商务合作
动脉网APP
可切换为仅中文
AbstractNatriuretic peptides (NPs) are cardio-derived hormones that have a crucial role in maintaining cardiovascular homeostasis. Physiological effects of NPs are mediated by binding to natriuretic peptide receptors 1 and 2 (NPR1/2), whereas natriuretic peptide receptor 3 (NPR3) acts as a clearance receptor that removes NPs from the circulation.
摘要利钠肽(NPs)是心脏衍生的激素,在维持心血管稳态中起着至关重要的作用。NPs的生理作用是通过与利钠肽受体1和2(NPR1/2)结合来介导的,而利钠肽受体3(NPR3)充当清除受体,从循环中去除NPs。
Mouse studies have shown that local NP-signaling in the kidney glomerulus is important for the maintenance of renal homeostasis. In this study we examined the expression of NPR3 in kidney tissue and explored its involvement in renal physiology and disease by generating podocyte-specific knockout mice (NPR3podKO) as well as by using an NPR3 inhibitor (NPR3i) in rodent models of kidney disease.
小鼠研究表明,肾小球中的局部NP信号传导对于维持肾脏稳态很重要。在这项研究中,我们通过产生足细胞特异性敲除小鼠(NPR3podKO)以及在肾脏疾病的啮齿动物模型中使用NPR3抑制剂(NPR3i),检测了NPR3在肾脏组织中的表达,并探讨了其在肾脏生理和疾病中的作用。
NPR3 was highly expressed by podocytes. NPR3podKO animals showed no renal abnormalities under healthy conditions and responded similarly to nephrotoxic serum (NTS) induced glomerular injury. However, NPR3i showed reno-protective effects in the NTS-induced model evidenced by decreased glomerulosclerosis and reduced podocyte loss.
NPR3由足细胞高度表达。NPR3podKO动物在健康条件下未显示肾脏异常,并且对肾毒性血清(NTS)诱导的肾小球损伤的反应相似。然而,NPR3i在NTS诱导的模型中显示出肾脏保护作用,这可以通过减少肾小球硬化和减少足细胞损失来证明。
In a ZSF1 rat model of diabetic kidney injury, therapy alone with NPR3i did not have beneficial effects on renal function/histology, but when combined with losartan (angiotensin receptor blocker), NPR3i potentiated its ameliorative effects on albuminuria. In conclusion, these results suggest that NPR3 may contribute to kidney disease progression.
在糖尿病肾损伤的ZSF1大鼠模型中,单独使用NPR3i对肾功能/组织学没有有益作用,但当与氯沙坦(血管紧张素受体阻滞剂)联合使用时,NPR3i增强了其对白蛋白尿的改善作用。总之,这些结果表明NPR3可能有助于肾脏疾病的进展。
.
.
IntroductionRenal glomerular disease processes are the most common cause of chronic kidney disease (CKD) affecting millions of people worldwide1. Podocytes, endothelial cells, and mesangial cells are the principal glomerular cell types. They play a unique and specialized role in the maintenance of normal physiology, as well as are the main targets of injury in many forms of CKD2.
引言肾小球疾病过程是影响全球数百万人的慢性肾病(CKD)的最常见原因1。足细胞,内皮细胞和系膜细胞是主要的肾小球细胞类型。它们在维持正常生理方面发挥着独特而专业的作用,也是许多形式的CKD2损伤的主要目标。
Today, glomerulopathies are treated with drugs that do not target specific glomerular disease mechanisms but are believed to have indirect reno-protective effects (such as via blood pressure).Natriuretic peptides (NPs) are a family of hormones/paracrine factors that interact with their receptors; a family of peptide binding proteins called natriuretic peptide receptors (NPRs).
今天,肾小球疾病的治疗药物不针对特定的肾小球疾病机制,但被认为具有间接的肾脏保护作用(例如通过血压)。利钠肽(NPs)是与其受体相互作用的激素/旁分泌因子家族;称为利钠肽受体(NPR)的肽结合蛋白家族。
Most of the physiological effects of NPs have been attributed to NPR1 (NPRA) or NPR2 (NPRB), which, upon NP binding, catalyze the synthesis of intracellular cyclic-GMP (cGMP), a major down-stream effector of NP-signaling pathway. The third member of this receptor family, NPR3 (NPRC), lacks the intracellular signaling domain and acts as a clearance receptor that removes NPs from the circulation and thus suppresses the pathway3.In the glomerulus, NPR1 is highly expressed by podocytes.
NPs的大多数生理作用归因于NPR1(NPRA)或NPR2(NPRB),NPR1(NPRA)或NPR2(NPRB)在NP结合后催化细胞内环GMP(cGMP)的合成,cGMP是NP信号通路的主要下游效应子。该受体家族的第三个成员NPR3(NPRC)缺乏细胞内信号传导结构域,并作为清除受体,从循环中去除NPs,从而抑制通路3。在肾小球中,NPR1由足细胞高度表达。
Inactivation of NPR1 specifically in podocytes does not affect systemic NP levels or result in renal disease. However, under pathological conditions, the absence of NPR1 in podocytes promotes glomerular damage, suggesting that local NP signaling in the glomerulus contributes to renal protection4. In addition, a significant downregulation of NPR1 and NPR3 has been observed in the glomerular tissue of diabetic nephropathy (DN) patients5.
足细胞中NPR1的特异性失活不会影响全身NP水平或导致肾脏疾病。然而,在病理条件下,足细胞中NPR1的缺失会促进肾小球损伤,这表明肾小球中的局部NP信号传导有助于肾脏保护4。此外,在糖尿病肾病(DN)患者的肾小球组织中观察到NPR1和NPR3的显着下调5。
Meanwhile, NPR3 was reported to suppress NPR1-cGMP signaling in heart fibrosis and to enhance the response to.
同时,据报道NPR3抑制心脏纤维化中的NPR1-cGMP信号传导并增强对的反应。
Data availability
数据可用性
All data generated or anlysed during this study are included in this published article (and its supplementary information files).
本研究期间生成或分析的所有数据均包含在本文(及其补充信息文件)中。
ReferencesEckardt, K.-U. et al. Evolving importance of kidney disease: From subspecialty to global health burden. Lancet 382, 158–169 (2013).Article
参考文献Eckardt,K.-U.等人。肾脏疾病的重要性不断发展:从亚专业到全球健康负担。柳叶刀382158-169(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kitching, A. R. & Hutton, H. L. The players: Cells involved in glomerular disease. Clin. J. Am. Soc. Nephrol. 11, 1664–1674 (2016).Article
Kitching,A.R。&Hutton,H.L。球员:与肾小球疾病有关的细胞。临床。J、 美国社会肾脏病学会。111664-1674(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Potter, L. R., Yoder, A. R., Flora, D. R., Antos, L. K. & Dickey, D. M. Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. https://doi.org/10.1007/978-3-540-68964-5_15 (2009).Article
Potter,L.R.,Yoder,A.R.,Flora,D.R.,Antos,L.K。&Dickey,D.M。利钠肽:它们的结构,受体,生理功能和治疗应用。手B。药理学实验。https://doi.org/10.1007/978-3-540-68964-5_15(2009年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Staffel, J. et al. Natriuretic peptide receptor guanylyl cyclase-A in podocytes is renoprotective but dispensable for physiologic renal function. J. Am. Soc. Nephrol. JASN 28, 260–277 (2017).Article
足细胞中的利钠肽受体鸟苷酸环化酶-A具有肾脏保护作用,但对生理性肾功能是不必要的。J、 美国社会肾脏病学会。Jasn28260-277(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Woroniecka, K. I. et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 60, 2354–2369 (2011).Article
Woroniecka,K.I.等人。人类糖尿病肾病的转录组分析。糖尿病602354-2369(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rahmutula, D., Zhang, H., Wilson, E. E. & Olgin, J. E. Absence of natriuretic peptide clearance receptor attenuates TGF-β1-induced selective atrial fibrosis and atrial fibrillation. Cardiovasc. Res. 115, 357–372 (2019).Article
Rahmutula,D.,Zhang,H.,Wilson,E.E。和Olgin,J.E。利钠肽清除受体的缺失减弱了TGF-β1诱导的选择性心房纤维化和心房颤动。心血管。第115357-372号决议(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wu, W. et al. Enhancing natriuretic peptide signaling in adipose tissue, but not in muscle, protects against diet-induced obesity and insulin resistance. Sci. Signal. 10, 6870 (2017).Article
Wu,W。等人。增强脂肪组织中的利钠肽信号传导,但不增强肌肉中的利钠肽信号传导,可以预防饮食引起的肥胖和胰岛素抵抗。科学。信号。106870(2017)。文章
Google Scholar
谷歌学者
Hubers, S. A. & Brown, N. J. Combined angiotensin receptor antagonism and neprilysin inhibition. Circulation 133, 1115–1124 (2016).Article
Hubers,S.A。&Brown,N.J。将血管紧张素受体拮抗作用和中性溶酶抑制相结合。发行量1331115–1124(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Neprilysin inhibitors: Emerging therapy for heart failure. Annu. Rev. Med. https://doi.org/10.1146/annurev-med-052915-015509.Malek, V., Sharma, N., Sankrityayan, H. & Gaikwad, A. B. Concurrent neprilysin inhibition and renin-angiotensin system modulations prevented diabetic nephropathy.
中性溶酶抑制剂:心力衰竭的新兴疗法。年。医学博士。https://doi.org/10.1146/annurev-med-052915-015509.Malek,V.,Sharma,N.,Sankrityayan,H。&Gaikwad,A.B。同时抑制中性溶酶和肾素-血管紧张素系统调节可预防糖尿病肾病。
Life Sci. 221, 159–167 (2019).Article .
生命科学。221159-167(2019)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Uijl, E. et al. Angiotensin-neprilysin inhibition confers renoprotection in rats with diabetes and hypertension by limiting podocyte injury. J. Hypertens. https://doi.org/10.1097/HJH.0000000000002326 (2019).Article
血管紧张素-中性溶酶抑制通过限制足细胞损伤赋予糖尿病和高血压大鼠肾脏保护作用。J、 高血压。https://doi.org/10.1097/HJH.0000000000002326(2019年)。文章
Google Scholar
谷歌学者
Bijkerk, R. et al. Neutral endopeptidase inhibitors blunt kidney fibrosis by reducing myofibroblast formation. Clin. Sci. Lond. Engl. 1979(133), 239–252 (2019).Article
Bijkerk,R。等人。中性内肽酶抑制剂通过减少肌成纤维细胞的形成来钝化肾纤维化。临床。科学。隆德。英语。1979(133),239-252(2019)。文章
Google Scholar
谷歌学者
Wang, L., Tang, Y., Buckley, A. F. & Spurney, R. F. Blockade of the natriuretic peptide clearance receptor attenuates proteinuria in a mouse model of focal segmental glomerulosclerosis. Physiol. Rep. 9, 15095 (2021).Article
Wang,L.,Tang,Y.,Buckley,A.F。&Spurney,R.F。阻断利钠肽清除受体可减轻局灶性节段性肾小球硬化小鼠模型中的蛋白尿。生理学。第915095页(2021年)。文章
Google Scholar
谷歌学者
Nishizawa, N. et al. A potent and selective natriuretic peptide receptor-3 blocker 11-mer peptide created by hybridization of musclin and atrial natriuretic peptide. Bioorg. Med. Chem. Lett. 27, 3542–3545 (2017).Article
Nishizawa,N。等人。一种有效的选择性利钠肽受体-3阻滞剂11聚体肽,由肌肉素和心钠素杂交产生。生物组织医学化学。利特。273542-3545(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Veale, C. A. et al. The discovery of non-basic atrial natriuretic peptide clearance receptor antagonists. Part 1. Bioorg. Med. Chem. Lett. 10, 1949–1952 (2000).Article
Veale,C.A。等。非碱性心钠素清除受体拮抗剂的发现。第1部分。生物组织医学化学。利特。1949年至1952年(2000年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zambrano, S. et al. FYVE domain-containing protein ZFYVE28 regulates EGFR-signaling in podocytes but is not critical for the function of filtration barrier in mice. Sci. Rep. 8, 4712 (2018).Article
Zambrano,S。等人。含有FYVE结构域的蛋白ZFYVE28调节足细胞中的EGFR信号传导,但对小鼠的过滤屏障功能并不关键。科学。代表84712(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matsukawa, N. et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc. Natl. Acad. Sci. USA 96, 7403–7408 (1999).Article
Matsukawa,N。等人。利钠肽清除受体局部调节利钠肽系统的生理作用。程序。纳特尔。阿卡德。科学。美国967403-7408(1999)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ougaard, M. K. E. et al. Murine nephrotoxic nephritis as a model of chronic kidney disease. Int. J. Nephrol. 2018, 1–12 (2018).Article
Ougaard,M.K.E.等人。小鼠肾毒性肾炎作为慢性肾脏疾病的模型。内景J.Nephrol。2018年,1-12(2018)。文章
Google Scholar
谷歌学者
Zhang, X., Zhou, Y. & Ma, R. Potential effects and application prospect of angiotensin receptor-neprilysin inhibitor in diabetic kidney disease. J. Diabetes Complic. 36, 108056 (2022).Article
Zhang,X.,Zhou,Y。&Ma,R。血管紧张素受体中性溶酶抑制剂在糖尿病肾病中的潜在作用和应用前景。J、 糖尿病并发症。36108056(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Ogawa, Y. et al. Natriuretic peptide receptor guanylyl cyclase-A protects podocytes from aldosterone-induced glomerular injury. J. Am. Soc. Nephrol. 23, 1198–1209 (2012).Article
小川,Y。等人。利钠肽受体鸟苷酸环化酶-A保护足细胞免受醛固酮诱导的肾小球损伤。J、 美国社会肾脏病学会。231198-1209(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Potter, L. R. Natriuretic peptide metabolism, clearance and degradation: Natriuretic peptide metabolism. FEBS J. 278, 1808–1817 (2011).Article
Potter,L.R。利钠肽代谢,清除和降解:利钠肽代谢。FEBS J.2781808–1817(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hollister, A. S. et al. Clearance of atrial natriuretic factor by lung, liver, and kidney in human subjects and the dog. J. Clin. Invest. 83, 623–628 (1989).Article
Hollister,A.S.等人。人类受试者和狗的肺,肝和肾清除心钠素。J、 临床。投资。83623-628(1989)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dj, C. Long-term neprilysin inhibition—Implications for ARNIs. Nat. Rev. Cardiol. 14, 171–186 (2017).Article
Dj,C。长期中性溶酶抑制对ARNIs的影响。国家心脏病修订版。14171-186(2017)。文章
Google Scholar
谷歌学者
Ardaillou, N., Placier, S., Striker, L., Striker, G. & Ardaillou, R. Mesangial cells from diabetic NOD mice constitutively express increased density of atrial natriuretic peptide C receptors. Kidney Int. 55, 1293–1302 (1999).Article
来自糖尿病NOD小鼠的系膜细胞组成性地表达增加的心钠素C受体密度。肾脏Int.551293-1302(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, H. & Murthy, K. S. Identification of the G protein-activating sequence of the single-transmembrane natriuretic peptide receptor C (NPR-C). Am. J. Physiol.-Cell Physiol. 284, C1255–C1261 (2003).Handa, T. et al. Osteocrin ameliorates adriamycin nephropathy via p38 mitogen-activated protein kinase inhibition.
Zhou,H。&Murthy,K.S。鉴定单个跨膜利钠肽受体C(NPR-C)的G蛋白激活序列。Am.J.Physiol-细胞生理学。284,C1255–C1261(2003)。Handa,T。等人。Osteocrin通过p38丝裂原活化蛋白激酶抑制改善阿霉素肾病。
Sci. Rep. 11, 21835 (2021).Article .
科学。代表1121835(2021)。文章。
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesFundingOpen access funding provided by Karolinska Institute.Author informationAuthor notesThese authors contributed equally: Dina Dabaghie and Emmanuelle Charrin.Authors and AffiliationsDivision of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, SwedenDina Dabaghie, Emmanuelle Charrin, Gizem Korkut & Jaakko PatrakkaBioscience Renal, Cardiovascular, Renal and Metabolism (CVRM), R&D Biopharmaceuticals, AstraZeneca, Gothenburg, SwedenPernilla Tonelius, Birgitta Rosengren, Anna B.
下载由卡罗琳学院提供的参考基金开放获取资金。作者信息作者注意到这些作者做出了同样的贡献:Dina Dabaghie和Emmanuelle Charrin。作者和附属机构病理学系,卡罗琳学院,Huddinge,SwedenDina Dabaghie,Emmanuelle Charrin,Gizem Korkut&Jaakko PatrakkaBioscience肾脏,心血管,肾脏和代谢(CVRM),研发生物制药,阿斯利康,哥德堡,SwedenPernilla Tonelius,Birgitta Rosengren,Anna B。
Granqvist & Mark LalDepartment of Pathology, Unilabs, Stockholm, SwedenJaakko PatrakkaAuthorsDina DabaghieView author publicationsYou can also search for this author in.
Granqvist&Mark LalDepartment of Pathology,Unilabs,Stockholm,SwedenJaakko PatrakkaAuthorsDina DabaghieView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarEmmanuelle CharrinView author publicationsYou can also search for this author in
PubMed谷歌学术评论CharrinView作者出版物您也可以在
PubMed Google ScholarPernilla ToneliusView author publicationsYou can also search for this author in
PubMed Google ScholarPernilla ToneliusView作者出版物您也可以在
PubMed Google ScholarBirgitta RosengrenView author publicationsYou can also search for this author in
PubMed Google ScholarBirgitta RosengrenView作者出版物您也可以在
PubMed Google ScholarGizem KorkutView author publicationsYou can also search for this author in
PubMed Google ScholarGizem KorkutView作者出版物您也可以在
PubMed Google ScholarAnna B. GranqvistView author publicationsYou can also search for this author in
PubMed Google ScholarAnna B.GranqvistView作者出版物您也可以在
PubMed Google ScholarMark LalView author publicationsYou can also search for this author in
PubMed Google ScholarMark LalView作者出版物您也可以在
PubMed Google ScholarJaakko PatrakkaView author publicationsYou can also search for this author in
PubMed Google ScholarJaakko PatrakkaView作者出版物您也可以在
PubMed Google ScholarContributionsDD, EC, ML and JP designed the study. DD and EC performed all mouse experiments. PT, BR and ABR performed rat experiments. GK performed part of tissue analyses and revised the manuscript. ML and ML supervised the analysis of the data. DD and EC wrote the first draft of the manuscript, all other authors revised and accepted the final version.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献SDD,EC,ML和JP设计了这项研究。DD和EC进行了所有小鼠实验。PT,BR和ABR进行了大鼠实验。GK进行了部分组织分析并修改了手稿。ML和ML监督了数据的分析。DD和EC撰写了手稿的初稿,所有其他作者都修改并接受了最终版本。对应作者对应。
Jaakko Patrakka.Ethics declarations
Jaakko Patrakka。道德宣言
Competing interests
相互竞争的利益
EC, PT, BR, ABG and ML are/were employed by AstraZeneca. JP’s research lab is financially supported by AstraZeneca. JP is employed by Unilabs. All other authors have no competing interest.
阿斯利康使用EC,PT,BR,ABG和ML。JP的研究实验室得到了阿斯利康的财政支持。JP受雇于Unilabs。所有其他作者都没有相互竞争的兴趣。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleDabaghie, D., Charrin, E., Tonelius, P. et al. Unraveling the role of natriuretic peptide clearance receptor (NPR3) in glomerular diseases.
转载和许可本文引用本文Dabaghie,D.,Charrin,E.,Tonelius,P。等人揭示了利钠肽清除受体(NPR3)在肾小球疾病中的作用。
Sci Rep 14, 11850 (2024). https://doi.org/10.1038/s41598-024-61603-4Download citationReceived: 04 November 2023Accepted: 07 May 2024Published: 24 May 2024DOI: https://doi.org/10.1038/s41598-024-61603-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1411850(2024)。https://doi.org/10.1038/s41598-024-61603-4Download引文接收日期:2023年11月4日接收日期:2024年5月7日发布日期:2024年5月24日OI:https://doi.org/10.1038/s41598-024-61603-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。