商务合作
动脉网APP
可切换为仅中文
AbstractTiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone1. However, there remains little consensus on the mechanism(s) of response with this combination2.
摘要tiragolumab是一种具有活性IgG1κFc的抗TIGIT抗体,当与atezolizumab(抗PD-L1)联合使用时,与单独使用atezolizumab相比,在2期CITYSCAPE试验(ClinicalTrials.gov:NCT03563716)中表现出改善的结果1。然而,关于这种组合的反应机制仍然没有达成共识2。
Here we find that a high baseline of intratumoural macrophages and regulatory T cells is associated with better outcomes in patients treated with atezolizumab plus tiragolumab but not with atezolizumab alone. Serum sample analysis revealed that macrophage activation is associated with a clinical benefit in patients who received the combination treatment.
在这里,我们发现肿瘤内巨噬细胞和调节性T细胞的高基线与用atezolizumab加tiragolumab治疗但不单独使用atezolizumab治疗的患者的更好结果相关。血清样本分析显示,巨噬细胞活化与接受联合治疗的患者的临床获益有关。
In mouse tumour models, tiragolumab surrogate antibodies inflamed tumour-associated macrophages, monocytes and dendritic cells through Fcγ receptors (FcγR), in turn driving anti-tumour CD8+ T cells from an exhausted effector-like state to a more memory-like state. These results reveal a mechanism of action through which TIGIT checkpoint inhibitors can remodel immunosuppressive tumour microenvironments, and suggest that FcγR engagement is an important consideration in anti-TIGIT antibody development..
在小鼠肿瘤模型中,tiragolumab替代抗体通过Fcγ受体(FcγR)使肿瘤相关巨噬细胞,单核细胞和树突状细胞发炎,进而将抗肿瘤CD8+T细胞从耗尽的效应物样状态驱动到更像记忆的状态。这些结果揭示了TIGIT检查点抑制剂可以重塑免疫抑制性肿瘤微环境的作用机制,并表明FcγR参与是抗TIGIT抗体开发中的重要考虑因素。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription$29.99 / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 51 print issues and online access$199.00 per yearonly $3.90 per issueLearn moreRent or buy this articlePrices vary by article typefrom$1.95to$39.95Learn morePrices may be subject to local taxes which are calculated during checkout.
Access Nature和54种其他Nature Portfolio期刊Get Nature+,我们最划算的在线访问订阅费为29.99美元/30天,可随时了解更多信息订阅本期刊每年可收到51期印刷品,在线访问费为199.00美元每期仅3.90美元了解更多信息租赁或购买本文价格因文章类型而异,从1.95美元到39.95美元了解更多信息价格可能会受到结帐期间计算的当地税费的影响。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Intratumoural myeloid and Treg cell content is associated with patient benefit after combination treatment with tiragolumab plus atezolizumab in the CITYSCAPE trial.Fig. 2: Treatment with tiragolumab plus atezolizumab leads to increased serum myeloid proteins.Fig. 3: Tiragolumab plus atezolizumab leads to T, NK and myeloid cell activation in PBMCs.Fig.
图1:在CITYSCAPE试验中,用替拉鲁单抗加atezolizumab联合治疗后,肿瘤内骨髓和Treg细胞含量与患者获益相关。图2:用tiragolumab加atezolizumab治疗导致血清髓样蛋白增加。图3:Tiragolumab加atezolizumab导致PBMC中的T,NK和骨髓细胞活化。图。
4: Fc receptor engagement supports tiragolumab surrogate efficacy and ability to remodel the tumour microenvironment in mice.Fig. 5: Flow cytometry analysis of anti-TIGIT antibody activity on tumour myeloid cells and lymphocytes.Fig. 6: Macrophages enable modulation of CD8+ T cells by Fc-active anti-TIGIT antibodies in vivo and in vitro..
4: Fc受体参与支持tiragolumab替代功效和重塑小鼠肿瘤微环境的能力。图5:肿瘤骨髓细胞和淋巴细胞上抗TIGIT抗体活性的流式细胞术分析。图6:巨噬细胞能够在体内和体外通过Fc活性抗TIGIT抗体调节CD8+T细胞。。
Data availability
数据可用性
The sequencing data generated in this study will be deposited once anonymized. Up-to-date details on Roche’s Global Policy on the Sharing of Clinical Information and how to request access to related clinical study documents are available online (https://go.roche.com/data_sharing). Anonymized records for individual patients across more than one data source external to Roche cannot, and should not, be linked due to a potential increase in risk of patient re-identification.
这项研究中生成的测序数据将在匿名后保存。有关罗氏全球临床信息共享政策以及如何请求访问相关临床研究文件的最新详细信息,请在线查阅(https://go.roche.com/data_sharing)。由于患者重新识别风险的潜在增加,罗氏外部多个数据源中个别患者的匿名记录不能也不应该链接。
Source data of preclinical study data are provided with this paper, and source data of clinical study data will be deposited once anonymized. Source data are provided with this paper..
本文提供了临床前研究数据的源数据,临床研究数据的源数据将在匿名后保存。本文提供了源数据。。
Code availability
代码可用性
All packages used in this study are publicly available. This study does not report original codes.
本研究中使用的所有软件包都是公开的。这项研究没有报告原始代码。
ReferencesCho, B. C. et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 23, 781–792 (2022).CAS
ReferencesCho,B.C.等人。替拉鲁单抗联合atezolizumab与安慰剂联合atezolizumab作为PD-L1选择的非小细胞肺癌(CITYSCAPE)的一线治疗:随机,双盲,2期研究的主要和随访分析。柳叶刀Oncol。23781-792(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dolgin, E. Antibody engineers seek optimal drug targeting TIGIT checkpoint. Nat. Biotechnol. 38, 1007–1009 (2020).CAS
抗体工程师寻找针对TIGIT检查点的最佳药物。美国国家生物技术公司。381007-1009(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).CAS
Sharma,P.,Hu Lieskovan,S.,Wargo,J.A。&Ribas,A。对癌症免疫疗法的原发性,适应性和获得性抗性。细胞168707-723(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gong, J., Le, T. Q., Massarelli, E., Hendifar, A. E. & Tuli, R. Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. J. Immunother. Cancer 6, 46 (2018).PubMed
Gong,J.,Le,T.Q.,Massarelli,E.,Hendifar,A.E。&Tuli,R。放射治疗和PD-1/PD-L1阻断:不断发展的抗癌组合的临床发展。J、 免疫疗法。癌症6,46(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, M., Herbst, R. S. & Boshoff, C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 27, 1345–1356 (2021).CAS
Wang,M.,Herbst,R.S。&Boshoff,C。走向非小细胞肺癌的个性化治疗方法。《自然医学》271345-1356(2021)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chiang, E. Y. & Mellman, I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J. Immunother. Cancer 10, e004711 (2022).PubMed
Chiang,E.Y。&Mellman,I。TIGIT-CD226-PVR轴:推进癌症免疫治疗的免疫检查点阻断。J、 免疫疗法。癌症10,e004711(2022)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Herbst, R. S. et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N. Engl. J. Med. 383, 1328–1339 (2020).CAS
Herbst,R。S。等人。Atezolizumab用于PD-L1选择的NSCLC患者的一线治疗。N、 英语。J、 医学3831328-1339(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Felip, E. et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet 398, 1344–1357 (2021).CAS
Felip,E.等人,《切除的IB-IIIA期非小细胞肺癌辅助化疗后辅助使用atezolizumab》(IMpower010):一项随机、多中心、开放标签的3期临床试验。柳叶刀3981344-1357(2021)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell 26, 923–937 (2014).CAS
Johnston,R.J。等人。免疫受体TIGIT调节抗肿瘤和抗病毒CD8+T细胞效应功能。癌细胞26923-937(2014)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Banta, K. L. et al. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ T cell responses. Immunity 55, 512–526 (2022).CAS
Banta,K.L。等人。TIGIT和PD-1抑制途径的机制收敛需要共同阻断以优化抗肿瘤CD8+T细胞应答。免疫力55512-526(2022)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Johnston, R. J., Lee, P. S., Strop, P. & Smyth, M. J. Cancer immunotherapy and the nectin family. Annu. Rev. Cancer Biol. 5, 203–219 (2021).
Johnston,R.J.,Lee,P.S.,Strop,P。&Smyth,M.J。癌症免疫疗法和nectin家族。年。癌症生物学评论。5203-219(2021)。
Google Scholar
谷歌学者
Waight, J. D. et al. Selective FcɣR co-engagement on APCs modulates the activity of therapeutic antibodies targeting T cell antigens. Cancer Cell 33, 1033–1047 (2018).CAS
Waight,J.D。等人。APC上的选择性FcɣR共同参与调节靶向T细胞抗原的治疗性抗体的活性。癌细胞331033-1047(2018)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Han, J. H. et al. Effective anti-tumor response by TIGIT blockade associated with FcγR engagement and myeloid cell activation. Front. Immunol. 11, 573405 (2020).CAS
Han,J.H.等人。通过TIGIT阻断与FcγR参与和骨髓细胞活化相关的有效抗肿瘤反应。正面。免疫。11573405(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Preillon, J. et al. Restoration of T-cell effector function, depletion of Tregs, and direct killing of tumor cells: the multiple mechanisms of action of a-TIGIT antagonist antibodies. Mol. Cancer Ther. 20, 121–131 (2021).CAS
Preillon,J。等人。T细胞效应功能的恢复,Tregs的消耗和肿瘤细胞的直接杀伤:α-TIGIT拮抗剂抗体的多种作用机制。分子癌症治疗。20121-131(2021)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48–57 (2008).PubMed
Yu,X。等人。表面蛋白TIGIT通过促进成熟免疫调节树突状细胞的产生来抑制T细胞活化。自然免疫。10,48-57(2008)。PubMed出版社
Google Scholar
谷歌学者
Stanietsky, N. et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl Acad. Sci. USA 106, 17858–17863 (2009).ADS
Stanietsky,N。等人。TIGIT与PVR和PVRL2的相互作用抑制人NK细胞的细胞毒性。程序。国家科学院。科学。美国10617858–17863(2009)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Patil, N. S. et al. Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell 40, 289–300 (2022).CAS
Patil,N.S.等人肿瘤内浆细胞预测非小细胞肺癌PD-L1阻断的结果。癌细胞40289-300(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389, 255–265 (2017).PubMed
Rittmeyer,A。等人。Atezolizumab与多西紫杉醇治疗先前治疗的非小细胞肺癌(OAK)患者:一项3期开放标签多中心随机对照试验。柳叶刀389255-265(2017)。PubMed出版社
Google Scholar
谷歌学者
Dige, A. et al. Soluble CD163, a specific macrophage activation marker, is decreased by anti-TNF-α antibody treatment in active inflammatory bowel disease. Scand. J. Immunol. 80, 417–423 (2014).CAS
在活动性炎症性肠病中,抗TNF-α抗体治疗可降低可溶性CD163(一种特异性巨噬细胞活化标志物)。斯堪的纳维亚。J、 免疫。80417-423(2014)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Davis, B. H. & Zarev, P. V. Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels. Cytometry B. Clin. Cytom. 63, 16–22 (2005).PubMed
Davis,B.H。&Zarev,P.V。人单核细胞CD163表达与可溶性CD163血浆水平呈负相关。细胞计数B.临床。Cytom公司。63,16-22(2005)。PubMed出版社
Google Scholar
谷歌学者
Bendell, J. C. et al. Phase Ia/Ib dose-escalation study of the anti-TIGIT antibody tiragolumab as a single agent and in combination with atezolizumab in patients with advanced solid tumors. Cancer Res. 80, CT302 (2020).Liberzon, A. et al. The Molecular Signatures Database (MSigDB) Hallmark gene set collection.
Bendell,J.C.等。抗TIGIT抗体替拉格单抗作为单一药物并与atezolizumab联合治疗晚期实体瘤患者的Ia/Ib期剂量递增研究。癌症研究80,CT302(2020)。Liberzon,A。等人。分子签名数据库(MSigDB)标志性基因集集合。
Cell Syst. 1, 417–425 (2015).CAS .
细胞系统。1417-425(2015)。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).ADS
Herbst,R.S.等人。癌症患者对抗PD-L1抗体MPDL3280A反应的预测相关性。自然515563-567(2014)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bar, N. et al. Differential effects of PD-L1 versus PD-1 blockade on myeloid inflammation in human cancer. JCI Insight 5, e129353 (2020).PubMed
Bar,N。等人。PD-L1与PD-1阻断剂对人类癌症骨髓炎症的不同作用。JCI Insight 5,e129353(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pello, O. M. et al. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119, 411–421 (2012).PubMed
Pello,O.M.等人。c-MYC在人类巨噬细胞替代激活和肿瘤相关巨噬细胞生物学中的作用。血液119411-421(2012)。PubMed出版社
Google Scholar
谷歌学者
Lo, M. et al. Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice. J. Biol. Chem. 292, 3900–3908 (2017).CAS
Lo,M。等人。效应子减弱替代,维持抗体稳定性并降低小鼠毒性。J、 生物。化学。2923900–3908(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors: old friends and new family members. Immunity 24, 19–28 (2006).CAS
Nimmerjahn,F。&Ravetch,J.V。Fcγ受体:老朋友和新家庭成员。豁免24,19-28(2006)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, A. Y. et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc. Natl Acad. Sci. USA 93, 9730–9735 (1996).ADS
Huang,A.Y.等人。小鼠结肠肿瘤的免疫显性主要组织相容性复合物I类限制性抗原来源于内源性逆转录病毒基因产物。程序。国家科学院。科学。美国939730–9735(1996)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).CAS
DeNardo,D.G.等人。白细胞复杂性可预测乳腺癌的存活率,并在功能上调节对化疗的反应。癌症发现。1,54-67(2011)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).CAS
用抗CSF-1R抗体靶向肿瘤相关巨噬细胞揭示了癌症治疗的策略。癌细胞25846-859(2014)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
O’Brien, S. A. et al. Activity of tumor-associated macrophage depletion by CSF1R blockade is highly dependent on the tumor model and timing of treatment. Cancer Immunol. Immunother. 70, 2401–2410 (2021).PubMed
O'Brien,S.A。等人。通过CSF1R阻断肿瘤相关巨噬细胞耗竭的活性高度依赖于肿瘤模型和治疗时间。癌症免疫。免疫疗法。702401-2410(2021)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).PubMed
Cannarile,M.A。等人。癌症治疗中的集落刺激因子1受体(CSF1R)抑制剂。J、 免疫疗法。癌症5,53(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).ADS
Ribas,A。&Wolchok,J.D。使用检查点封锁的癌症免疫疗法。科学3591350-1355(2018)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).CAS
Morad,G.,Helmink,B.A.,Sharma,P。&Wargo,J.A。对免疫检查点封锁的反应,抗性和毒性的标志。细胞1845309-5337(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yofe, I. et al. Anti-CTLA-4 antibodies drive myeloid activation and reprogram the tumor microenvironment through FcγR engagement and type I interferon signaling. Nat. Cancer 3, 1336–1350 (2022).CAS
Yofe,I。等人。抗CTLA-4抗体通过FcγR参与和I型干扰素信号传导驱动骨髓激活并重新编程肿瘤微环境。《自然癌症》31336-1350(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595, 578–584 (2021).ADS
Casanova-Acebes,M。等人。组织驻留巨噬细胞为早期NSCLC细胞提供了促肿瘤发生的生态位。自然595578-584(2021)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nielsen, S. R. & Schmid, M. C. Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm. 2017, 9624760 (2017).PubMed
Nielsen,S.R。&Schmid,M.C。巨噬细胞是癌症进展和转移的关键驱动因素。调解人发炎。20179624760(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haas, L. & Obenauf, A. C. Allies or enemies—the multifaceted role of myeloid cells in the tumor microenvironment. Front. Immunol. 10, 2746 (2019).CAS
Haas,L.&Obenauf,A.C.支持或反对骨髓细胞在肿瘤微环境中的多方面作用。正面。免疫。102746(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lindau, D., Gielen, P., Kroesen, M., Wesseling, P. & Adema, G. J. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138, 105–115 (2013).CAS
Lindau,D.,Gielen,P.,Kroesen,M.,Wesseling,P。&Adema,G.J。免疫抑制肿瘤网络:骨髓来源的抑制细胞,调节性T细胞和自然杀伤T细胞。免疫学138105-115(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334 (2019).CAS
Zilionis,R。等人。人和小鼠肺癌的单细胞转录组学揭示了个体和物种之间保守的骨髓种群。免疫力501317-1334(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bournazos, S. et al. Signaling by antibodies: recent progress. Annu. Rev. Immunol. 35, 285–311 (2017).CAS
Bournazos,S.等人,《抗体信号传导:最新进展》。年。免疫修订版。35285-311(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bruderer, R. et al. Analysis of 1508 plasma samples by capillary-flow data-independent acquisition profiles proteomics of weight loss and maintenance. Mol. Cell. Proteom. 18, 1242–1254 (2019).CAS
Bruderer,R。等人。通过毛细管流数据独立采集分析1508个血浆样品的体重减轻和维持的蛋白质组学。摩尔电池。蛋白质组学。181242-1254(2019)。中科院
Google Scholar
谷歌学者
Callister, S. J. et al. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res. 5, 277–286 (2006).CAS
Callister,S.J.等人。消除与质谱和无标记蛋白质组学相关的系统偏差的标准化方法。J、 蛋白质组研究5277-286(2006)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724–1735 (2007).CAS
Leek,J.T。&Storey,J.D。通过替代变量分析捕获基因表达研究中的异质性。PLoS Genet。31724-1735(2007)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Richie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
Richie,M.E.等人limma为RNA测序和微阵列研究提供了差异表达分析的能力。核酸研究43,e47(2015)。
Google Scholar
谷歌学者
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).CAS
Stoeckius,M.等人。单细胞中表位和转录组的同时测量。自然方法14865-868(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).CAS
Oh,S.A.等人。树突状细胞表达PD-L1是癌症中T细胞免疫的关键调节剂。《自然癌症》1681-691(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mily, A. et al. Polarization of M1 and M2 human monocyte-derived cells and analysis with flow cytometry upon Mycobacterium tuberculosis infection. J. Vis. Exp. 163, e61807 (2020).
Mily,A。等人。M1和M2人单核细胞衍生细胞的极化以及结核分枝杆菌感染后的流式细胞术分析。J、 可见。实验163,e61807(2020)。
Google Scholar
谷歌学者
Wu, T. D., Reeder, J., Lawrence, M., Becker, G. & Brauer, M. J. GMAP and GSNAP for genomic sequence alignment: enhancements to speed, Accuracy, and Functionality. Methods Mol. Biol. 1418, 283–334 (2016).PubMed
Wu,T.D.,Reeder,J.,Lawrence,M.,Becker,G。&Brauer,M.J。GMAP和GSNAP用于基因组序列比对:速度,准确性和功能的增强。方法分子生物学。1418283-334(2016)。PubMed出版社
Google Scholar
谷歌学者
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).CAS
Lawrence,M.等人。用于计算和注释基因组范围的软件。PLoS计算机。生物学杂志9,e1003118(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).CAS
Lambrechts,D。等人。肺肿瘤微环境中基质细胞的表型塑造。《自然医学》241277-1289(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Laboratory for Functional Epigenetics, gbiomed.kuleuven.be/english/cme/research/laboratories/54213024/scRNAseq-NSCLC (KU Leuven, 2023).Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).CAS
功能表观遗传学实验室,gbiomed.kuleuven.be/english/cme/research/laboratories/54213024/scRNAseq-NSCLC(KU Leuven,2023)。Stuart,T。等人。单细胞数据的综合集成。细胞1771888-1902(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).CAS
Korsunsky,I。等人。单细胞数据与和谐的快速,灵敏和准确整合。自然方法161289-1296(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809 (2021).CAS
Cheng,S.等人。肿瘤浸润性骨髓细胞的泛癌单细胞转录图谱。细胞184792-809(2021)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).ADS
单细胞RNA测序证实了转移性肺腺癌的分子和细胞重编程。国家公社。112285(2020)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bagaev, A. et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39, 845–865 (2021).CAS
Bagaev,A。等人。保守的泛癌微环境亚型预测对免疫疗法的反应。癌细胞39845-865(2021)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).ADS
Mariathasan,S。等人。TGFβ通过有助于排除T细胞来减弱肿瘤对PD-L1阻断的反应。自然554544-548(2018)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).Download referencesAcknowledgementsWe thank the patients who provided tumour samples for this study, as well as the investigators and staff involved in the CITYSCAPE study.
Sergushichev,A.A。使用累积统计计算进行快速预排序基因集富集分析的算法。bioRxiv预印本https://doi.org/10.1101/060012(2021年)。下载参考文献致谢我们感谢为本研究提供肿瘤样本的患者,以及参与城市景观研究的研究人员和工作人员。
Editorial assistance for the development of this Article, under the direction of the authors, was provided by A. Robertson and D. Christofi of Ashfield MedComms, an Inizio company, and funded by F. Hoffmann-La Roche. We also thank the staff at Biognosys for processing and generating the raw mass spectrometry data files for analysis; the staff at Abiosciences for generating mouse scRNA-seq raw data files; the staff at Immunai for generating and processing human PBMC scRNA-seq data; and C.
在作者的指导下,本文的编辑协助由Inizio公司Ashfield MedComms的A.Robertson和D.Christofi提供,并由F.Hoffmann La Roche资助。我们也感谢Biognosys的工作人员处理和生成原始质谱数据文件进行分析;Abiosciences的工作人员用于生成鼠标scRNA-seq原始数据文件;Immunai的工作人员负责生成和处理人类PBMC scRNA-seq数据;和C。
Bais, T. Pham, R. Greathouse and A. Rapaport for reading the manuscript and providing technical assistance.Author informationAuthor notesThese authors contributed equally: Xiangnan Guan, Ruozhen Hu, Yoonha Choi, Shyam Srivats, Robert J. Johnston, Namrata S. PatilThese authors jointly supervised this work: Robert J.
Bais,T。Pham,R。Greathouse和A。Rapaport阅读手稿并提供技术援助。作者信息作者注意到这些作者做出了同样的贡献:关湘南,胡若珍,崔永霞,Shyam Srivats,Robert J.Johnston,Namrata S.Patilth这些作者共同监督了这项工作:Robert J。
Johnston, Namrata S. PatilAuthors and AffiliationsGenentech Inc., South San Francisco, CA, USAXiangnan Guan, Ruozhen Hu, Yoonha Choi, Shyam Srivats, Barzin Y. Nabet, John Silva, Lisa McGinnis, Robert Hendricks, Katherine Nutsch, Karl L. Banta, Ellen Duong, Alexis Dunkle, Patrick S. Chang, Chia-Jung Han, Stephanie Mittman, Nandini Molden, Pallavi Daggumati, Wendy Connolly, Ira Mellman, Sanjeev Mariathasan, David S.
Johnston,Namrata S.PatilAuthors及其附属机构Genentech Inc.,南旧金山,加利福尼亚州,USAXiangnan Guan,Ruozhen Hu,Yoonha Choi,Shyam Srivats,Barzin Y.Nabet,John Silva,Lisa McGinnis,Robert Hendricks,Katherine Nutsch,Karl L.Banta,Ellen Duong,Alexis Dunkle,Patrick S.Chang,Chia Jung Han,Stephanie Mittman,Nandini Molden,Pallavi Daggumati,Wendy Connolly,艾拉·梅尔曼(IraMellman),桑杰夫·马里亚萨桑(SanjeevMariathasan),大卫·S。
Shames, Raymond Meng, Eugene Y. Chiang, Robert J. Johnston & Namrata S. PatilSarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, TN, USAMelissa JohnsonHospital Universitario Insular de Gr.
Shames,Raymond Meng,Eugene Y.Chiang,Robert J.Johnston&Namrata S.PatilSarah Cannon Research Institute/田纳西州肿瘤学,PLLC,田纳西州纳什维尔,USAMelissa JohnsonHospital Universitario Isular de Gr。
PubMed Google ScholarRuozhen HuView author publicationsYou can also search for this author in
PubMed Google ScholarRuozhen HuView作者出版物您也可以在
PubMed Google ScholarYoonha ChoiView author publicationsYou can also search for this author in
PubMed Google ScholarYoonha ChoiView作者出版物您也可以在
PubMed Google ScholarShyam SrivatsView author publicationsYou can also search for this author in
PubMed Google ScholarShyam SrivatsView作者出版物您也可以在
PubMed Google ScholarBarzin Y. NabetView author publicationsYou can also search for this author in
PubMed Google ScholarBarzin Y.NabetView作者出版物您也可以在
PubMed Google ScholarJohn SilvaView author publicationsYou can also search for this author in
PubMed谷歌学者John SilvaView作者出版物您也可以在
PubMed Google ScholarLisa McGinnisView author publicationsYou can also search for this author in
PubMed Google ScholarLisa McGinnisView作者出版物您也可以在
PubMed Google ScholarRobert HendricksView author publicationsYou can also search for this author in
PubMed谷歌Scholarrorbert HendricksView作者出版物您也可以在
PubMed Google ScholarKatherine NutschView author publicationsYou can also search for this author in
PubMed Google ScholarKatherine NutschView作者出版物您也可以在
PubMed Google ScholarKarl L. BantaView author publicationsYou can also search for this author in
PubMed Google ScholarKarl L.BantaView作者出版物您也可以在
PubMed Google ScholarEllen DuongView author publicationsYou can also search for this author in
PubMed Google ScholarEllen DuongView作者出版物您也可以在
PubMed Google ScholarAlexis DunkleView author publicationsYou can also search for this author in
PubMed Google ScholarAlexis DunkleView作者出版物您也可以在
PubMed Google ScholarPatrick S. ChangView author publicationsYou can also search for this author in
PubMed Google ScholarPatrick S.ChangView作者出版物您也可以在
PubMed Google ScholarChia-Jung HanView author publicationsYou can also search for this author in
PubMed Google ScholarChia Jung HanView作者出版物您也可以在
PubMed Google ScholarStephanie MittmanView author publicationsYou can also search for this author in
PubMed Google ScholarStephanie MittmanView作者出版物您也可以在
PubMed Google ScholarNandini MoldenView author publicationsYou can also search for this author in
PubMed Google ScholarNandini MoldenView作者出版物您也可以在
PubMed Google ScholarPallavi DaggumatiView author publicationsYou can also search for this author in
PubMed Google ScholarPallavi DaggumatiView作者出版物您也可以在
PubMed Google ScholarWendy ConnollyView author publicationsYou can also search for this author in
PubMed谷歌学者WendyConnollyView作者出版物您也可以在
PubMed Google ScholarMelissa JohnsonView author publicationsYou can also search for this author in
PubMed Google Scholarmalelissa JohnsonView作者出版物您也可以在
PubMed Google ScholarDelvys Rodriguez AbreuView author publicationsYou can also search for this author in
PubMed Google ScholarDelvys Rodriguez AbreuView作者出版物您也可以在
PubMed Google ScholarByoung Chul ChoView author publicationsYou can also search for this author in
PubMed Google ScholarByoung Chul ChoView作者出版物您也可以在
PubMed Google ScholarAntoine ItalianoView author publicationsYou can also search for this author in
PubMed Google ScholarAntoine ItalianoView作者出版物您也可以在
PubMed Google ScholarIgnacio Gil-BazoView author publicationsYou can also search for this author in
PubMed Google ScholarIgnacio Gil BazoView作者出版物您也可以在
PubMed Google ScholarEnriqueta FelipView author publicationsYou can also search for this author in
PubMed Google ScholarEnriqueta FelipView作者出版物您也可以在
PubMed Google ScholarIra MellmanView author publicationsYou can also search for this author in
PubMed Google ScholarIra MellmanView作者出版物您也可以在
PubMed Google ScholarSanjeev MariathasanView author publicationsYou can also search for this author in
PubMed Google ScholarSanjeev MariathasanView作者出版物您也可以在
PubMed Google ScholarDavid S. ShamesView author publicationsYou can also search for this author in
PubMed Google ScholarDavid S.ShamesView作者出版物您也可以在
PubMed Google ScholarRaymond MengView author publicationsYou can also search for this author in
PubMed Google ScholarRaymond MengView作者出版物您也可以在
PubMed Google ScholarEugene Y. ChiangView author publicationsYou can also search for this author in
PubMed Google ScholarEugene Y.ChiangView作者出版物您也可以在
PubMed Google ScholarRobert J. JohnstonView author publicationsYou can also search for this author in
PubMed Google ScholarRobert J.JohnstonView作者出版物您也可以在
PubMed Google ScholarNamrata S. PatilView author publicationsYou can also search for this author in
PubMed Google ScholarNamrata S.PatilView作者出版物您也可以在
PubMed Google ScholarContributionsX.G. and R. Hu are co-first authors; Y.C. and S.S. are co-second authors; and R.J.J. and N.S.P. are co-senior authors. N.S.P. and R.J.J. conceived the project. R. Hu, S.S., J.S., L.M., R. Hendricks, K.N., K.L.B., E.D., P.S.C., J.H. and S. Mittman performed experiments.
PubMed谷歌学术贡献x。G、 和R.Hu是共同的第一作者;Y、 C.和S.S.是共同的第二作者;R.J.J.和N.S.P.是联合高级作者。N。S、 P.和R.J.J.构思了这个项目。R、 胡,S.S.,J.S.,L.M.,R.Hendricks,K.N.,K.L.B.,E.D.,P.S.C.,J.H.和S.Mittman进行了实验。
N.S.P., R.J.J., X.G., R. Hu, Y.C., S.S., B.Y.N., L.M. and E.D analysed data. N.S.P., S.S., E.Y.C., L.M., A.D., S. Mariathasan, R.M., D.S.S., I.M. and R.J.J. guided data analysis. W.C., N.M. and P.D. coordinated clinical sample management and analysis. M.J., D.R.A., B.C.C., A.I., I.G.-B., E.F. and R.M.
N、 S.P.,R.J.J.,X.G.,R.Hu,Y.C.,S.S.,B.Y.N.,L.M.和E.D分析了数据。N、 S.P.,S.S.,E.Y.C.,L.M.,A.D.,S.Mariathasan,R.M.,D.S.S.,I.M.和R.J.J.引导数据分析。W、 C.,N.M.和P.D.协调临床样本管理和分析。M、 J.,D.R.A.,B.C.C.,A.I.,I.G.-B.,E.F.和R.M。
guided clinical trial and data management. N.S.P., R.J.J. and X.G. wrote the manuscript with input from all of the authors. All of the authors contributed to data interpretation, discussion of results and commented on the manuscript.Corresponding authorsCorrespondence to.
指导临床试验和数据管理。N、 S.P.,R.J.J.和X.G.在所有作者的意见下撰写了手稿。所有作者都为数据解释,结果讨论和手稿评论做出了贡献。通讯作者通讯。
Robert J. Johnston or Namrata S. Patil.Ethics declarations
Robert J.Johnston或Namrata S.Patil。道德宣言
Competing interests
相互竞争的利益
X.G., R. Hu, Y.C., S.S., B.Y.N., J.S., L.M., R. Hendricks, K.N., K.L.B., E.D., A.D., P.S.C., J.H., S. Mittman, N.M., P.D., W.C., I.M., S. Mariathasan, D.S.S., R.M., E.Y.C., R.J.J. and N.S.P. are employees and stockholders of Roche/Genentech. M.J. declares research funding (paid to institution) from AbbVie, Acerta, Adaptimmune, Amgen, Apexigen, Arcus Biosciences, Array BioPharma, ArriVent BioPharma, Artios Pharma, AstraZeneca, Atreca, BeiGene, BerGenBio, BioAtla, Black Diamond, Boehringer Ingelheim, Bristol-Myers Squibb, Calithera Biosciences, Carisma Therapeutics, Checkpoint Therapeutics, City of Hope National Medical Center, Corvus Pharmaceuticals, Curis, CytomX, Daiichi Sankyo, Dracen Pharmaceuticals, Dynavax, Lilly, Eikon Therapeutics, Elicio Therapeutics, EMD Serono, EQRx, Erasca, Exelixis, Fate Therapeutics, Genentech/Roche, Genmab, Genocea Biosciences, GlaxoSmithKline, Gritstone Oncology, Guardant Health, Harpoon, Helsinn Healthcare SA, Hengrui Therapeutics, Hutchison MediPharma, IDEAYA Biosciences, IGM Biosciences, Immunitas Therapeutics, Immunocore, Incyte, Janssen, Jounce Therapeutics, Kadmon Pharmaceuticals, Kartos Therapeutics, LockBody Therapeutics, Loxo Oncology, Lycera, Memorial Sloan-Kettering, Merck, Merus, Mirati Therapeutics, Mythic Therapeutics, NeoImmune Tech, Neovia Oncology, Novartis, Numab Therapeutics, Nuvalent, OncoMed Pharmaceuticals, Palleon Pharmaceuticals, Pfizer, PMV Pharmaceuticals, Rain Therapeutics, RasCal Therapeutics, Regeneron Pharmaceuticals, Relay Therapeutics, Revolution Medicines, Ribon Therapeutics, Rubius Therapeutics, Sanofi, Seven and Eight Biopharmaceuticals/Birdie Biopharmaceuticals, Shattuck Labs, Silicon Therapeutics, Stem CentRx, Syndax Pharmaceuticals, Taiho Oncology, Takeda Pharmaceuticals, Tarveda, TCR2 Therapeutics, T.
十、 G.,R.Hu,Y.C.,S.S.,B.Y.N.,J.S.,L.M.,R.Hendricks,K.N.,K.L.B.,E.D.,A.D.,P.S.C.,J.H.,S.Mittman,N.M.,P.D.,W.C.,I.M.,S.Mariathasan,D.S.S.,R.M.,E.Y.C.,R.J.J.和N.S.P.是罗氏/基因泰克的员工和股东。M、 J.宣布研究资金(支付给机构)来自AbbVie,Acerta,Adaptimmune,Amgen,Apexigen,Arcus Biosciences,Array BioPharma,ArriVent BioPharma,Artios Pharma,AstraZeneca,Atreca,BeiGene,BerGenBio,BioAtla,Black Diamond,勃林格殷格翰,百时美施贵宝,Calithera Biosciences,Carisma Therapeutics,Checkpoint Therapeutics,希望之城国家医学中心,Corvus Pharmaceuticals,Curis,CytomX,Daiichi Sankyo,Dracen Pharmaceuticals,Dynavax,Lilly,Eikon Therapeutics,Elicio Therapeutics,EMD Serono,EQRx,Erasca,Exelixis,Fate Therapeutics,Genentech/Roche,Genmab,Genocea Biosciences,GlaxoSmithKline,Gritstone Oncology,Guardant Health,Harpoon,Helsinn Healthcare SA,恒瑞治疗,Hutchison MediPharma,IDEAYA Biosciences,IGM Biosciences,Immunitas Therapeutics,Immunocore,Incyte,Janssen,Jounce Therapeutics,Kadmon Pharmaceuticals,Kartos Therapeutics,LockBody Therapeutics,Loxo Oncology,Lycera,Memorial Sloan Kettering,Merck,Merus,Mirati Therapeutics,Mythic Therapeutics,Neoimune Tech,Neovia Oncology,Novartis,Numab Therapeutics,Nuvalent,OncoMed Pharmaceutic,PMV制药、Rain Therapeutics、RasCal Therapeutics、Regeneron Pharmaceuticals、Relay Therapeutics、Revolution Medicines、Ribon Therapeutics、Rubius Therapeutics、赛诺菲、七和八生物制药/小鸟生物制药、Shattuck Labs、Silicon Therapeutics、Stem CentRx、Syndax Pharmaceuticals、泰和肿瘤学、武田制药、Tarveda、TCR2 Therapeutics、T。
Peer review
同行评审
Peer review information
同行评审信息
Nature thanks Kristen Pauken and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然》杂志感谢克里斯汀·鲍肯(KristenPauken)和另一位匿名审稿人为这项工作的同行评议做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 Intratumoural myeloid and Treg cell content correlates with tiragolumab plus atezolizumab outcome but not placebo plus atezolizumab.a, Forest plot comparing tiragolumab plus atezolizumab versus placebo plus atezolizumab in patients with tumours expressing high or low gene levels (cutoff by median expression) of CD274, TIGIT, CD226, and PVR in CITYSCAPE.
Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据图和表扩展数据图1肿瘤内髓样和Treg细胞含量与tiragolumab加atezolizumab结果相关,但与安慰剂加atezolizumab无关。a,比较tiragolumab加atezolizumab与安慰剂加atezolizumab在表达CD274,TIGIT,CD226的高或低基因水平(中位表达截止值)的肿瘤患者中的森林图,和城市景观中的PVR。
Hazard ratio and 95% confidence interval were determined using univariate Cox model. The dots represent the hazard ratio and the horizontal bars the 95% confidence interval. b–e, Kaplan–Meier curves comparing PFS in patients with tumours enriched (solid lines) or not enriched (dashed lines) for TAMs (b), Tregs (c), CD16-high monocytes (d), and CD8 + T effector cells (T-eff) (e).
使用单变量Cox模型确定风险比和95%置信区间。点代表风险比,水平条代表95%置信区间。b–e,Kaplan–Meier曲线比较TAM(b),Tregs(c),CD16高单核细胞(d)和CD8肿瘤富集(实线)或未富集(虚线)患者的PFS + T效应细胞(T-eff)(e)。
Enrichment or not was determined by the median cell type signature score cutoffs. f, g, Kaplan–Meier curves comparing the PFS (f) and OS (g) in PD-L1-positive patients from the phase 3 NSCLC OAK study who received atezolizumab monotherapy and had tumours enriched for TAMs. h, i, Kaplan–Meier curves comparing the PFS (h) and OS (i) in PD-L1-positive patients from the phase 3 NSCLC OAK study who received atezolizumab monotherapy and had tumours enriched for Tregs.
富集与否由中位细胞类型特征评分截止值决定。f、 g,Kaplan-Meier曲线比较了接受atezolizumab单药治疗且肿瘤富含TAM的3期NSCLC OAK研究中PD-L1阳性患者的PFS(f)和OS(g)。h、 i,Kaplan-Meier曲线比较了接受atezolizumab单药治疗且肿瘤富含Tregs的3期NSCLC OAK研究中PD-L1阳性患者的PFS(h)和OS(i)。
f-i, Hazard ratio and 95% confidence interval were determined using univariate Cox model, and P values were estimated using the log-rank test.Extended Data Fig. 2 Correlation of bulk RNA-seq-based cell type signature scores with multiplex immunofluorescence.a, b, Correlation of TAM signature with CD68+ cells by mIF (a) and Treg signature with FoxP3+ cells by mIF (b).
使用单变量Cox模型确定f-i,风险比和95%置信区间,并使用对数秩检验估计P值。扩展数据图2基于大量RNA-seq的细胞类型特征评分与多重免疫荧光的相关性。a,b,mIF(a)的TAM特征与CD68+细胞的相关性和mIF(b)的Treg特征与FoxP3+细胞的相关性。
Two-tailed Pear.
双尾梨。
Nature (2024). https://doi.org/10.1038/s41586-024-07121-9Download citationReceived: 27 January 2022Accepted: 26 January 2024Published: 28 February 2024DOI: https://doi.org/10.1038/s41586-024-07121-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《自然》(2024)。https://doi.org/10.1038/s41586-024-07121-9Download引文收到日期:2022年1月27日接受日期:2024年1月26日发布日期:2024年2月28日OI:https://doi.org/10.1038/s41586-024-07121-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。