商务合作
动脉网APP
可切换为仅中文
AbstractAdvanced biliary tract cancer (BTC) and pancreatic ductal adenocarcinoma (PDAC) have poor prognoses and limited treatment options. Here, we conducted this first-in-class phase II study to evaluate the efficacy and safety of SHR-1701, a bifunctional fusion protein targeting programmed death-ligand 1 (PD-L1) and transforming growth factor-beta (TGF-β), combined with famitinib, a multi-targeted receptor tyrosine kinase inhibitor, in patients with advanced BTC or PDAC who failed previous standard treatment (trial registration: ChiCTR2000037927).
摘要晚期胆道癌(BTC)和胰腺导管腺癌(PDAC)预后差,治疗选择有限。在这里,我们进行了这项首次II期研究,以评估SHR-1701(一种靶向程序性死亡配体1(PD-L1)和转化生长因子β(TGF-β)的双功能融合蛋白)与famitinib(一种多靶向受体酪氨酸激酶抑制剂)联合用于先前标准治疗失败的晚期BTC或PDAC患者的疗效和安全性(试验注册:ChiCTR2000037927)。
Among 51 enrolled patients, the BTC cohort showed an objective response rate (ORR) of 28% (including 2 complete responses) and a disease control rate (DCR) of 80%, with a median progression-free survival (mPFS) of 5.1 months and a median overall survival (mOS) of 16.0 months. In the PDAC cohort, the ORR was 15% (2 complete responses), with a DCR of 60%, and the mPFS and mOS were 2.1 months and 5.3 months, respectively.
在51名入选患者中,BTC队列显示客观缓解率(ORR)为28%(包括2个完全缓解),疾病控制率(DCR)为80%,中位无进展生存期(mPFS)为5.1个月,中位总生存期(mOS)为16.0个月。在PDAC队列中,ORR为15%(2个完全缓解),DCR为60%,mPFS和mOS分别为2.1个月和5.3个月。
Grade 3 or 4 treatment-related adverse events (TRAEs) occurred in 29.4% of patients, with no grade 5 TRAEs reported. Exploratory analyses revealed that primary tumor resection history, peripheral blood immunophenotype changes, and distinct immune-metabolic profiles were associated with treatment benefits.
29.4%的患者发生3级或4级治疗相关不良事件(TRAEs),未报告5级TRAEs。探索性分析显示,原发性肿瘤切除史,外周血免疫表型变化和不同的免疫代谢谱与治疗益处相关。
An immune/metabolism score integrating the features of six genes was developed as a predictive biomarker for immunotherapy response in multiple cohorts, allowing for the selection of patients most likely to experience positive outcomes from this therapy regimen. In conclusion, our study provides proof-of-concept data supporting the potential of SHR-1701 plus famitinib as an effective and safe subsequent-line therapy for refractory BTC and PDAC, highlighting the promise of targeting PD-L1, TGF-β, and angiogene.
整合了六个基因特征的免疫/代谢评分被开发为多个队列中免疫治疗反应的预测性生物标志物,从而可以选择最有可能从该治疗方案中获得积极结果的患者。总之,我们的研究提供了概念验证数据,支持SHR-1701加法米替尼作为难治性BTC和PDAC的有效和安全的后续一线治疗的潜力,突出了靶向PD-L1,TGF-β和血管生成的前景。
IntroductionBiliary tract cancer (BTC), which includes cholangiocarcinoma, gallbladder cancer, and ampullary cancer, accounts for approximately 0.6% of all new cancer diagnoses in 2023, while the more common pancreatic ductal adenocarcinoma (PDAC) comprises nearly 3%.1 Both BTC and PDAC are aggressive malignancies with poor prognoses, often diagnosed at an advanced stage.2,3,4 Despite initial treatment with standard chemotherapy, disease progression is almost inevitable.
引言胆道癌(BTC)包括胆管癌,胆囊癌和壶腹癌,约占2023年所有新诊断癌症的0.6%,而更常见的胰腺导管腺癌(PDAC)占近3%。BTC和PDAC都是侵袭性恶性肿瘤,预后较差,常被诊断为晚期[2,3,4]。尽管最初用标准化疗治疗,但疾病进展几乎是不可避免的。
For BTC, second-line treatment options include FOLFOX (folinic acid, fluorouracil, and oxaliplatin) chemotherapy following first-line cisplatin and gemcitabine, as well as targeted therapy for a subset of patients with specific genetic alterations.2,3 Advanced PDAC patients unresponsive to first-line treatment face constrained options, with nanoliposomal irinotecan in combination with fluorouracil and folinic acid (Nal-IRI with 5-FU/LV) as recommended.4 Current subsequent-line chemotherapies offer disappointing efficacy, with a median overall survival (mOS) of about 6.2 months for BTC and even lower for PDAC,4,5 and the modest survival benefit often comes at the cost of severe toxicities.Although immunotherapy has revolutionized the treatment landscape for various solid tumors, immune checkpoint inhibitor (ICI) monotherapy has not yielded significant advantages in advanced BTC (objective response rates [ORR]: 3–20%) and PDAC ( ≤ 10%) due to the immunosuppressive tumor microenvironment (TME),6,7 with only specific subgroups being eligible.8,9 One of the key factors negatively shaping the TME is transforming growth factor-beta (TGF-β), a pleiotropic cytokine that promotes immune evasion by inhibiting cytotoxic T and NK lymphocytes, while inducing the differentiation of regulatory T cells (Tregs) and myelo.
对于BTC,二线治疗选择包括一线顺铂和吉西他滨后的FOLFOX(亚叶酸,氟尿嘧啶和奥沙利铂)化疗,以及针对一部分具有特定基因改变的患者的靶向治疗。2,3对一线治疗无反应的晚期PDAC患者面临着有限的选择,推荐使用纳米脂质体伊立替康联合氟尿嘧啶和亚叶酸(Nal IRI联合5-FU/LV)。4目前的后续一线化疗疗效令人失望,BTC的中位总生存期(mOS)约为6.2个月,PDAC的中位总生存期(mOS)甚至更低,4,5和适度的生存获益通常以严重毒性为代价。。
Data availability
数据可用性
The RNA-seq data generated in this study have been deposited in the NCBI Sequence Read Archive under BioProject accession number PRJNA1173873. All other data supporting our findings of this work are available from the corresponding authors upon reasonable request.
本研究中产生的RNA-seq数据已保存在NCBI序列读取档案中,生物项目登录号为PRJNA1173873。根据合理的要求,通讯作者可以提供所有其他支持我们这项工作发现的数据。
ReferencesSiegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).Article
参考Siegel,R.L.,Miller,K.D.,Wagle,N.S。和Jemal,A。癌症统计,2023年。CA Cancer J.Clin。73,17-48(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rizzo, A. & Brandi, G. Pitfalls, challenges, and updates in adjuvant systemic treatment for resected biliary tract cancer. Expert Rev. Gastroenterol. Hepatol. 15, 547–554 (2021).Article
Rizzo,A。&Brandi,G。切除胆道癌辅助全身治疗的缺陷,挑战和更新。胃肠病专家Rev。肝脏。15547-554(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rizzo, A. & Brandi, G. Neoadjuvant therapy for cholangiocarcinoma: A comprehensive literature review. Cancer Treat. Res Commun. 27, 100354 (2021).Article
Rizzo,A。&Brandi,G。胆管癌的新辅助治疗:综合文献综述。癌症治疗。Res Commun公司。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang-Gillam, A. et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet (Lond., Engl.) 387, 545–557 (2016).Article
Wang Gillam,A.等人。先前基于吉西他滨的治疗(NAPOLI-1)后,纳米脂质体伊立替康与氟尿嘧啶和亚叶酸治疗转移性胰腺癌:一项全球性,随机,开放标签的3期临床试验。柳叶刀(Lond。,Engl。)387545-557(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Lamarca, A. et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol. 22, 690–701 (2021).Article
Lamarca,A。等。二线FOLFOX化疗与晚期胆道癌主动症状控制(ABC-06):一项3期开放标签随机对照试验。柳叶刀Oncol。22690-701(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ohaegbulam, K. C., Assal, A., Lazar-Molnar, E., Yao, Y. & Zang, X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol. Med 21, 24–33 (2015).Article
Ohaegbulam,K.C.,Assal,A.,Lazar-Molnar,E.,Yao,Y。&Zang,X。用PD-1和PD-L1途径抗体进行人类癌症免疫治疗。趋势分子医学21,24-33(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ricci, A. D., Rizzo, A. & Brandi, G. Immunotherapy in Biliary Tract Cancer: Worthy of a Second Look. Cancer Control 27, 1073274820948047 (2020).Article
Ricci,A.D.,Rizzo,A。&Brandi,G。胆道癌的免疫治疗:值得再次审视。癌症控制271073274820948047(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rizzo, A. et al. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study. Cancer Immunol. Immunother. 72, 1381–1394 (2023).Article
Rizzo,A。等人。接受免疫疗法和基于免疫的组合的癌症患者的高转氨酶血症:MOUSEION-05研究。癌症免疫。免疫疗法。。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Sahin, T. K., Rizzo, A., Aksoy, S. & Guven, D. C. Prognostic Significance of the Royal Marsden Hospital (RMH) Score in Patients with Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 16 (2024).Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle.
Sahin,T.K.,Rizzo,A.,Aksoy,S。&Guven,D.C。皇家马斯登医院(RMH)评分对癌症患者的预后意义:系统评价和荟萃分析。癌症(巴塞尔)16(2024)。Chen,D.S。&Mellman,I。肿瘤学与免疫学相遇:癌症免疫周期。
Immunity 39, 1–10 (2013).Article .
免疫39,1-10(2013)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Chen, J., Gingold, J. A. & Su, X. Immunomodulatory TGF-beta Signaling in Hepatocellular Carcinoma. Trends Mol. Med 25, 1010–1023 (2019).Article
Chen,J.,Gingold,J.A。&Su,X。肝细胞癌中的免疫调节TGF-β信号传导。趋势分子医学251010-1023(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Batlle, E. & Massague, J. Transforming Growth Factor-beta Signaling in Immunity and Cancer. Immunity 50, 924–940 (2019).Article
Batlle,E。&Massague,J。转化生长因子β信号在免疫和癌症中的作用。免疫力50924-940(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Mariathasan, S. et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).Article
Mariathasan,S。等人。TGFbeta通过有助于排除T细胞来减弱肿瘤对PD-L1阻断的反应。自然554544-548(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Terabe, M. et al. Blockade of only TGF-beta 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy. Oncoimmunology 6, e1308616 (2017).Article
Terabe,M。等人。仅阻断TGF-β1和2足以增强疫苗和PD-1检查点阻断免疫疗法的功效。肿瘤免疫学6,e1308616(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, L. et al. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J. Hematol. Oncol. 15, 87 (2022).Article
Xu,L.等人。重塑全身肿瘤免疫环境(STIE)和肿瘤免疫微环境(TIME),以增强实体瘤的免疫治疗效果。J、 血液学。Oncol公司。15,87(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, D. et al. Bifunctional anti-PD-L1/TGF-betaRII agent SHR-1701 in advanced solid tumors: a dose-escalation, dose-expansion, and clinical-expansion phase 1 trial. BMC Med 20, 408 (2022).Article
Liu,D.等。双功能抗PD-L1/TGFβRII药物SHR-1701在晚期实体瘤中的应用:剂量递增,剂量扩展和临床扩展1期试验。BMC Med 20408(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Feng, J. et al. SHR-1701, a Bifunctional Fusion Protein Targeting PD-L1 and TGFbeta, for Recurrent or Metastatic Cervical Cancer: A Clinical Expansion Cohort of a Phase I Study. Clin. Cancer Res 28, 5297–5305 (2022).Article
Feng,J。等人。SHR-1701,一种靶向PD-L1和TGFbeta的双功能融合蛋白,用于复发或转移性宫颈癌:I期研究的临床扩展队列。临床。癌症研究285297-5305(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Miller, K. M. & Friedman, C. F. Bifunctional Blockade: A Novel Immunotherapy Approach for Cervical Cancer. Clin. Cancer Res 28, 5238–5240 (2022).Article
Miller,K.M。&Friedman,C.F。双功能阻断:宫颈癌的新型免疫治疗方法。临床。癌症研究285238-5240(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yi, M. et al. Anti-TGF-beta/PD-L1 bispecific antibody promotes T cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. J. Immunother. Cancer 10 (2022).Cheng, B. et al. Anti-PD-L1/TGF-βR fusion protein (SHR-1701) overcomes disrupted lymphocyte recovery-induced resistance to PD-1/PD-L1 inhibitors in lung cancer.
Yi,M。等人。抗TGF-β/PD-L1双特异性抗体促进T细胞浸润,并在三阴性乳腺癌中表现出增强的抗肿瘤活性。J、 。癌症10(2022)。。
Cancer Commun. (Lond., Engl.) 42, 17–36 (2022).Article .
常见癌症。(英国伦敦)42,17-36(2022年)。文章。
Google Scholar
谷歌学者
Lind, H. et al. Dual targeting of TGF-beta and PD-L1 via a bifunctional anti-PD-L1/TGF-betaRII agent: status of preclinical and clinical advances. J. Immunother. Cancer 8 (2020).Xia, L. et al. Antitumor activity and safety of camrelizumab plus famitinib in patients with platinum-resistant recurrent ovarian cancer: results from an open-label, multicenter phase 2 basket study.
Lind,H。等人。通过双功能抗PD-L1/TGF-βRII药物双重靶向TGF-β和PD-L1:临床前和临床进展的状态。J、 。。Xia,L.等人。卡美利珠单抗联合法米替尼治疗铂类耐药复发性卵巢癌患者的抗肿瘤活性和安全性:一项开放标签多中心2期篮式研究的结果。
J. Immunother. Cancer 10 (2022).Yi, L., Zhu, X., Xie, J. & Meng, Z. Long-lasting complete response to SHR-1701 plus famitinib in refractory advanced gallbladder cancer: A case report. Hum. Vaccin Immunother. 19, 2294575 (2023).Article .
J、 。癌症10(2022)。Yi,L.,Zhu,X.,Xie,J.&Meng,Z.对SHR-1701加famitinib治疗难治性晚期胆囊癌的持久完全反应:一例病例报告。嗯。疫苗免疫疗法。192294575(2023)。文章。
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Cousin, S. et al. Regorafenib-avelumab combination in patients with biliary tract cancer (REGOMUNE): a single-arm, open-label, phase II trial. Eur. J. Cancer 162, 161–169 (2022).Article
Cousin,S.等人。雷格拉非尼与avelumab联合治疗胆道癌(REGOMUNE):单臂开放标签II期临床试验。《欧洲癌症杂志》162161-169(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shroff, R. T. et al. Gemcitabine, Cisplatin, and nab-Paclitaxel for the Treatment of Advanced Biliary Tract Cancers: A Phase 2 Clinical Trial. JAMA Oncol. 5, 824–830 (2019).Article
Shroff,R.T.等人。吉西他滨、顺铂和纳布紫杉醇治疗晚期胆道癌:2期临床试验。JAMA Oncol。5824-830(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sievers, C. et al. Phenotypic plasticity and reduced tissue retention of exhausted tumor-infiltrating T cells following neoadjuvant immunotherapy in head and neck cancer. Cancer Cell 41, 887–902.e885 (2023).Article
Sievers,C.等人。头颈癌新辅助免疫治疗后,表型可塑性和耗尽的肿瘤浸润性T细胞的组织保留减少。癌细胞41887-902.e885(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Choi, Y. H. et al. IL-27 enhances IL-15/IL-18-mediated activation of human natural killer cells. J. Immunother. Cancer 7, 168 (2019).Article
Choi,Y。H。等人。IL-27增强IL-15/IL-18介导的人自然杀伤细胞活化。J、 。癌症7168(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Boschert, T. et al. H3K27M neoepitope vaccination in diffuse midline glioma induces B and T cell responses across diverse HLA loci of a recovered patient. Sci. Adv. 10, eadi9091 (2024).Article
Boschert,T。等人。弥漫性中线胶质瘤中的H3K27M新表位疫苗接种诱导恢复患者的不同HLA基因座的B细胞和T细胞应答。科学。Adv.10,eadi9091(2024年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sheng, W., Liu, Y., Chakraborty, D., Debo, B. & Shi, Y. Simultaneous Inhibition of LSD1 and TGFbeta Enables Eradication of Poorly Immunogenic Tumors with Anti-PD-1 Treatment. Cancer Discov. 11, 1970–1981 (2021).Article
Sheng,W.,Liu,Y.,Chakraborty,D.,Debo,B。&Shi,Y。同时抑制LSD1和TGFbeta可以通过抗PD-1治疗根除免疫原性差的肿瘤。癌症发现。11970年至1981年(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Redman, J. M. et al. Enhanced neoepitope-specific immunity following neoadjuvant PD-L1 and TGF-beta blockade in HPV-unrelated head and neck cancer. J. Clin. Invest. 133 (2023).Grossman, J. E., Vasudevan, D., Joyce, C. E. & Hildago, M. Is PD-L1 a consistent biomarker for anti-PD-1 therapy? The model of balstilimab in a virally-driven tumor.
Redman,J.M.等人在HPV无关的头颈癌中新辅助PD-L1和TGF-β阻断后增强了新表位特异性免疫。J、 临床。投资。133(2023年)。Grossman,J.E.,Vasudevan,D.,Joyce,C.E。&Hildago,M。PD-L1是抗PD-1治疗的一致生物标志物吗?balstilimab在病毒驱动的肿瘤中的模型。
Oncogene 40, 1393–1395 (2021).Article .
癌基因401393-1395(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shojaei, F. & Ferrara, N. Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies. Drug Resist Updat 11, 219–230 (2008).Article
Shojaei,F。&Ferrara,N。微环境在肿瘤生长和抗血管生成疗法的难治性/耐药性中的作用。抗药性更新11219-230(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, J. et al. Phase Ib study of anlotinib combined with TQB2450 in pretreated advanced biliary tract cancer and biomarker analysis. Hepatology 77, 65–76 (2023).Article
Zhou,J.等。安洛替尼联合TQB2450治疗晚期胆道癌的Ib期研究和生物标志物分析。肝病学77,65-76(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lwin, Z., Gomez-Roca, C. & Saada-Bouzid, E. LBA41 LEAP-005: Phase II study of lenvatinib (len) plus pembrolizumab (pembro) in patients (pts) with previously treated advanced solid tumours. Ann. Oncol. 31, 2271 (2020).Article
Lwin,Z.,Gomez-Roca,C。和Saada-Bouzid,E。LBA41 LEAP-005:lenvatinib(len)加pembrolizumab(pembro)治疗先前治疗过的晚期实体瘤患者(pts)的II期研究。安科。312271(2020)。文章
Google Scholar
谷歌学者
Jin, S. et al. Feasibility and tolerability of sintilimab plus anlotinib as the second-line therapy for patients with advanced biliary tract cancers: An open-label, single-arm, phase II clinical trial. Int J. Cancer 152, 1648–1658 (2023).Article
Jin,S.等人。辛替单抗联合阿洛替尼作为晚期胆道癌患者二线治疗的可行性和耐受性:一项开放标签,单臂,II期临床试验。《国际癌症杂志》1521648-1658(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ren, B. et al. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol. Cancer 17, 108 (2018).Article
Ren,B。等。肿瘤微环境参与胰腺癌的转移。Mol.Cancer 17108(2018)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Zhang, J., Huang, D., Saw, P. E. & Song, E. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol. 43, 523–545 (2022).Article
Zhang,J.,Huang,D.,Saw,P。E。和Song,E。将冷肿瘤变热:从分子机制到临床应用。趋势免疫。43523-545(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).Article
Galon,J。&Bruni,D。用联合免疫疗法治疗免疫性热,改变和冷肿瘤的方法。《药物目录》修订版。18197-218(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
David, J. M. et al. A novel bifunctional anti-PD-L1/TGF-beta Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. Oncoimmunology 6, e1349589 (2017).Article
。肿瘤免疫学6,e1349589(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yoo, C. et al. Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in patients with pretreated biliary tract cancer. J. Immunother. Cancer 8 (2020).Xu, J., Nie, H. & Wan, H. Bintrafusp Alfa in the Second-Line Treatment of Patients With NSCLC.
Yoo,C.等人。针对预处理胆道癌患者的靶向TGF-β和PD-L1的双功能融合蛋白bintrafusp alfa的I期研究。J、 。。Xu,J.,Nie,H。&Wan,H。Bintrafusp Alfa在NSCLC患者的二线治疗中。
J. Thorac. Oncol. 16, e23–e24 (2021).Article .
J. 托拉克叔叔16,e23–e24(2021)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Cho, B. C. et al. Bintrafusp Alfa Versus Pembrolizumab in Patients With Treatment-Naive, Programmed Death-Ligand 1-High Advanced NSCLC: A Randomized, Open-Label, Phase 3 Trial. J. Thorac. Oncol. 18, 1731–1742 (2023).Article
Cho,B.C.等人,Bintrafusp Alfa与Pembrolizumab治疗初治,程序性死亡配体1-高晚期非小细胞肺癌患者:一项随机,开放标签的3期临床试验。J、 胸部。Oncol公司。181731-1742(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Strauss, J. et al. Phase I Trial of M7824 (MSB0011359C), a Bifunctional Fusion Protein Targeting PD-L1 and TGFbeta, in Advanced Solid Tumors. Clin. Cancer Res 24, 1287–1295 (2018).Article
Strauss,J。等人。M7824(MSB0011359C)是一种靶向PD-L1和TGFbeta的双功能融合蛋白,在晚期实体瘤中的I期试验。临床。癌症研究241287-1295(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Yoo, C. et al. Phase 2 trial of bintrafusp alfa as second-line therapy for patients with locally advanced/metastatic biliary tract cancers. Hepatology 78, 758–770 (2023).PubMed
Yoo,C.等人,bintrafusp alfa作为局部晚期/转移性胆道癌患者二线治疗的2期临床试验。肝病学78758-770(2023)。PubMed出版社
Google Scholar
谷歌学者
Bockelmann, L. C. & Schumacher, U. Targeting tumor interstitial fluid pressure: will it yield novel successful therapies for solid tumors? Expert Opin. Ther. Targets 23, 1005–1014 (2019).Article
Bockelmann,L.C。和Schumacher,U。靶向肿瘤间质液压力:它会产生新的成功治疗实体瘤的方法吗?专家意见。他们。目标231005-1014(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chandra Jena, B., Sarkar, S., Rout, L. & Mandal, M. The transformation of cancer-associated fibroblasts: Current perspectives on the role of TGF-beta in CAF mediated tumor progression and therapeutic resistance. Cancer Lett. 520, 222–232 (2021).Article
。癌症Lett。520222-232(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Terabe, M. & Berzofsky, J. A. Tissue-Specific Roles of NKT Cells in Tumor Immunity. Front Immunol. 9, 1838 (2018).Article
Terabe,M。&Berzofsky,J.A。NKT细胞在肿瘤免疫中的组织特异性作用。前免疫。91838(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, S., Hong, J., Park, Y., Kim, S.-J. & Park, J. Phase 1b study of vactosertib in combination with oxaliplatin with 5FU/LV (FOLFOX) in patients with metastatic pancreatic cancer who have failed first-line gemcitabine/nab-paclitaxel. ASCO Ann. Meet. (2022).Sanmamed, M. F. & Chen, L.
Kim,S.,Hong,J.,Park,Y.,Kim,S.-J。&Park,J。vactosertib联合奥沙利铂联合5FU/LV(FOLFOX)治疗转移性胰腺癌一线吉西他滨/纳布紫杉醇失败的1b期研究。ASCO Ann,见面。(2022年)。Sanmamed,M.F。和Chen,L。
A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 176, 677 (2019).Article .
癌症免疫治疗的范式转变:从增强到正常化。细胞176677(2019)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, J. et al. Immune subtyping for pancreatic cancer with implication in clinical outcomes and improving immunotherapy. Cancer Cell Int 21, 137 (2021).Article
Liu,J。等人。胰腺癌的免疫亚型,对临床结果和改善免疫治疗有意义。癌细胞Int 21137(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hsiehchen, D. et al. The phosphatidylserine targeting antibody bavituximab plus pembrolizumab in unresectable hepatocellular carcinoma: a phase 2 trial. Nat. Commun. 15, 2178 (2024).Article
Hsiehchen,D。等。磷脂酰丝氨酸靶向抗体bavituximab加pembrolizumab治疗不可切除肝细胞癌:2期临床试验。国家公社。152178(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, Y. Adipocyte and lipid metabolism in cancer drug resistance. J. Clin. Invest 129, 3006–3017 (2019).Article
Cao,Y。脂肪细胞和脂质代谢在癌症耐药性中的作用。J、 临床。投资1293006-3017(2019)。文章
PubMed
PubMed
PubMed Central
PubMed 中心
Google Scholar
谷歌学者
Qin, C. et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol. Cancer 19, 50 (2020).Article
秦,C。等。胰腺癌的代谢:为更好的抗癌策略铺平道路。分子癌症19,50(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bader, J. E., Voss, K. & Rathmell, J. C. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol. Cell 78, 1019–1033 (2020).Article
Bader,J.E.,Voss,K。&Rathmell,J.C。靶向代谢以改善癌症免疫治疗的肿瘤微环境。分子细胞781019-1033(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mendonca, F. M. et al. Metabolic syndrome and risk of cancer: which link? Metabolism 64, 182–189 (2015).Article
Mendonca,F.M.等人,《代谢综合征与癌症风险:哪一个环节?新陈代谢64182-189(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fujimura, Y. et al. Mass spectrometry-based metabolic profiling of gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells. Pancreas 43, 311–318 (2014).Article
Fujimura,Y.等人。吉西他滨敏感和吉西他滨耐药胰腺癌细胞的基于质谱的代谢谱分析。胰腺43311-318(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe work was supported by the National Cancer Center Fund (NCC201909B04) and the National Natural Science Foundation of China (Grant Number: 82074202). The authors express their gratitude to the collaborative group members for their commitment, as well as to all of the patients and their families who took part in this experiment.
下载参考文献致谢这项工作得到了国家癌症中心基金(NCC201909B04)和国家自然科学基金(批准号:82074202)的支持。作者对合作小组成员的承诺,以及所有参与该实验的患者及其家属表示感谢。
We are appreciative of Jiangsu Hengrui Pharmaceuticals Co., Ltd. for providing SHR1701 and famitinib. We thank Prof. Zhen Chen, Prof. Zhentian Wang, Dr. Fei Luo (Hengrui Pharmaceuticals Co., Ltd.), Sijia Gu, Wenqian Yu, Yingcheng Wu (Fudan University), Anyi Jiang (Tongji University), Ke Tong (Imperial College London) and Guanhua Yi (Sichuan University).
我们感谢江苏恒瑞制药有限公司提供SHR1701和法米替尼。我们感谢陈振教授、王振田教授、罗飞博士(恒瑞制药有限公司)、顾思嘉、余文倩、吴应成(复旦大学)、江安忆(同济大学)、柯彤(伦敦帝国理工学院)和易冠华(四川大学)。
We thank the computing platform of the Medical Research Data Center of Shanghai Medical College Fudan University. We thank Biotrainee and Bioinfo Composer for sharing their codes.Author informationAuthor notesThese authors contributed equally: Lixia Yi, Haoqi PanAuthors and AffiliationsDepartment of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, ChinaLixia Yi, Zhouyu Ning, Litao Xu, Hena Zhang, Yifan Yang, Waimei Si, Xiaoyan Zhu, Shenglin Huang, Zhiqiang Meng & Jing XieDepartment of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, ChinaLixia Yi, Zhouyu Ning, Litao Xu, Yifan Yang, Waimei Si, Xiaoyan Zhu, Zhiqiang Meng & Jing XieDepartment of Oncology, Shanghai Medical College, Fudan University, Shanghai, ChinaLixia Yi, Haoqi Pan, Zhouyu Ning, Litao Xu, Yaowu Liu, Yifan Yang, Xiaoyan Zhu, Shenglin Huang, Zhiqiang Meng & Jing XieShanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, ChinaHena Zhang & Shenglin HuangSuzhou Institute .
我们感谢复旦大学上海医学院医学研究数据中心的计算平台。我们感谢Biotrainee和Bioinfo Composer分享他们的代码。作者信息作者注意到,这些作者做出了同样的贡献:易丽霞,郝琦作者和附属机构复旦大学上海癌症中心综合肿瘤学系,上海,中国易丽霞,周玉宁,徐丽涛,张海娜,杨一凡,斯外梅,朱晓燕,黄盛林,孟志强和谢静复旦大学上海癌症中心微创治疗中心,上海,易丽霞,周玉宁,徐丽涛,杨一凡,斯外梅,朱晓燕,孟志强和谢静复旦大学上海医学院肿瘤学系,易丽霞,中国潘浩琦,周玉宁,徐立涛,刘耀武,杨一凡,朱晓燕,黄生林,孟志强,谢尚海复旦大学生物医学研究所医学表观遗传学重点实验室,上海,中国。张和黄生林苏州研究所。
PubMed Google ScholarHaoqi PanView author publicationsYou can also search for this author in
PubMed Google ScholarHaoqi PanView作者出版物您也可以在
PubMed Google ScholarZhouyu NingView author publicationsYou can also search for this author in
PubMed Google ScholarZhouyu NingView作者出版物您也可以在
PubMed Google ScholarLitao XuView author publicationsYou can also search for this author in
PubMed Google ScholarHena ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarHena ZhangView作者出版物您也可以在
PubMed Google ScholarLongfei PengView author publicationsYou can also search for this author in
PubMed Google ScholarLongfei PengView作者出版物您也可以在
PubMed Google ScholarYaowu LiuView author publicationsYou can also search for this author in
PubMed Google ScholarYaowu LiuView作者出版物您也可以在
PubMed Google ScholarYifan YangView author publicationsYou can also search for this author in
PubMed Google ScholarYifan YangView作者出版物您也可以在
PubMed Google ScholarWaimei SiView author publicationsYou can also search for this author in
PubMed Google ScholarWaimei SiView作者出版物您也可以在
PubMed Google ScholarYing WangView author publicationsYou can also search for this author in
PubMed Google ScholarYing WangView作者出版物您也可以在
PubMed Google ScholarXiaoyan ZhuView author publicationsYou can also search for this author in
PubMed谷歌学者朱晓燕查看作者出版物您也可以在
PubMed Google ScholarShenglin HuangView author publicationsYou can also search for this author in
PubMed Google ScholarShenglin HuangView作者出版物您也可以在
PubMed Google ScholarZhiqiang MengView author publicationsYou can also search for this author in
PubMed Google ScholarZhiqiang MengView作者出版物您也可以在
PubMed Google ScholarJing XieView author publicationsYou can also search for this author in
PubMed谷歌学术评论作者出版物您也可以在
PubMed Google ScholarContributionsJ.X. and Z.Q.M. conceptualized the study and provided overall supervision. L.X.Y. analyzed the data and took the lead in drafting the manuscript. H.Q.P. was dominantly in charge of experiment validation. S.L.H., L.T.X. and Z.Y.N. provided guidance on the statistical analysis.
。十、 Z.Q.M.将研究概念化并提供全面监督。五十、 X.Y.分析了数据,并率先起草了手稿。H、 Q.P.主要负责实验验证。S、 L.H.,L.T.X.和Z.Y.N.提供了统计分析的指导。
H.N.Z. helped with the RNA-seq data processing. L.F.P. assisted in the collection of tissue samples. Y.W.L. and Y.F.Y. helped with the refinement of the writing essays. W.M.S. and Y.W. contributed to the acquisition and interpretation of the data the interpretation of the results. X.Y.Z. recommended the patient’s participation in the clinical trial at the time of initial diagnosis.
H、 N.Z.帮助进行RNA-seq数据处理。五十、 F.P.协助收集组织样本。Y、 W.L.和Y.F.Y.帮助改进了论文的写作。W、 M.S.和Y.W.为数据的获取和解释以及结果的解释做出了贡献。十、 Y.Z.建议患者在初次诊断时参加临床试验。
All authors have read and approved the article.Corresponding authorsCorrespondence to.
所有作者都阅读并批准了这篇文章。通讯作者通讯。
Shenglin Huang, Zhiqiang Meng or Jing Xie.Ethics declarations
黄生林、孟志强或谢静。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Supplementary informationStudy ProtocolSupplementary MaterialsSupplementary Data S1Supplementary Data S2Supplementary Data S3Supplementary Data S4Rights and permissions
补充信息研究协议补充材料补充数据S1补充数据S2补充数据S3补充数据S4权利和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleYi, L., Pan, H., Ning, Z. et al. Clinical and biomarker analyses of SHR-1701 combined with famitinib in patients with previously treated advanced biliary tract cancer or pancreatic ductal adenocarcinoma: a phase II trial.
转载和许可本文引用本文Yi,L.,Pan,H.,Ning,Z。等人。SHR-1701联合法米替尼治疗先前治疗的晚期胆道癌或胰腺导管腺癌患者的临床和生物标志物分析:II期试验。
Sig Transduct Target Ther 9, 347 (2024). https://doi.org/10.1038/s41392-024-02052-3Download citationReceived: 09 July 2024Revised: 21 October 2024Accepted: 05 November 2024Published: 13 December 2024DOI: https://doi.org/10.1038/s41392-024-02052-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sig Transduct Target Ther 9347(2024)。https://doi.org/10.1038/s41392-024-02052-3Download引文收到日期:2024年7月9日修订日期:2024年10月21日接受日期:2024年11月5日发布日期:2024年12月13日OI:https://doi.org/10.1038/s41392-024-02052-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供