的位置受到限制而被排除在外。舔率是通过将每个装箱位置的舔次数除以在该位置花费的时间来计算的。

‘Post-reward’ licks were defined as a series of licks that quickly followed a reward delivery (starting within 3 s of a delivered reward) and continued until the lick rate dropped below 1 lick s−1). All licks occurring at other times than after a reward delivery were defined as ‘exploratory licks’. Reward and control zones were defined as regions spanning ±0.25 m (ten total position bins) from the rewarded location.

“奖励后”舔舔被定义为一系列舔舔,这些舔舔很快就会在奖励发放之后(从发放奖励的3秒内开始),并持续到舔舔率降至1舔-1以下)。所有在奖励发放后以外的其他时间发生的舔都被定义为“探索性舔”。奖励和控制区被定义为距离奖励位置±0.25米(十个总位置箱)的区域。

The fraction of exploratory licks in the reward and control zones were calculated by dividing the total number of licks in each zone by the total licks in all 28 habitable bins. Chance-level zone licking was calculated by dividing the size of the zones in bins by the total habitable zone of the track (10/28 = 35.71%).

奖励区和控制区的探索性舔次数是通过将每个区域的舔次数总数除以所有28个可居住垃圾箱中的总舔次数来计算的。通过将箱子中的区域大小除以轨道的总可居住区域(10/28)=35.71%)来计算机会水平区域舔。

During days 4–5, data were subdivided into rewarded versus unrewarded ‘probe’ trials, where probe trials contain no post-reward licks. Statistically significant differences in the proportion of licks in reward versus control zones during probe trials was cal.

在第4-5天,数据被细分为奖励与未奖励的“探针”试验,其中探针试验不包含奖励后舔。在探针试验期间,奖励区与对照区舔的比例在统计学上有显着差异。

Startle: burst of movement, jump or kick

惊吓:突然移动、跳跃或踢腿

Tense up: back arches, tailbone or tail curling under

紧张:后弓、尾骨或尾巴蜷曲

Stop: stops, from a moving state

停止:停止,从移动状态

Run: starts running, from a stopped or slowly walking state

跑步:从停止或缓慢行走状态开始跑步

Turn: rear end of its body swings to the side

转弯:身体后端向侧面摆动

Grooming: uses its paws to wipe at mouth/whiskers/eyes

修饰:用爪子擦嘴/胡须/眼睛

Confidence scores:

信心得分:

0: reaction did not happen

0:未发生反应

1: reaction possible happened

1: 可能发生反应

2: reaction probably happened

2: 可能发生了反应

3: reaction definitely happened”

3: 反应肯定发生了“

Due to the startle and tense up reactions being difficult for the scorers to differentiate, the individual confidence scores for these two behaviors were combined into a single reaction score, where the larger of the two became the new score. To classify responses for each mouse, repetition and experimental condition, the average of the two scores (one from each scorer) was taken, where average scores of 1.5 or greater were classified as a startle response to the looming stimulus.

由于得分者难以区分惊吓和紧张的反应,因此将这两种行为的个人信心得分合并为一个反应得分,其中较大的一个成为新得分。为了对每只小鼠的反应,重复和实验条件进行分类,取两个得分的平均值(每个得分者一个),其中平均得分为1.5或更高被归类为对迫在眉睫的刺激的惊吓反应。

The proportion of startle responses was calculated by dividing the number of startle responses by the number of observations at each repetition and was fit with an exponential decay function with offset:$$R\left(r\right)={{R}_{1}e}^{-\lambda (r-1)}+b,$$where r is the repetition number, R1 is the startle response proportion at r = 1, λ is the decay rate constant and b is the offset.

惊吓反应的比例是通过将惊吓反应的数量除以每次重复的观察次数来计算的,并与一个指数衰减函数拟合,偏移量为:$$R \ left(R \ right)={{R}_{1}e}^{-\lambda(r-1)}+b,$$其中r是重复数,R1是r=1时的惊吓反应比例,λ是衰减速率常数,b是偏移量。

The experiment was initially performed with two mice where startle responses were first observed in the VR headset, after which a second cohort of mice was tested with both the VR headset and the projector-based system. For mice that began with the headset VR (4/6 mice), 10 days elapsed before testing with the projector to attempt to restore the novelty of the looming stimulus.

该实验最初是用两只小鼠进行的,首先在VR耳机中观察到惊吓反应,然后用VR耳机和基于投影仪的系统测试第二组小鼠。对于以耳机VR开始的小鼠(4/6只小鼠),在用投影仪测试之前10天过去了,试图恢复即将到来的刺激的新颖性。

For mice that began with the projector VR, only 1 day elapsed before testing with the headset. Neither of the two ‘projector-first’ mice was startled in projector VR, but both were startled in headset VR.Loom–eye-tracking experiment and analysisHead-fixed mice walking on the linear treadmill were presented with looming visual stimuli similar to the loom–startle experiment, using the MouseGoggles EyeTrack headset.

对于以投影仪VR开始的小鼠,在使用耳机进行测试之前仅过了1天。两只“先放映机”的老鼠在放映机VR中都没有受到惊吓,但在耳机VR中都受到惊吓。织布机眼球追踪实验和分析使用MouseGoggles眼球追踪耳机,向在线性跑步机上行走的头部固定的小鼠提供了类似于织布机惊吓实验的隐现视觉刺激。

Fifteen repetitions of the looming stimulus were presented in five sets of three conditions: a looming object approaching from 45° .

在五组三种条件下呈现了十五次重复的隐现刺激:隐现物体从45°接近。

Data availability

数据可用性

Datasets are deposited in the figshare database at https://doi.org/10.6084/m9.figshare.24039021.v4 (ref. 32).

https://doi.org/10.6084/m9.figshare.24039021.v4(参考文献32)。

Code availability

Code and hardware designs are available upon request.

可根据要求提供代码和硬件设计。

ReferencesHarvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).Article

参考文献Harvey,C.D.,Collman,F.,Dombeck,D.A。和Tank,D.W。虚拟导航期间海马位置细胞的细胞内动力学。Nature 461941–946(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lasztóczi, B. & Klausberger, T. Hippocampal place cells couple to three different gamma oscillations during place field traversal. Neuron 91, 34–40 (2016).Article

Lasztóczi,B。&Klausberger,T。海马位置细胞在位置场遍历期间耦合到三个不同的伽马振荡。神经元91,34-40(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).Article

Harvey,C.D.,Coen,P。&Tank,D.W。在虚拟导航决策任务期间顶叶皮层中的选择特定序列。《自然》484,62-68(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Keller, G. B., Bonhoeffer, T. & Hübener, M. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74, 809–815 (2012).Article

Keller,G.B.,Bonhoeffer,T。&Hübener,M。行为小鼠初级视觉皮层中的感觉运动不匹配信号。神经元74809-815(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sinex, D. G., Burdette, L. J. & Pearlman, A. L. A psychophysical investigation of spatial vision in the normal and reeler mutant mouse. Vis. Res. 19, 853–857 (1979).Article

Sinex,D.G.,Burdette,L.J。和Pearlman,A.L。对正常和卷轴突变小鼠空间视觉的心理物理学研究。可见。第19853-857号决议(1979年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wagor, E., Mangini, N. J. & Pearlman, A. L. Retinotopic organization of striate and extrastriate visual cortex in the mouse. J. Comp. Neurol. 193, 187–202 (1980).Article

Wagor,E.,Mangini,N.J。和Pearlman,A.L。小鼠条纹和条纹外视觉皮层的视网膜组织。J、 公司。神经病学。193187-202(1980)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hölscher, C., Schnee, A., Dahmen, H., Setia, L. & Mallot, H. A. Rats are able to navigate in virtual environments. J. Exp. Biol. 208, 561–569 (2005).Article

Hölscher,C.,Schnee,A.,Dahmen,H.,Setia,L。&Mallot,H.A。老鼠能够在虚拟环境中导航。J、 实验生物。208561-569(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kuznetsova, T., Antos, K., Malinina, E., Papaioannou, S. & Medini, P. Visual stimulation with blue wavelength light drives V1 effectively eliminating stray light contamination during two-photon calcium imaging. J. Neurosci. Methods 362, 109287 (2021).Article

Kuznetsova,T.,Antos,K.,Malinina,E.,Papaioannou,S。&Medini,P。蓝色波长光的视觉刺激驱动V1有效地消除了双光子钙成像过程中的杂散光污染。J、 神经科学。方法362109287(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).Article

Niell,C.M。&Stryker,M.P。小鼠视觉皮层中的高选择性感受野。J、 神经科学。287520-7536(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tan, Z., Sun, W., Chen, T.-W., Kim, D. & Ji, N. Neuronal representation of ultraviolet visual stimuli in mouse primary visual cortex. Sci. Rep. 5, 12597 (2015).Article

Tan,Z.,Sun,W.,Chen,T.-W.,Kim,D。&Ji,N。小鼠初级视觉皮层中紫外线视觉刺激的神经元表示。科学。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Busse, L. et al. The detection of visual contrast in the behaving mouse. J. Neurosci. 31, 11351–11361 (2011).Article

Busse,L。等人。行为小鼠视觉对比度的检测。J、 神经科学。311351–11361(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).Article

Dombeck,D.A.,Harvey,C.D.,Tian,L.,Looger,L.L。&Tank,D.W。在虚拟导航期间以细胞分辨率对海马位置细胞进行功能成像。自然神经科学。131433-1440(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pettit, N. L., Yap, E.-L., Greenberg, M. E. & Harvey, C. D. Fos ensembles encode and shape stable spatial maps in the hippocampus. Nature 609, 327–334 (2022).Article

Pettit,N.L.,Yap,E.-L.,Greenberg,M.E。&Harvey,C.D。Fos合奏在海马体中编码并形成稳定的空间图。自然609327-334(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shang, C. et al. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun. 9, 1232 (2018).Article

Shang,C。等人。不同的中脑回路协调对小鼠隐现刺激的逃逸和冻结反应。国家公社。91232(2018)。文章

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Arnold, J. Rodent belt treadmill. figshare https://doi.org/10.25378/janelia.24691311.v2 (2023).Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).Article

Arnold,J。啮齿动物带跑步机。figshare公司https://doi.org/10.25378/janelia.24691311.v2(2023年)。Mathis,A。等人。DeepLabCut:通过深度学习对用户定义的身体部位进行无标记姿势估计。自然神经科学。211281-1289(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rosza, B. et al. Competition of cortical clusters during on-demand visual learning in immersive virtual reality. Preprint at https://doi.org/10.21203/rs.3.rs-3352160/v1 (2023).US20220295743 – virtual reality simulator and method for small laboratory animals. WIPO https://patentscope.wipo.int/search/en/detail.jsf?docId=US375120556&_fid=US375120556 (2022).Pinke, D., Issa, J., Dara, G., Dobos, G.

Rosza,B.等人。沉浸式虚拟现实中按需视觉学习期间皮质簇的竞争。预印于https://doi.org/10.21203/rs.3.rs-3352160/v1(2023年)。US20220295743–小型实验动物的虚拟现实模拟器和方法。WIPOhttps://patentscope.wipo.int/search/en/detail.jsf?docId=US375120556&_fid=US375120556(2022年)。平克,D.,伊萨,J.,达拉,G.,多布斯,G。

& Dombeck, D. Full field-of-view virtual reality goggles for mice. Neuron 111, 3941–3952.E6 (2023).Article .

&Dombeck,D。用于老鼠的全视野虚拟现实护目镜。神经元1113941–3952.E6(2023)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sofroniew, N. J., Cohen, J. D., Lee, A. K. & Svoboda, K. Natural whisker-guided behavior by head-fixed mice in tactile virtual reality. J. Neurosci. 34, 9537–9550 (2014).Article

Sofroniew,N.J.,Cohen,J.D.,Lee,A.K。和Svoboda,K。头部固定的小鼠在触觉虚拟现实中的自然胡须引导行为。J、 神经科学。349537-9550(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, G., King, J. A., Lu, Y., Cacucci, F. & Burgess, N. Spatial cell firing during virtual navigation of open arenas by head-restrained mice. eLife 7, e34789 (2018).Article

Chen,G.,King,J.A.,Lu,Y.,Cacucci,F。&Burgess,N。头部受限小鼠在开放场地的虚拟导航过程中的空间细胞发射。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schmucker, C. & Schaeffel, F. Contrast sensitivity of wildtype mice wearing diffusers or spectacle lenses, and the effect of atropine. Vis. Res. 46, 678–687 (2006).Article

Schmucker,C。&Schaeffel,F。佩戴扩散器或眼镜镜片的野生型小鼠的对比敏感度,以及阿托品的作用。可见。第46678-687号决议(2006年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nazari, H., Ivannikov, M., Ochoa, L., Vargas, G. & Motamedi, M. Microsurgical dissection and tissue clearing for high resolution intact whole retina and vitreous imaging. J. Vis. Exp. https://doi.org/10.3791/61595 (2021).Article

Nazari,H.,Ivannikov,M.,Ochoa,L.,Vargas,G。&Motamedi,M。显微外科解剖和组织清除,用于高分辨率完整的整个视网膜和玻璃体成像。J、 可见。实验。https://doi.org/10.3791/61595(2021年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wallace, D. J. et al. Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498, 65–69 (2013).Article

Wallace,D.J.等人。老鼠以不断融合为代价维持头顶的双目视野。《自然》498,65-69(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tkatchenko, T. V., Shen, Y. & Tkatchenko, A. V. Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging. Invest. Ophthalmol. Vis. Sci. 51, 21–27 (2010).Article

Tkatchenko,T.V.,Shen,Y。&Tkatchenko,A.V。用高分辨率小动物磁共振成像分析小鼠出生后的眼睛发育。投资。眼科。可见。科学。51,21-27(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saito, T. et al. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663 (2014).Article

Saito,T。等人。阿尔茨海默病的单应用敲入小鼠模型。自然神经科学。17661-663(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).Article

Pologruto,T.A.,Sabatini,B.L。和Svoboda,K。ScanImage:用于操作激光扫描显微镜的灵活软件。生物医学。《工程在线》2,13(2003)。文章

PubMed

PubMed

PubMed Central

PubMed 中心

Google Scholar

谷歌学者

Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).Bollu, T. et al. Cortex-dependent corrections as the tongue reaches for and misses targets. Nature 594, 82–87 (2021).Article

Pachitariu,M。等人的研究2p:使用标准双光子显微镜观察10000个以上的神经元。bioRxiv预印本https://doi.org/10.1101/061507(2017年)。Bollu,T。等人。当舌头到达并错过目标时,皮层依赖性校正。自然594,82-87(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fernández-Ruiz, A. et al. Entorhinal-CA3 dual-input control of spike timing in the hippocampus by theta-gamma coupling. Neuron 93, 1213–1226.e5 (2017).Article

Fernández-Ruiz,A。等人。通过θ-γ耦合对海马中尖峰时间的内嗅CA3双输入控制。神经元931213-1226.e5(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Skaggs, W. E., McNaughton, B. L., Gothard, K. M. & Markus, E. J. An information-theoretic approach to deciphering the hippocampal code. In Proc. 5th International Conference on Neural Information Processing Systems (eds Hanson, S. J. et al.) 1030–1037 (Morgan Kaufmann Publishers, 1992).Isaacson, M.

Skaggs,W.E.,McNaughton,B.L.,Gothard,K.M。和Markus,E.J。一种解读海马密码的信息论方法。在过程中。第五届神经信息处理系统国际会议(eds Hanson,S.J.等人),1030-1037(Morgan Kaufmann Publishers,1992)。艾萨克森,M。

MouseGoggles datasets. figshare https://doi.org/10.6084/m9.figshare.24039021.v4 (2023).Download referencesAcknowledgementsThis project was supported by the Cornell Neurotech Mong Family Fellowship program (M.I. and H.C.); the BrightFocus Foundation Alzheimer’s disease fellowship program (grant no. A2023006F, M.I.); the Brain and Behavior Research Foundation (grant no.

鼠标切换数据集。figshare公司https://doi.org/10.6084/m9.figshare.24039021.v4(2023年)。下载参考文献致谢该项目得到了康奈尔大学神经技术Mong家庭奖学金计划(M.I.和H.C.)的支持;BrightFocus基金会阿尔茨海默病奖学金计划(批准号A2023006F,M.I.);大脑与行为研究基金会(批准号:。

139526, I.E.) and the National Institutes of Health (grant no. R01 AG081931, C.B.S.). We thank A. Oliva, A. Fernandez-Ruiz and W. Tang for their comments on the manuscript; A. Grosmark, A. Kaye, S. Staszko and E. Krishnamurthy for their feedback to improve the reproducibility of the method; and A. Huang and A.

139526,即)和国立卫生研究院(批准号R01 AG081931,C.B.S.)。我们感谢A.Oliva,A.Fernandez-Ruiz和W.Tang对手稿的评论;A、 Grosmark,A。Kaye,S。Staszko和E。Krishnamurthy的反馈,以提高方法的可重复性;和A.Huang和A。

Wulf for mouse behavior video scoring.Author informationAuthor notesThese authors contributed equally: Matthew Isaacson, Hongyu Chang.These authors jointly supervised this work: Ian Ellwood, Chris B. Schaffer.Authors and AffiliationsMeinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USAMatthew Isaacson, Laura Berkowitz, Rick Zirkel, Danyu Hu & Chris B.

Wulf用于鼠标行为视频评分。作者信息作者注意到这些作者做出了同样的贡献:Matthew Isaacson,Hongyu Chang。这些作者共同监督了这项工作:Ian Ellwood,Chris B.Schaffer。作者和附属机构康奈尔大学生物医学工程学院,纽约州伊萨卡,美国马修·艾萨克森,劳拉·伯克维茨,里克·齐克尔,Danyu Hu&Chris B。

SchafferDepartment of Neurobiology and Behavior, Cornell University, Ithaca, NY, USAHongyu Chang, Yusol Park & Ian EllwoodAuthorsMatthew IsaacsonView author publicationsYou can also search for this author in.

康奈尔大学神经生物学与行为学系,纽约州伊萨卡,美国张宏宇,Yusol Park&Ian Ellwood作者Matthew IsaacsonView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarHongyu ChangView author publicationsYou can also search for this author in

PubMed谷歌学者Hongyu ChangView作者出版物您也可以在

PubMed Google ScholarLaura BerkowitzView author publicationsYou can also search for this author in

PubMed Google ScholarLaura Berkowittview作者出版物您也可以在

PubMed Google ScholarRick ZirkelView author publicationsYou can also search for this author in

PubMed Google ScholarRick ZirkelView作者出版物您也可以在

PubMed Google ScholarYusol ParkView author publicationsYou can also search for this author in

PubMed Google ScholarYusol ParkView作者出版物您也可以在

PubMed Google ScholarDanyu HuView author publicationsYou can also search for this author in

PubMed Google ScholarDanyu HuView作者出版物您也可以在

PubMed Google ScholarIan EllwoodView author publicationsYou can also search for this author in

PubMed谷歌学者EllwoodView作者出版物您也可以在

PubMed Google ScholarChris B. SchafferView author publicationsYou can also search for this author in

PubMed Google ScholarChris B.SchafferView作者出版物您也可以在

PubMed Google ScholarContributionsM.I. conceived and built the monocular display and binocular VR headset, with H.C., I.E. and C.B.S. providing feedback. H.C. and M.I. designed the eye-tracking hardware and analysis pipeline. I.E. designed and built the comparative panoramic VR system.

PubMed谷歌学术贡献。一、 构思并制作了单眼显示器和双目VR耳机,H.C.,I.E.和C.B.S.提供反馈。H、 C.和M.I.设计了眼球跟踪硬件和分析管道。一、 设计并构建了比较全景VR系统。

M.I., H.C., I.E. and C.B.S. jointly designed all experiments. H.C. prepared animals and performed linear track place learning and looming behavioral experiments. L.B. prepared mice and conducted and analyzed data for linear track behavior assays during electrophysiological recording. R.Z. prepared mice and conducted calcium imaging experiments.

M、 I.,H.C.,I.E.和C.B.S.共同设计了所有实验。H、 C.准备动物并进行线性轨迹位置学习和隐现行为实验。五十、 B.制备小鼠,并在电生理记录期间进行和分析线性轨迹行为测定的数据。R、 Z.制备小鼠并进行钙成像实验。

M.I. analyzed behavioral, eye-tracking and calcium imaging data. Y.P. developed software communication protocols for the monocular display. D.H. tested and validated the Godot game engine for the binocular headset. I.E. and C.B.S. provided guidance in all aspects of the work. M.I. wrote the paper with contributions from all authors.Corresponding authorCorrespondence to.

M、 I.分析行为,眼球追踪和钙成像数据。Y、 P.为单目显示器开发了软件通信协议。D、 。一、 E.和C.B.S.在工作的各个方面提供了指导。M.I.在所有作者的贡献下撰写了这篇论文。对应作者对应。

Matthew Isaacson.Ethics declarations

马修·艾萨克森。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Methods thanks Philip Parker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Nina Vogt, in collaboration with the Nature Methods team.

Nature Methods感谢Philip Parker和另一位匿名审稿人对这项工作的同行评审做出的贡献。同行评审报告可供查阅。主要处理编辑:Nina Vogt,与Nature Methods团队合作。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Display projection through an enucleated mouse eye.a, Schematic layout of a MouseGoggles eyepiece with a mini camera set to infinite focal distance, positioned 1 mm from the eyepiece lens center, with a field of view (FOV) centered on the display.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1显示通过去核鼠标眼睛的投影。a,鼠标切换目镜的示意图,微型相机设置为无限焦距,距离目镜镜头中心1毫米,视场(FOV)集中在显示器上。

b, Image of the eyepiece display produced from the imaging setup in (a). c, Layout of an enucleated mouse eye positioned on a 3D printed holder 10 cm below a traditional monitor, with a mini camera positioned below the eye. d, Layout of an enucleated mouse eye positioned below a MouseGoggles eyepiece, with a variable eye position relative to the lens center.

b、 由(a)中的成像设置产生的目镜显示器的图像。c、 将去核的鼠标眼睛放置在传统显示器下方10厘米处的3D打印支架上,并在眼睛下方放置一个微型摄像头。d、 位于MouseGoggles目镜下方的去核鼠标眼睛的布局,相对于镜头中心具有可变的眼睛位置。

e, Images produced from the imaging setup in (c), with views of a uniform brightness image (left), horizontal gratings (middle), and vertical gratings (right). Images of the eye during horizontal (middle) and vertical (right) gratings are at 2x zoom relative to the image with uniform brightness (left).

e、 。水平(中间)和垂直(右)光栅期间的眼睛图像相对于具有均匀亮度的图像(左)以2倍变焦。

f, Images produced from the imaging setup in (d), with eye distance-from-lens values of 0.5, 1, 2, and 3 mm (top to bottom), with views of a uniform image (left), horizontal gratings (middle), and vertical gratings (right). g, Images produced from the imaging setup in (d), with eye distance-from-center values of 0.4, 1.4, 2.2, and 3 mm (top to bottom), with views of a uniform image (left), horizontal gratings (middle), and vertical gratings (right), and with small and large distortions marked for the 2.2 mm and 3 mm positions.

f、 从(d)中的成像设置产生的图像,与镜头的距离值为0.5、1、2和3 mm(从上到下),具有均匀图像(左),水平光栅(中)和垂直光栅(右)的视图。g、 由(d)中的成像设置产生的图像,与中心值的视距为0.4、1.4、2.2和3 mm(从上到下),具有均匀图像(左),水平光栅(中)和垂直光栅(右)的视图,并且在2.2 mm和3 mm的位置标记有大小失真。

All images in this figure were taken using the same enucleated mouse eye, with similar results reproduced using a second eye.Extended Data Fig. 2 Mouse inter-eye d.

该图中的所有图像都是使用相同的去核小鼠眼睛拍摄的,使用第二只眼睛再现了类似的结果。扩展数据图2鼠标眼间d。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleIsaacson, M., Chang, H., Berkowitz, L. et al. MouseGoggles: an immersive virtual reality headset for mouse neuroscience and behavior.

转载和许可本文引用本文Isaacson,M.,Chang,H.,Berkowitz,L。等人。MouseGoggles:用于小鼠神经科学和行为的沉浸式虚拟现实耳机。

Nat Methods (2024). https://doi.org/10.1038/s41592-024-02540-yDownload citationReceived: 27 August 2023Accepted: 24 October 2024Published: 12 December 2024DOI: https://doi.org/10.1038/s41592-024-02540-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat方法(2024)。https://doi.org/10.1038/s41592-024-02540-yDownload引文接收日期:2023年8月27日接收日期:2024年10月24日发布日期:2024年12月12日OI:https://doi.org/10.1038/s41592-024-02540-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供