商务合作
动脉网APP
可切换为仅中文
AbstractThe consumption of a high-fat diet (HFD) has been linked to osteoporosis and an increased risk of fragility fractures. However, the specific mechanisms of HFD-induced osteoporosis are not fully understood. Our study shows that exposure to an HFD induces premature senescence in bone marrow mesenchymal stem cells (BMSCs), diminishing their proliferation and osteogenic capability, and thereby contributes to osteoporosis.
摘要高脂饮食(HFD)的摄入与骨质疏松症和脆性骨折的风险增加有关。然而,HFD诱导的骨质疏松症的具体机制尚不完全清楚。我们的研究表明,暴露于HFD会诱导骨髓间充质干细胞(BMSCs)过早衰老,降低其增殖和成骨能力,从而导致骨质疏松症。
Transcriptomic and chromatin accessibility analyses revealed the decreased chromatin accessibility of vitamin D receptor (VDR)-binding sequences and decreased VDR signaling in BMSCs from HFD-fed mice, suggesting that VDR is a key regulator of BMSC senescence. Notably, the administration of a VDR activator to HFD-fed mice rescued BMSC senescence and significantly improved osteogenesis, bone mass, and other bone parameters.
转录组学和染色质可及性分析显示,HFD喂养小鼠的BMSC中维生素D受体(VDR)结合序列的染色质可及性降低,VDR信号传导降低,表明VDR是BMSC衰老的关键调节因子。值得注意的是,向HFD喂养的小鼠施用VDR激活剂可挽救BMSC衰老并显着改善成骨,骨量和其他骨参数。
Mechanistically, VDR activation reduced BMSC senescence by decreasing intracellular reactive oxygen species (ROS) levels and preserving mitochondrial function. Our findings not only elucidate the mechanisms by which an HFD induces BMSC senescence and associated osteoporosis but also offer new insights into treating HFD-induced osteoporosis by targeting the VDR-superoxide dismutase 2 (SOD2)-ROS axis..
从机制上讲,VDR激活通过降低细胞内活性氧(ROS)水平和保留线粒体功能来减少BMSC衰老。我们的研究结果不仅阐明了HFD诱导BMSC衰老和相关骨质疏松症的机制,而且通过靶向VDR-超氧化物歧化酶2(SOD2)-ROS轴为治疗HFD诱导的骨质疏松症提供了新的见解。。
IntroductionThe increasing prevalence of a high-fat diet (HFD, ≥30% of energy from fat) has raised concerns about its potential adverse impacts on health,1,2 including metabolic comorbidities such as obesity, diabetes, and nonalcoholic hepatitis,3,4,5,6,7 as well as its relationship with osteoporosis and bone fragility.8,9,10 HFD feeding results in the development of obesity, which is considered to protect against osteoporosis and osteoporotic fractures because of the positive effect of increased mechanical loading on the skeleton.11,12 However, accumulating research evidence shows that this effect is followed by decreased bone formation, bone turnover and an increased risk of fracture resulting from the development of metabolic impairment.8,13,14,15,16 For example, the dysregulation of lipid metabolism in the body attributed to HFD intake over an extended period can impair bone metabolism, resulting in bone loss and impaired fracture healing.8,9,10,17,18 However, how HFD-driven metabolic dysfunction impacts cellular function in bone tissue has not been determined.
引言高脂饮食(HFD,≥30%的脂肪能量)的日益流行引起了人们对其对健康的潜在不利影响的担忧,1,2包括肥胖,糖尿病和非酒精性肝炎等代谢性合并症,3,4,5,6,7及其与骨质疏松症和骨脆性的关系。8,9,10 HFD喂养导致肥胖的发展,由于骨骼机械负荷增加的积极作用,肥胖被认为可以预防骨质疏松症和骨质疏松性骨折。11,12然而,越来越多的研究证据表明,这种影响之后是骨形成减少,骨转换减少以及由于骨骼发育而导致的骨折风险增加代谢障碍。8,13,14,15,16例如,长期摄入HFD导致的体内脂质代谢失调会损害骨代谢,导致骨质流失和骨折愈合受损。8,9,10,17,18然而,HFD驱动的代谢功能障碍如何影响骨组织中的细胞功能尚未确定。
In general, a balance between osteoclast-dependent osteoclastogenesis and osteogenic cell-dependent osteogenesis is maintained to maintain bone mass and quality at a steady state.19,20 Nevertheless, HFD-induced osteoporosis differs from osteoporosis caused by other factors because it is characterized by reduced osteoclastogenic and osteogenic activity, suggesting that osteogenesis is a potential therapeutic target.18,21,22 The specific cellular mechanisms underlying these changes are yet to be fully understood.Studies have demonstrated the substantial role of bone marrow mesenchymal stem cell (BMSC) senescence in inadequate bone formation associated with osteoporosis,23,24 and a decrease in osteogenesis can l.
一般来说,破骨细胞依赖性破骨细胞生成和成骨细胞依赖性成骨之间的平衡得以维持,以维持骨量和质量处于稳定状态[19,20]。然而,HFD诱导的骨质疏松症不同于其他因素引起的骨质疏松症,因为它的特征是破骨细胞生成和成骨活性降低,这表明成骨是一个潜在的治疗靶点[18,21,22]。这些变化背后的具体细胞机制尚未完全了解。研究表明,骨髓间充质干细胞(BMSC)衰老在与骨质疏松症相关的骨形成不足中具有重要作用[23,24],并且成骨减少可以减少。
Data availability
数据可用性
The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (GSA: CRA012133 and CRA012134) of the National Genomics Data Center and are publicly accessible at https://ngdc.cncb.ac.cn/gsa.
本文报道的原始序列数据已保存在国家基因组学数据中心的基因组序列档案(GSA:CRA01133和CRA01134)中,可在https://ngdc.cncb.ac.cn/gsa.
ReferencesShan, Z. et al. Trends in dietary carbohydrate, protein, and fat intake and diet quality among US adults, 1999-2016. JAMA 322, 1178 (2019).Article
Referenceshan,Z.等人,《1999-2016年美国成年人膳食碳水化合物,蛋白质和脂肪摄入量和饮食质量的趋势》。JAMA 3221178(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, Y., Zhu, S., Zhou, Y., Pramono, A. & Zhou, Z. Changing income-related inequality in daily nutrients intake: a longitudinal analysis from China. Int. J. Environ. Res. Public Health 17, 7627 (2020).Article
Xu,Y.,Zhu,S.,Zhou,Y.,Pramono,A。&Zhou,Z。改变与收入相关的每日营养素摄入不平等:来自中国的纵向分析。内景J.环境。公共卫生第17号决议,7627(2020年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hannon, B. A., Thompson, S. V., An, R. & Teran-Garcia, M. Clinical outcomes of dietary replacement of saturated fatty acids with unsaturated fat sources in adults with overweight and obesity: a systematic review and meta-analysis of randomized control trials. Ann. Nutr. Metab. 71, 107–117 (2017).Article .
Hannon,B.A.,Thompson,S.V.,An,R。&Teran-Garcia,M。超重和肥胖成年人用不饱和脂肪源饮食替代饱和脂肪酸的临床结果:随机对照试验的系统评价和荟萃分析。安。营养品。代谢。71107-117(2017)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gugliucci, A. et al. Short-term low calorie diet intervention reduces serum advanced glycation end products in healthy overweight or obese adults. Ann. Nutr. Metab. 54, 197–201 (2009).Article
Gugliucci,A。等人。短期低热量饮食干预可降低健康超重或肥胖成年人的血清晚期糖基化终产物。安。营养品。代谢。54197-201(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Khan, F. Z. Advances in hepatocellular carcinoma: nonalcoholic steatohepatitis-related hepatocellular carcinoma. World J. Hepatol. 7, 2155 (2015).Article
Khan,F.Z。肝细胞癌的进展:非酒精性脂肪性肝炎相关的肝细胞癌。世界J.Hepatol。72155(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ding, N. et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 69, 1608–1619 (2020).Article
Ding,N.等人。高脂饮食引起的肠道微生物生态失调对精子发生和精子活力的损害。肠道691608-1619(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, L. et al. High-fat diet exacerbates periodontitis: is it because of dysbacteriosis or stem cell dysfunction? J. Biol. Regul. Homeost. Agents 35, 641–655 (2021).PubMed
Li,L.等人。高脂饮食会加剧牙周炎:是由于细菌异常还是干细胞功能障碍?J、 生物。法规。顺势。代理人35641-655(2021)。PubMed出版社
Google Scholar
谷歌学者
Movassagh, E. Z. & Vatanparast, H. Current evidence on the association of dietary patterns and bone health: a scoping review. Adv. Nutr. 8, 1–16 (2017).Article
Movassagh,E.Z。和Vatanparast,H。关于饮食模式与骨骼健康关联的最新证据:范围界定综述。高级营养师。8,1-16(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tian, L. & Yu, X. Fat, sugar, and bone health: a complex relationship. Nutrients 9, 506 (2017).Article
Tian,L。&Yu,X。脂肪,糖和骨骼健康:复杂的关系。营养素9506(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kwon, Y.-M., Kim, G. W., Yim, H. W., Paek, Y. J. & Lee, K.-S. Association between dietary fat intake and bone mineral density in Korean adults: data from Korea National Health and Nutrition Examination Survey IV (2008 ∼ 2009). Osteoporos. Int. 26, 969–976 (2015).Article
Kwon,Y.-M.,Kim,G.W.,Yim,H.W.,Paek,Y.J.&Lee,K.-S.韩国成年人膳食脂肪摄入量与骨矿物质密度之间的关系:来自韩国国家健康与营养检查调查IV(2008〜2009)的数据。骨质疏松症。Int.26969–976(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Felson, D. T., Zhang, Y., Hannan, M. T. & Anderson, J. J. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J. Bone Min. Res. 8, 567–573 (1993).Article
Felson,D.T.,Zhang,Y.,Hannan,M.T。和Anderson,J.J。体重和体重指数对男性和女性骨密度的影响:Framingham研究。J、 Bone Min.Res.8567–573(1993)。文章
CAS
中科院
Google Scholar
谷歌学者
Wardlaw, G. Putting body weight and osteoporosis into perspective. Am. J. Clin. Nutr. 63, 433S–436S (1996).Article
Wardlaw,G。透视体重和骨质疏松症。美国J.克林。营养。63433S–436S(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lecka-Czernik, B., Stechschulte, L. A., Czernik, P. J. & Dowling, A. R. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity.
Lecka Czernik,B.,Stechschulte,L.A.,Czernik,P.J。&Dowling,A.R。饮食诱导肥胖的成年小鼠的高骨量是由骨量最初增加然后骨形成减弱的组合引起的;肥胖对高骨量和骨质量下降的影响。
Mol. Cell Endocrinol. 410, 35–41 (2015).Article .
分子细胞内分泌。410,35-41(2015)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gonnelli, S. Obesity and fracture risk. Clinical Cases Miner Bone Metabo. 11, 9–14 (2014).Shapses, S. A., Pop, L. C. & Wang, Y. Obesity is a concern for bone health with aging. Nutr. Res. 39, 1–13 (2017).Article
Gonnelli,S。肥胖和骨折风险。临床病例Miner骨代谢。11,9-14(2014)。Shapses,S.A.,Pop,L.C。&Wang,Y。随着年龄的增长,肥胖是骨骼健康的一个问题。营养。第39、1-13号决议(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, Y., Hu, X.-M., Chen, T.-J. & Bai, M.-J. Rural-urban differences of dietary patterns, overweight, and bone mineral status in Chinese students. Nutrients 8, 537 (2016).Article
Yang,Y.,Hu,X.-M.,Chen,T.-J.&Bai,M.-J.中国学生饮食模式,超重和骨矿物质状况的城乡差异。营养素8537(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marin, C., Tuts, J., Luyten, F. P., Vandamme, K. & Kerckhofs, G. Impaired soft and hard callus formation during fracture healing in diet-induced obese mice as revealed by 3D contrast-enhanced computed tomography imaging. Bone 150, 116008 (2021).Article
Marin,C.,Tuts,J.,Luyten,F.P.,Vandamme,K。&Kerckhofs,G。通过3D对比增强计算机断层扫描成像显示,饮食诱导的肥胖小鼠在骨折愈合过程中软骨痂和硬骨痂形成受损。骨150116008(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tian, L. et al. High fructose and high fat exert different effects on changes in trabecular bone micro-structure. J. Nutr. Health Aging 22, 361–370 (2018).Article
Tian,L.等人。高果糖和高脂肪对骨小梁微结构的变化有不同的影响。J、 营养。健康老龄化22361-370(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Florencio-Silva, R. et al. Biology of bone tissue: structure, function, and factors that influence Bone Cells. Biomed. Res. Int. 2015, 1–17 (2015).Article
Florencio Silva,R.等人,《骨组织生物学:结构、功能和影响骨细胞的因素》。生物医学。Res.Int.2015,1-17(2015)。文章
Google Scholar
谷歌学者
Zheng, Z.-G. et al. Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss. Cell Death Differ. 27, 2048–2065 (2020).Article
Zheng,Z.-G.等人。鼠尾草酸对SREBP2和ERRα的双重靶向抑制RANKL介导的破骨细胞生成并防止卵巢切除术引起的骨质流失。细胞死亡不同。272048-2065(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yan, B. et al. Obesity attenuates force-induced tooth movement in mice with the elevation of leptin level: a preliminary translational study. Am. J. Transl. Res. 10, 4107–4118 (2018).CAS
Yan,B.等人。肥胖会随着瘦素水平的升高而减弱力诱导的小鼠牙齿运动:一项初步的转化研究。美国J.Transl。第104107-4118号决议(2018年)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Picke, A.-K. et al. Differential effects of high-fat diet and exercise training on bone and energy metabolism. Bone 116, 120–134 (2018).Article
Picke,A.-K.等人。高脂饮食和运动训练对骨骼和能量代谢的不同影响。骨116120-134(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, F. et al. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol. 43, 101963 (2021).Article
Liu,F。等人LRRc17通过线粒体自噬控制BMSC衰老,并抑制BMSC对卵巢切除术引起的骨质流失的治疗作用。氧化还原生物。43101963(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Infante, A. & Rodríguez, C. I. Osteogenesis and aging: lessons from mesenchymal stem cells. Stem Cell Res. Ther. 9, 244 (2018).Article
Infante,A。&Rodríguez,C.I。成骨和衰老:间充质干细胞的教训。干细胞研究。9244(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Feng, X. & McDonald, J. M. Disorders of bone remodeling. Annu. Rev. Pathol. 6, 121–145 (2011).Article
Feng,X。&McDonald,J.M。骨重建障碍。年。Pathol牧师。6121-145(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gao, Q. et al. Bone marrow mesenchymal stromal cells: identification, classification, and differentiation. Front. Cell Dev. Biol. 9, 787118 (2021).Article
Gao,Q。等。骨髓间充质基质细胞:鉴定,分类和分化。正面。细胞开发生物学。9787118(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, S. et al. BMSC-derived extracellular matrix better optimizes the microenvironment to support nerve regeneration. Biomaterials 280, 121251 (2022).Article
Wang,S。等人。BMSC衍生的细胞外基质可以更好地优化微环境以支持神经再生。生物材料280121251(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, W., Liu, Q. & Xu, B. Improvement of bone defect healing in rats via mesenchymal stem cell supernatant. Exp. Ther. Med. 15, 1500–1504 (2018).CAS
Zhou,W.,Liu,Q。&Xu,B。通过间充质干细胞上清液改善大鼠骨缺损愈合。实验温度。医学杂志151500-1504(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ma, Q. et al. Bone mesenchymal stem cell secretion of sRANKL/OPG/M-CSF in response to macrophage-mediated inflammatory response influences osteogenesis on nanostructured Ti surfaces. Biomaterials 154, 234–247 (2018).Article
Ma,Q。等人。骨髓间充质干细胞分泌sRANKL/OPG/M-CSF响应巨噬细胞介导的炎症反应影响纳米结构Ti表面的成骨。生物材料154234-247(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, X. et al. Dysfunction of metabolic activity of bone marrow mesenchymal stem cells in aged mice. Cell Prolif. 55, e13191 (2022).Article
Li,X。等人。老年小鼠骨髓间充质干细胞代谢活性的功能障碍。细胞增殖。55,e13191(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, W. et al. JAK2/STAT3 regulates estrogen-related senescence of bone marrow stem cells. J. Endocrinol. 245, 141–153 (2020).Article
Wu,W。等人。JAK2/STAT3调节骨髓干细胞的雌激素相关衰老。J、 内分泌。245141-153(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bai, J. et al. Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling. Am. J. Physiol. Cell Physiol. 318, C1005–C1017 (2020).Article
Bai,J。等人。辐射诱导的骨髓间充质干细胞衰老通过旁分泌信号传导加重成骨分化功能障碍。Am.J.Physiol。细胞生理学。318,C1005–C1017(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bidwell, J. P., Alvarez, M. B., Hood, M. & Childress, P. Functional impairment of bone formation in the pathogenesis of osteoporosis: the bone marrow regenerative competence. Curr. Osteoporos. Rep. 11, 117–125 (2013).Article
Bidwell,J.P.,Alvarez,M.B.,Hood,M。&Childress,P。骨质疏松症发病机制中骨形成的功能障碍:骨髓再生能力。货币。骨质疏松症。代表11117–125(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jiang, Y., Zhang, P., Zhang, X., Lv, L., & Zhou, Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif. 54, e12956 (2020).Pini, M. et al. Adipose tissue senescence is mediated by increased ATP content after a short‐term high‐fat diet exposure.
Jiang,Y.,Zhang,P.,Zhang,X.,Lv,L.,&Zhou,Y.间充质干细胞移植治疗骨质疏松症的进展。细胞增殖。54,e12956(2020)。Pini,M。等人。短期高脂饮食暴露后,脂肪组织衰老是由ATP含量增加介导的。
Aging Cell 20, e13421 (2021).Article .
衰老细胞20,e13421(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, L. et al. Inhibition of secretin/secretin receptor axis ameliorates NAFLD phenotypes. Hepatology 74, 1845–1863 (2021).Article
Chen,L。等人。抑制促胰液素/促胰液素受体轴可改善NAFLD表型。肝病741845-1863(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bi, J. et al. CXCL2 impairs functions of bone marrow mesenchymal stem cells and can serve as a serum marker in high-fat diet-fed rats. Front. Cell Dev. Biol. 9, 687942 (2021).Article
Bi,J。等人。CXCL2损害骨髓间充质干细胞的功能,可以作为高脂饮食喂养大鼠的血清标志物。正面。细胞开发生物学。9687942(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).Article
Huang,W.,Hickson,L.J.,Eirin,A.,Kirkland,J.L。&Lerman,L.O。细胞衰老:好的,坏的和未知的。自然修订版Nephrol。18611-627(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, R.-R. et al. Dietary intervention preserves β cell function in mice through CTCF-mediated transcriptional reprogramming. J. Exp. Med. 219, e20211779 (2022).Article
Wang,R.-R.等人。饮食干预通过CTCF介导的转录重编程保护小鼠的β细胞功能。J、 实验医学219,e20211779(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Qu, Y.-L. et al. Arid1a regulates insulin sensitivity and lipid metabolism. EBioMedicine 42, 481–493 (2019).Article
Qu,Y.-L.等人,Arid1a调节胰岛素敏感性和脂质代谢。EBioMedicine 42481-493(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).Article
Klemm,S.L.,Shipony,Z。&Greenleaf,W.J。染色质可及性和调节表观基因组。Genet自然Rev。20207-220(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cabal-Hierro, L. et al. Chromatin accessibility promotes hematopoietic and leukemia stem cell activity. Nat. Commun. 11, 1406 (2020).Article
Cabal-Hierro,L。等人。染色质可及性促进造血和白血病干细胞活性。国家公社。111406(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Plum, L. A. & DeLuca, H. F. Vitamin D, disease and therapeutic opportunities. Nat. Rev. Drug Discov. 9, 941–955 (2010).Article
Plum,L.A。和DeLuca,H.F。维生素D,疾病和治疗机会。《药物目录》修订版。9941-955(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, S., Geng, S. & Glowacki, J. Histone deacetylation mediates the rejuvenation of osteoblastogenesis by the combination of 25(OH)D3 and parathyroid hormone in MSCs from elders. J. Steroid Biochem. Mol. Biol. 136, 156–159 (2013).Article
Zhou,S.,Geng,S。&Glowacki,J。组蛋白脱乙酰化通过老年人MSCs中25(OH)D3和甲状旁腺激素的组合介导成骨细胞生成的恢复。J、 类固醇生物化学。分子生物学。136156-159(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Han, M.-S. et al. Functional cooperation between vitamin D receptor and Runx2 in vitamin D-induced vascular calcification. PLoS ONE 8, e83584 (2013).Article
Han,M.-S.等人。维生素D受体和Runx2在维生素D诱导的血管钙化中的功能合作。PLoS ONE 8,e83584(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haussler, M. R. et al. The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the “Fountain of Youth” to mediate healthful aging. J. Steroid Biochem. Mol. Biol. 121, 88–97 (2010).Article
Haussler,M.R.等人。核维生素D受体控制编码因子的基因表达,这些因子为“青春之泉”提供营养,从而介导健康的衰老。J、 类固醇生物化学。分子生物学。121,88-97(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haussler, M. R. et al. 1,25-Dihydroxyvitamin D and Klotho: a tale of two renal hormones coming of age. Vitam. Horm. 100, 165–230 (2016).Article
Haussler,M.R.等人,《1,25-二羟基维生素D和Klotho:两种肾激素成熟的故事》。维塔姆。霍姆。100165-230(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, F. et al. S-sulfhydration of SIRT3 combats BMSC senescence and ameliorates osteoporosis via stabilizing heterochromatic and mitochondrial homeostasis. Pharm. Res. 192, 106788 (2023).Article
Liu,F。等人。SIRT3的S-硫酸化通过稳定异色和线粒体稳态来对抗BMSC衰老并改善骨质疏松症。《药学》第192106788号决议(2023年)。文章
CAS
中科院
Google Scholar
谷歌学者
Gong, L. et al. Human ESC‐sEVs alleviate age‐related bone loss by rejuvenating senescent bone marrow‐derived mesenchymal stem cells. J. Extracell. Vesicles 9, 1800971 (2020).Article
Gong,L。等人。人类ESC-SEV通过恢复衰老的骨髓间充质干细胞来缓解与年龄相关的骨质流失。J、 细胞外。囊泡91800971(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, R. et al. 1,25-Dihydroxyvitamin D protects against age-related osteoporosis by a novel VDR-Ezh2-p16 signal axis. Aging Cell 19, 1–20 (2020).Article
Yang,R。等人。1,25-二羟基维生素D通过新型VDR-Ezh2-p16信号轴预防与年龄相关的骨质疏松症。衰老细胞19,1-20(2020)。文章
Google Scholar
谷歌学者
Hu, M. et al. NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation. Aging Cell 21, 1–11 (2022).Article
Hu,M。等人,NAP1L2驱动间充质干细胞衰老并抑制成骨分化。衰老细胞21,1-11(2022)。文章
Google Scholar
谷歌学者
Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).Article
高脂饮食可增强肠祖细胞的干性和致瘤性。自然531,53-58(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, Z. et al. Dual specificity phosphatase 12 regulates hepatic lipid metabolism through inhibition of the lipogenesis and apoptosis signal–regulating kinase 1 pathways. Hepatology 70, 1099–1118 (2019).Article
Huang,Z。等人。双特异性磷酸酶12通过抑制脂肪生成和凋亡信号调节激酶1途径来调节肝脏脂质代谢。肝病学701099-1118(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, L. et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell 18, 1–18 (2019).Article
Chen,L。等人1,25-二羟基维生素D通过激活Nrf2抗氧化信号传导和失活p16/p53衰老信号传导发挥抗衰老作用。衰老细胞18,1-18(2019)。文章
Google Scholar
谷歌学者
Chen, H. et al. SIRT1/FOXO3a axis plays an important role in the prevention of mandibular bone loss induced by 1,25(OH) 2 D deficiency. Int. J. Biol. Sci. 16, 2712–2726 (2020).Article
Chen,H。等人。SIRT1/FOXO3a轴在预防1,25(OH)2 D缺乏引起的下颌骨骨质流失中起重要作用。国际生物学杂志。科学。162712-2726(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiao, Y. et al. High-fat diet selectively decreases bone marrow lin − / CD117 + cell population in aging mice through increased ROS production. J. Tissue Eng. Regen. Med. 14, 884–892 (2020).Article
Xiao,Y。等人。高脂饮食通过增加ROS产生选择性地降低衰老小鼠的骨髓lin-/CD117+细胞群。J、 组织工程再生。医学14884-892(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Levings, D. C., Lacher, S. E., Palacios-Moreno, J. & Slattery, M. Transcriptional reprogramming by oxidative stress occurs within a predefined chromatin accessibility landscape. Free Radic. Biol. Med. 171, 319–331 (2021).Article
Levings,D.C.,Lacher,S.E.,Palacios Moreno,J。&Slattery,M。氧化应激的转录重编程发生在预定义的染色质可及性景观中。自由基。生物医学171319-331(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pedro, N. F. et al. Candidate biomarkers for oral squamous cell carcinoma: differential expression of oxidative stress-related genes. Asian Pac. J. Cancer Prev. 19, 1343–1349 (2018).CAS
Pedro,N.F。等。口腔鳞状细胞癌的候选生物标志物:氧化应激相关基因的差异表达。亚洲太平洋。J、 癌症预防。191343-1349(2018)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Höhn, A. et al. Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 11, 482–501 (2017).Article
Höhn,A。等人很高兴(n)从此:在氧化应激,蛋白质稳态丧失和细胞衰老的背景下衰老。氧化还原生物。11482-501(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jung, Y. D. et al. Epigenetic regulation of miR-29a/miR-30c/DNMT3A axis controls SOD2 and mitochondrial oxidative stress in human mesenchymal stem cells. Redox Biol. 37, 101716 (2020).Article
Jung,Y.D.等人。miR-29a/miR-30c/DNMT3A轴的表观遗传调控控制人间充质干细胞中的SOD2和线粒体氧化应激。氧化还原生物。37101716(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bolduc, J. A., Collins, J. A. & Loeser, R. F. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic. Biol. Med. 132, 73–82 (2019).Article
Bolduc,J.A.,Collins,J.A。&Loeser,R.F。活性氧,衰老和关节软骨稳态。自由基。生物医学132,73-82(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cutler, R. G. Oxidative stress and aging: catalase is a longevity determinant enzyme. Rejuvenation Res. 8, 138–140 (2005).Article
Cutler,R.G。氧化应激和衰老:过氧化氢酶是一种寿命决定酶。复兴决议8138-140(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Perelman, A. et al. JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 3, e430 (2012).Article
Perelman,A。等人,JC-1:替代激发波长有助于线粒体膜电位细胞计数。细胞死亡Dis。3,e430(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rubio-Tomás, T., Rueda-Robles, A., Plaza-Díaz, J. & Álvarez-Mercado, A. I. Nutrition and cellular senescence in obesity-related disorders. J. Nutr. Biochem. 99, 108861 (2022).Article
Rubio Tomás,T.,Rueda Robles,A.,Plaza-Díaz,J。&lvarez-Mercado,A.I。肥胖相关疾病的营养和细胞衰老。J、 营养。生物化学。99108861(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
López-Otín, C., Galluzzi, L., Freije, J. M. P., Madeo, F. & Kroemer, G. Metabolic control of longevity. Cell 166, 802–821 (2016).Article
López-Otín,C.,Galluzzi,L.,Freije,J.M.P.,Madeo,F。&Kroemer,G。长寿的代谢控制。细胞166802-821(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, S. R. et al. Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Transl. Res. 213, 112–123 (2019).Article
Kim,S.R.等人,《小鼠高脂饮食中肾细胞衰老的增加:解衰老药物槲皮素的作用》。翻译。第213112-123号决议(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, D. et al. Senolytic controls bone marrow mesenchymal stem cells fate improving bone formation. Am. J. Transl. Res. 12, 3078–3088 (2020).CAS
Zhang,D。等人。Senolytic控制骨髓间充质干细胞的命运,改善骨形成。美国J.Transl。第123078-3088号决议(2020年)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hanel, A., Malmberg, H. R. & Carlberg, C. Genome-wide effects of chromatin on vitamin d signaling. J. Mol. Endocrinol. 64, R45–R56 (2020).Article
Hanel,A.,Malmberg,H.R。&Carlberg,C。染色质对维生素d信号传导的全基因组影响。J、 分子内分泌。64,R45–R56(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Meyer, M. B., Benkusky, N. A., Sen, B., Rubin, J. & Pike, J. W. Epigenetic plasticity drives adipogenic and osteogenic differentiation of marrow-derived mesenchymal stem cells. J. Biol. Chem. 291, 17829–17847 (2016).Article
Meyer,M.B.,Benkusky,N.A.,Sen,B.,Rubin,J。&Pike,J.W。表观遗传可塑性驱动骨髓间充质干细胞的成脂和成骨分化。J、 生物。化学。29117829-17847(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Erasmus, R. et al. Vitamin D, vitamin D-binding proteins, and VDR polymorphisms in individuals with hyperglycaemia. Nutrients 14, 3147 (2022).Article
伊拉斯谟,R。等人。高血糖患者的维生素D,维生素D结合蛋白和VDR多态性。营养素143147(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bollen, S. E. et al. The vitamin D/vitamin D receptor (VDR) axis in muscle atrophy and sarcopenia. Cell Signal 96, 110355 (2022).Article
Bollen,S.E.等人。肌肉萎缩和肌肉减少症中的维生素D/维生素D受体(VDR)轴。细胞信号96110355(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bocheva, G., Slominski, R. M. & Slominski, A. T. The impact of vitamin D on skin aging. Int. J. Mol. Sci. 22, 9097 (2021).Article
Bocheva,G.,Slominski,R.M。和Slominski,A.T。维生素D对皮肤衰老的影响。Int.J.Mol.Sci。229097(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Keisala, T. et al. Premature aging in vitamin D receptor mutant mice. J. Steroid Biochem. Mol. Biol. 115, 91–97 (2009).Article
Keisala,T。等人。维生素D受体突变小鼠的过早衰老。J、 类固醇生物化学。分子生物学。115,91-97(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Uthaiah, C. A., Beeraka, N. M., Rajalakshmi, R., Ramya, C. M. & Madhunapantula, S. V. Role of neural stem cells and vitamin D receptor (VDR)–mediated cellular signaling in the mitigation of neurological diseases. Mol. Neurobiol. 59, 4065–4105 (2022).Article
Uthaiah,C.A.,Beeraka,N.M.,Rajalakshmi,R.,Ramya,C.M。&Madhunapantula,S.V。神经干细胞和维生素D受体(VDR)介导的细胞信号在缓解神经系统疾病中的作用。分子神经生物学。594065-4105(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).Article
Sies,H。&Jones,D.P。活性氧(ROS)作为多效性生理信号传导剂。Nat。Rev。Mol。Cell Biol。21363-383(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).Article
Gorgoulis,V。等人,《细胞衰老:定义前进的道路》。细胞179813-827(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
de Mello, A. H., Costa, A. B., Engel, J. D. G. & Rezin, G. T. Mitochondrial dysfunction in obesity. Life Sci. 192, 26–32 (2018).Article
de Mello,A.H.,Costa,A.B.,Engel,J.D.G。&Rezin,G.T。肥胖中的线粒体功能障碍。生命科学。192,26-32(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rojas-Morales, P., Pedraza-Chaverri, J. & Tapia, E. Ketone bodies, stress response, and redox homeostasis. Redox Biol. 29, 101395 (2020).Article
Rojas-Morales,P.,Pedraza-Chaverri,J。&Tapia,E。酮体,应激反应和氧化还原稳态。氧化还原生物。29101395(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4, 180–183 (2015).Article
Sies,H。氧化应激:氧化还原生物学和医学的概念。氧化还原生物。4180-183(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schoppa, A. M. et al. Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice. Dis. Model Mech. 15, dmm049392 (2022).Article
Schoppa,A.M.等人。成骨细胞谱系Sod2缺陷导致小鼠骨质疏松症样表型。Dis。模型机械。15,dmm049392(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Y. et al. Loss of manganese superoxide dismutase leads to abnormal growth and signal transduction in mouse embryonic fibroblasts. Free Radic. Biol. Med. 49, 1255–1262 (2010).Article
Zhang,Y。等人。锰超氧化物歧化酶的缺失导致小鼠胚胎成纤维细胞的异常生长和信号转导。自由基。《生物医学》491255-1262(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Skvortsova, E. V., Nazarov, I. B., Tomilin, A. N. & Sinenko, S. A. Dual mode of mitochondrial ROS action during reprogramming to pluripotency. Int. J. Mol. Sci. 23, 10924 (2022).Article
Skvortsova,E.V.,Nazarov,I.B.,Tomilin,A.N。和Sinenko,S.A。重编程为多能性期间线粒体ROS作用的双重模式。Int.J.Mol.Sci。2310924(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Han, H. et al. Obesity-induced vitamin D deficiency contributes to lung fibrosis and airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 64, 357–367 (2021).Article
Han,H。等人。肥胖引起的维生素D缺乏会导致肺纤维化和气道高反应性。Am.J.Respir。细胞分子生物学。64357-367(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hyppönen, E. & Boucher, B. J. Adiposity, vitamin D requirements, and clinical implications for obesity-related metabolic abnormalities. Nutr. Rev. 76, 678–692 (2018).Article
Hyppönen,E。&Boucher,B.J。肥胖,维生素D需求以及肥胖相关代谢异常的临床意义。营养。修订版76678-692(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Roizen, J. D. et al. Obesity decreases hepatic 25‐hydroxylase activity causing low serum 25‐hydroxyvitamin D. J. Bone Miner. Res. 34, 1068–1073 (2019).Article
Roizen,J.D。等人。肥胖会降低肝脏25-羟化酶活性,导致血清25-羟基维生素D降低。J.Bone Miner。第341068-1073号决议(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
DeSmet, M. L. & Fleet, J. C. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression. J. Steroid Biochem. Mol. Biol. 173, 194–201 (2017).Article
DeSmet,M.L。&Fleet,J.C。组成型活性RAS信号通过降低维生素D受体表达来减少肠上皮细胞中1,25-二羟基维生素D介导的基因转录。J、 类固醇生物化学。分子生物学。173194-201(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuan, B. et al. Hexa-D-arginine treatment increases 7B2•PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype. J. Bone Min. Res. 28, 56–72 (2013).Article
Yuan,B。等人。六-D-精氨酸治疗可增加hyp小鼠成骨细胞中7B2•PC2的活性,并挽救hyp表型。J、 Bone Min.Res.28,56-72(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
Tencerova, M. et al. High-fat diet–induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J. Bone Miner. Res. 33, 1154–1165 (2018).Article
Tencerova,M.等人。高脂饮食诱导的肥胖会促进骨髓脂肪组织的扩张,并损害小鼠的骨骼干细胞功能。J、 骨矿工。第331154-1165号决议(2018年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8, 315–317 (2006).Article
Dominici,M.等人。定义多能间充质基质细胞的最低标准。国际细胞治疗学会立场声明。细胞疗法8315-317(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).Article
Pascual,G。等人。通过脂肪酸受体CD36靶向转移起始细胞。自然541,41-45(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Carbon, S. et al. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).Article
Carbon,S.等人,《基因本体资源:丰富金矿》。核酸研究49,D325–D334(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).Article
Ashburner,M.等人,《基因本体论:生物学统一的工具》。纳特·吉内特。25,25-29(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Y. et al. Exosomes derived from 3D-cultured MSCs improve therapeutic effects in periodontitis and experimental colitis and restore the Th17 cell/Treg balance in inflamed periodontium. Int. J. Oral. Sci. 13, 43 (2021).Article
Zhang,Y。等人。源自3D培养的MSC的外来体改善了牙周炎和实验性结肠炎的治疗效果,并恢复了发炎牙周组织中Th17细胞/Treg的平衡。Int.J.Oral公司。科学。13,43(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by grants from the National Natural Science Foundation of China (grants No. 81873713 and No. U22A20157). Specifically, I would like to express my gratitude to Chichong Chan, who always stands by me. Many thanks to my colleagues, including Fang Liu, Jinyan Wu, Xinxing Lei and Junxiao Zhuo, for their support and to the investigators who performed the bioinformatics analyses and summarized the data available in this study.Author informationAuthor notesThese authors contributed equally: Jiayao Chen, Shuhong KuangAuthors and AffiliationsHospital of Stomatology, Sun Yat-sen University, Guangzhou, ChinaJiayao Chen, Shuhong Kuang, Jietao Cen, Yong Zhang, Zongshan Shen, Wei Qin, Qiting Huang, Xianling Gao, Fang Huang & Zhengmei LinGuangdong Provincial Key Laboratory of Stomatology, Guangzhou, ChinaJiayao Chen, Shuhong Kuang, Jietao Cen, Yong Zhang, Zongshan Shen, Wei Qin, Qiting Huang, Xianling Gao, Fang Huang & Zhengmei LinGuanghua School of Stomatology, Sun Yat-sen University, Guangzhou, ChinaJiayao Chen, Shuhong Kuang, Jietao Cen, Yong Zhang, Zongshan Shen, Wei Qin, Qiting Huang, Xianling Gao, Fang Huang & Zhengmei LinSun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, ChinaZifeng WangAuthorsJiayao ChenView author publicationsYou can also search for this author in.
下载参考文献致谢这项工作得到了国家自然科学基金(批准号81873713和U22A20157)的资助。具体来说,我要感谢陈志忠,他一直支持我。非常感谢我的同事,包括刘芳,吴金燕,雷新兴和卓军,感谢他们的支持,感谢进行生物信息学分析并总结本研究可用数据的研究人员。作者信息作者注意到这些作者做出了同样的贡献:陈家耀,邝树红作者和附属机构广州中山大学口腔医学研究所陈家耀,邝树红,岑洁涛,张勇,沈宗山,秦伟,黄启庭,高仙灵,黄芳和黄正梅,广东省口腔医学重点实验室,陈家耀,邝树红,岑洁涛,张勇,沈宗山,秦伟,黄启庭,高仙灵,黄芳和黄正梅,中国广州中山大学口腔医学院陈,邝树红,岑洁涛,张勇,沈宗山,秦伟,黄启庭,高先玲,黄芳和郑梅,林森中山大学癌症中心,华南肿瘤学国家重点实验室,广州癌症医学协同创新中心,中国紫峰王作者陈家耀作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarShuhong KuangView author publicationsYou can also search for this author in
PubMed Google ScholarShuhong KuangView作者出版物您也可以在
PubMed Google ScholarJietao CenView author publicationsYou can also search for this author in
PubMed Google ScholarJietao CenView作者出版物您也可以在
PubMed Google ScholarYong ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarYong ZhangView作者出版物您也可以在
PubMed Google ScholarZongshan ShenView author publicationsYou can also search for this author in
PubMed Google ScholarZongshan ShenView作者出版物您也可以在
PubMed Google ScholarWei QinView author publicationsYou can also search for this author in
PubMed Google ScholarWei QinView作者出版物您也可以在
PubMed Google ScholarQiting HuangView author publicationsYou can also search for this author in
PubMed Google ScholarQiting HuangView作者出版物您也可以在
PubMed Google ScholarZifeng WangView author publicationsYou can also search for this author in
PubMed谷歌学者Zifeng WangView作者出版物您也可以在
PubMed Google ScholarXianling GaoView author publicationsYou can also search for this author in
PubMed Google ScholarXianling GaoView作者出版物您也可以在
PubMed Google ScholarFang HuangView author publicationsYou can also search for this author in
PubMed Google ScholarFang HuangView作者出版物您也可以在
PubMed Google ScholarZhengmei LinView author publicationsYou can also search for this author in
PubMed谷歌学者郑梅LinView作者出版物您也可以在
PubMed Google ScholarContributionsJiayao Chen performed the majority of the experiments, analyzed the data, and drafted the manuscript. Shuhong Kuang performed the in vivo experiments. Jietao Cen performed the in vitro experiments and drafted the manuscript. Zongshan Shen and Yong Zhang analyzed the data and edited the manuscript and figures.
PubMed谷歌学术贡献陈家耀进行了大部分实验,分析了数据,并起草了手稿。Kuang Shuhong进行了体内实验。岑洁涛进行了体外实验并起草了手稿。沈宗山和张勇分析了数据并编辑了手稿和数字。
Wei Qin, Qiting Huang, Zifeng Wang, and Xianling Gao made suggestions regarding the experiments and edited the manuscript. Zhengmei Lin and Fang Huang designed the study and edited the manuscript and figures. All the authors approved the final version of the manuscript.Corresponding authorsCorrespondence to.
秦伟,黄启亭,王子峰和高先灵就实验提出了建议并编辑了手稿。林正梅和黄方设计了这项研究,并编辑了手稿和数字。所有作者都批准了稿件的最终版本。通讯作者通讯。
Fang Huang or Zhengmei Lin.Ethics declarations
方煌或郑美林。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Ethics approval
道德认可
All the experiments were conducted at Sun Yat-sen University with the approval of the Institutional Animal Care and Use Committee (SYSU-IACUC-2018-000269 and SYSU-IACUC-2021-000637).
所有实验均在中山大学进行,并得到机构动物护理和使用委员会(SYSU-IACUC-2018-000269和SYSU-IACUC-2021-000637)的批准。
Supplementary information41368_2024_309_MOESM1_ESM.pdfMultiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposureRights and permissions
补充信息41368\u 2024\u 309\u MOESM1\u ESM.pdfMultiomics分析显示VDR是间充质干细胞衰老的中枢调节剂,在高脂饮食暴露后与骨质疏松症有关权利和许可
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleChen, J., Kuang, S., Cen, J. et al. Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure.
转载和许可本文引用本文Chen,J.,Kuang,S.,Cen,J。等人。多组学分析显示VDR是间充质干细胞衰老的中枢调节因子,已知与高脂饮食暴露后的骨质疏松症有关。
Int J Oral Sci 16, 41 (2024). https://doi.org/10.1038/s41368-024-00309-9Download citationReceived: 20 October 2023Revised: 24 April 2024Accepted: 28 April 2024Published: 22 May 2024DOI: https://doi.org/10.1038/s41368-024-00309-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
国际口腔科学杂志16,41(2024)。https://doi.org/10.1038/s41368-024-00309-9Download引文接收日期:2023年10月20日修订日期:2024年4月24日接受日期:2024年4月28日发布日期:2024年5月22日OI:https://doi.org/10.1038/s41368-024-00309-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供