商务合作
动脉网APP
可切换为仅中文
AbstractThe mouse and human embryo gradually loses totipotency before diversifying into the inner cell mass (ICM, future organism) and trophectoderm (TE, future placenta). The transcription factors TFAP2C and TEAD4 with activated RHOA accelerate embryo polarization. Here we show that these factors also accelerate the loss of totipotency.
摘要小鼠和人类胚胎在分化为内细胞团(ICM,未来生物体)和滋养外胚层(TE,未来胎盘)之前逐渐失去全能性。具有活化RHOA的转录因子TFAP2C和TEAD4加速胚胎极化。在这里,我们表明,这些因素也加速了全能性的丧失。
TFAP2C and TEAD4 paradoxically promote and inhibit Hippo signaling before lineage diversification: they drive expression of multiple Hippo regulators while also promoting apical domain formation, which inactivates Hippo. Each factor activates TE specifiers in bipotent cells, while TFAP2C also activates specifiers of the ICM fate.
TFAP2C和TEAD4在谱系多样化之前矛盾地促进和抑制Hippo信号传导:它们驱动多种Hippo调节剂的表达,同时也促进顶端结构域的形成,从而使Hippo失活。每个因子激活双能细胞中的TE说明符,而TFAP2C也激活ICM命运的说明符。
Asymmetric segregation of the apical domain reconciles the opposing regulation of Hippo signaling into Hippo OFF and the TE fate, or Hippo ON and the ICM fate. We propose that the bistable switch established by TFAP2C and TEAD4 is exploited to trigger robust lineage diversification in the developing embryo..
顶端结构域的不对称分离协调了Hippo信号转导到Hippo OFF和TE命运或Hippo ON和ICM命运的相反调节。我们建议利用TFAP2C和TEAD4建立的双稳态开关来触发发育中胚胎中强大的谱系多样化。。
MainIn mammals, the highly differentiated sperm and egg fuse to generate a totipotent zygote that gives rise to all the cells in the body and to the extraembryonic tissues. Totipotency gradually decreases during the first few cell divisions (Fig. 1a). At the eight-cell stage, each cell (blastomere) becomes polarized along the outside–inside axis, forming a cap-shape structure on the outside domain called the apical domain1,2,3,4,5.
在哺乳动物中,高度分化的精子和卵子融合产生全能合子,产生体内所有细胞和胚外组织。在最初的几个细胞分裂过程中,全能性逐渐降低(图1a)。在八细胞阶段,每个细胞(卵裂球)沿内外轴极化,在称为顶端结构域1,2,3,4,5的外部结构域上形成帽状结构。
Asymmetric segregation of apical domains produces a 16-cell embryo with polar outside cells that will become the trophectoderm (TE, future placenta) and apolar inside cells that will become the inner cell mass (ICM, future epiblast and yolk sac)6,7. ICM- and TE-specific transcription factors were found to be co-expressed in blastomeres before lineage diversification4,8,9,10,11,12.
顶端结构域的不对称分离产生具有极性外细胞的16细胞胚胎,其将成为滋养外胚层(TE,未来的胎盘)和非极性内细胞,其将成为内细胞团(ICM,未来的外胚层和卵黄囊)6,7。在谱系多样化之前,发现ICM和TE特异性转录因子在卵裂球中共表达4,8,9,10,11,12。
However, what mechanisms lead to the co-expression of opposite lineage markers and to reconciliation of this bipotency into one of the two fates remain unclear.Fig. 1: Premature expression of TFAP2C, TEAD4 and activated Rho GTPase are sufficient to advance the first cell fate decision.a, A schematic of preimplantation development.
然而,什么机制导致相反谱系标记的共表达以及这种双能性与两种命运之一的协调尚不清楚。图1:TFAP2C,TEAD4和活化的Rho GTPase的过早表达足以推进第一个细胞命运决定。a,植入前发育的示意图。
ZGA, zygotic genome activation. b, A schematic of differential Hippo signalling in TE (top) and ICM (bottom) lineages in the morula stage mouse embryo. c, A schematic of blastocyst reconstruction assay. Two-cell stage embryos injected with Ezrin–RFP (Ezrin only, control) or Tfap2c + Tead4 + RhoA mRNA (TTRhoA) were cultured until the early 16-cell stage.
ZGA,合子基因组激活。b、 桑椹胚期小鼠胚胎中TE(顶部)和ICM(底部)谱系中差异Hippo信号传导的示意图。c、 胚泡重建测定的示意图。注射Ezrin-RFP(仅Ezrin,对照)或Tfap2c的两细胞期胚胎 + Tead4 + 培养RhoA mRNA(TTRhoA)直至16细胞早期。
Sixteen polarized cells from each genotype were sorted, re-aggregated, cultured until the mid-blastocyst stage and the proportion of ICM examined. d, Representative images of the reconstructed blastocysts from Ezrin-only or TTRhoA embryos. Embryos were immunostained to reveal CDX2 (TE), NAN.
对每种基因型的16个极化细胞进行分选,重新聚集,培养直至囊胚中期,并检查ICM的比例。d、 仅来自Ezrin或TTRhoA胚胎的重建胚泡的代表性图像。对胚胎进行免疫染色以显示CDX2(TE),NAN。
Data availability
数据可用性
The bulk RNA-sequencing data of Tfap2c and Tead4 RNAi at the eight-cell stage mouse embryo were deposited as previously described28 (GSE124755). All other raw data for making the graphs in the paper, as well as the raw images used in figures can be found in the Source data and Supplementary information sections in the manuscript.
如前所述28(GSE124755)保存了八细胞期小鼠胚胎中Tfap2c和Tead4 RNAi的大量RNA测序数据。可以在手稿的源数据和补充信息部分找到用于制作本文中图形的所有其他原始数据以及图形中使用的原始图像。
Source data are provided with this paper..
本文提供了源数据。。
ReferencesZenker, J. et al. Expanding actin rings zipper the mouse embryo for blastocyst formation. Cell 173, 776–791 e17 (2018).Article
参考文献Zenker,J。等人,扩展肌动蛋白环拉链小鼠胚胎胚泡形成。细胞173776-791 e17(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fleming, T. P., Cannon, P. M. & Pickering, S. J. The cytoskeleton, endocytosis and cell polarity in the mouse preimplantation embryo. Dev. Biol. 113, 406–419 (1986).Article
Fleming,T.P.,Cannon,P.M。&Pickering,S.J。小鼠植入前胚胎中的细胞骨架,内吞作用和细胞极性。开发生物。113406-419(1986)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhu, M., Leung, C. Y., Shahbazi, M. N. & Zernicka-Goetz, M. Actomyosin polarisation through PLC–PKC triggers symmetry breaking of the mouse embryo. Nat. Commun. 8, 921 (2017).Article
Zhu,M.,Leung,C.Y.,Shahbazi,M.N。和Zernicka-Goetz,M。通过PLC-PKC的肌动球蛋白极化触发小鼠胚胎的对称性破坏。国家公社。8921(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Korotkevich, E. et al. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40, 235–247 e7 (2017).Article
Korotkevich,E。等人。顶端结构域对于小鼠胚胎中的第一个谱系分离是必需的和足够的。Dev.Cell 40235–247 e7(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Johnson, M. H. & Ziomek, C. A. Induction of polarity in mouse 8-cell blastomeres: specificity, geometry, and stability. J. Cell Biol. 91, 303–308 (1981).Article
Johnson,M.H。&Ziomek,C.A。诱导小鼠8细胞卵裂球的极性:特异性,几何形状和稳定性。J、 细胞生物学。91303-308(1981)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Johnson, M. H. & Ziomek, C. A. The foundation of two distinct cell lineages within the mouse morula. Cell 24, 71–80 (1981).Article
Johnson,M.H。&Ziomek,C.A。小鼠桑椹胚内两种不同细胞谱系的基础。细胞24,71-80(1981)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Anani, S., Bhat, S., Honma-Yamanaka, N., Krawchuk, D. & Yamanaka, Y. Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 141, 2813–2824 (2014).Article
Anani,S.,Bhat,S.,Honma Yamanaka,N.,Krawchuk,D。&Yamanaka,Y。Hippo信号的启动与极性有关,而不是与植入前小鼠胚胎中的细胞位置有关。发展1412813-2824(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hirate, Y. et al. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr. Biol. 23, 1181–1194 (2013).Article
Hirate,Y。等人。血管生成素的极性依赖性分布定位植入前胚胎中的Hippo信号传导。货币。生物学231181-1194(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005).Article
Cdx2是正确的细胞命运规范和小鼠胚泡滋养外胚层分化所必需的。发展1322093-2102(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pfeffer, P. L. Building principles for constructing a mammalian blastocyst embryo. Biology 7, 41 (2018).Article
Pfeffer,P.L。构建哺乳动物胚泡胚胎的构建原则。生物学7,41(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, L. et al. Multifaceted SOX2–chromatin interaction underpins pluripotency progression in early embryos. Science 382, eadi5516 (2023).Article
Li,L。等人。多方面的SOX2-染色质相互作用支持早期胚胎的多能性进展。科学382,eadi5516(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, L. et al. Lineage regulators TFAP2C and NR5A2 function as bipotency activators in totipotent embryos. Nat Struct Mol Biol https://doi.org/10.1038/s41594-023-01199-x (2024).Sasaki, H. Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos.
Li,L。等人。谱系调节剂TFAP2C和NR5A2在全能胚胎中起双能激活剂的作用。Nat Struct分子生物学https://doi.org/10.1038/s41594-023-01199-x(2024年)。Sasaki,H。位置和极性依赖性Hippo信号调节植入前小鼠胚胎中的细胞命运。
Semin. Cell Dev. Biol. 47–48, 80–87 (2015).Article .
塞米。细胞开发生物学。47-48、80-87(2015)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009).Article
Nishioka,N。等人,《河马信号通路成分Lats和Yap模式Tead4活性,以区分小鼠滋养外胚层和内部细胞团》。Dev.cell 16398-410(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ralston, A. et al. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137, 395–403 (2010).Article
Ralston,A。等人,Gata3调节Tead4下游的滋养层发育,并与Cdx2平行。发展137395-403(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Leung, C. Y. & Zernicka-Goetz, M. Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat. Commun. 4, 2251 (2013).Article
Leung,C.Y。&Zernicka-Goetz,M。Angiomotin通过Hippo途径依赖性和非依赖性机制阻止小鼠胚胎中的多能谱系分化。国家公社。42251(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wicklow, E. et al. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS Genet. 10, e1004618 (2014).Article
Wicklow,E。等人。HIPPO途径成员将SOX2限制在内部细胞团中,在那里它促进小鼠胚泡中的ICM命运。PLoS Genet。10,e1004618(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Frum, T., Watts, J. L. & Ralston, A. TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage. Development 146, dev179861 (2019).Article
Frum,T.,Watts,J。L。&Ralston,A。TEAD4,YAP1和WWTR1可防止16细胞阶段之前多能性的过早发作。发展146,dev179861(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, L. et al. Cross-regulation of the Nanog and Cdx2 promoters. Cell Res. 19, 1052–1061 (2009).Article
Chen,L。等人。Nanog和Cdx2启动子的交叉调节。Cell Res.191052–1061(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Posfai, E. et al. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. eLife 6, e22906 (2017).Article
Posfai,E。等人。早期小鼠胚胎谱系分离过程中位置和河马信号依赖性可塑性。eLife 6,e22906(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Frum, T., Murphy, T. M. & Ralston, A. HIPPO signaling resolves embryonic cell fate conflicts during establishment of pluripotency in vivo. eLife 7, e42298 (2018).Article
Frum,T.,Murphy,T.M。&Ralston,A。HIPPO signaling解决了体内多能性建立过程中的胚胎细胞命运冲突。eLife 7,e42298(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, Z. et al. Transcription factor AP-2gamma induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage. Development 142, 1606–1615 (2015).CAS
Cao,Z。等人。转录因子AP-2gamma诱导早期Cdx2表达并抑制HIPPO信号传导以指定滋养外胚层谱系。发展1421606-1615(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nishioka, N. et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev. 125, 270–283 (2008).Article
Nishioka,N。等人。Tead4是植入前小鼠胚胎中滋养外胚层规格所必需的。机械。德文125270-283(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836 (2007).Article
Yagi,R。等人。转录因子TEAD4在哺乳动物发育开始时指定滋养外胚层谱系。发展1343827-3836(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Choi, I., Carey, T. S., Wilson, C. A. & Knott, J. G. Transcription factor AP-2gamma is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development 139, 4623–4632 (2012).Article
Choi,I.,Carey,T.S.,Wilson,C.A。&Knott,J.G。转录因子AP-2gamma是小鼠早期胚胎发生过程中紧密连接生物发生和腔形成的核心调节剂。发展1394623-4632(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krendl, C. et al. GATA2/3–TFAP2A/C transcription factor network couples human pluripotent stem cell differentiation to trophectoderm with repression of pluripotency. Proc. Natl Acad. Sci. USA 114, E9579–E9588 (2017).Article
Krendl,C。等人,GATA2/3–TFAP2A/C转录因子网络将人多能干细胞分化为滋养外胚层并抑制多能性。程序。国家科学院。科学。美国114,E9579–E9588(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kuckenberg, P. et al. The transcription factor TCFAP2C/AP-2gamma cooperates with CDX2 to maintain trophectoderm formation. Mol. Cell. Biol. 30, 3310–3320 (2010).Article
Kuckenberg,P。等人。转录因子TCFAP2C/AP-2gamma与CDX2协同维持滋养外胚层的形成。摩尔电池。生物学303310-3320(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhu, M. et al. Developmental clock and mechanism of de novo polarization of the mouse embryo. Science 370, eabd2703 (2020).Article
朱,M。等。小鼠胚胎发育时钟和从头极化机制。科学370,eabd2703(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Choi, I., Carey, T. S., Wilson, C. A. & Knott, J. G. Evidence that transcription factor AP-2gamma is not required for Oct4 repression in mouse blastocysts. PLoS ONE 8, e65771 (2013).Article
Choi,I.,Carey,T.S.,Wilson,C.A。&Knott,J.G。证据表明,小鼠胚泡中Oct4抑制不需要转录因子AP-2gamma。PLoS ONE 8,e65771(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moroishi, T. et al. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev. 29, 1271–1284 (2015).Article
Moroishi,T。等人。YAP/TAZ诱导的反馈机制调节Hippo途径稳态。基因发展291271-1284(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Piotrowska-Nitsche, K. & Zernicka-Goetz, M. Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo. Mech. Dev. 122, 487–500 (2005).Article
Piotrowska-Nitsche,K。&Zernicka-Goetz,M。单个4细胞期卵裂球的空间排列及其产生的顺序与小鼠胚胎中的囊胚模式相关。机械。Dev.122487–500(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhao, B., Li, L., Lei, Q. & Guan, K. L. The Hippo–YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 24, 862–874 (2010).Article
Zhao,B.,Li,L.,Lei,Q。&Guan,K.L。器官大小控制和肿瘤发生中的Hippo-YAP途径:更新版本。Genes Dev.24862–874(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Das, A., Fischer, R. S., Pan, D. & Waterman, C. M. YAP nuclear localization in the absence of cell–cell contact is mediated by a filamentous actin-dependent, myosin II- and phospho-YAP-independent pathway during extracellular matrix mechanosensing. J. Biol. Chem. 291, 6096–6110 (2016).Article .
Das,A.,Fischer,R.S.,Pan,D。&Waterman,C.M。在没有细胞间接触的情况下,YAP核定位是由丝状肌动蛋白依赖性,肌球蛋白II和磷酸-YAP非依赖性途径介导的。细胞外基质机械传感。J、 生物。化学。2916096-6110(2016)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wada, K., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907–3914 (2011).Article
Wada,K.,Itoga,K.,Okano,T.,Yonemura,S。&Sasaki,H。Hippo通路通过细胞形态和应激纤维调节。发展1383907-3914(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
McDole, K. & Zheng, Y. Generation and live imaging of an endogenous Cdx2 reporter mouse line. Genesis 50, 775–782 (2012).Article
McDole,K。&Zheng,Y。内源性Cdx2报告基因小鼠系的生成和实时成像。《创世纪》50775-782(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Menchero, S. et al. Transitions in cell potency during early mouse development are driven by Notch. eLife 8, e42930 (2019).Article
Menchro,S。等人。Notch驱动小鼠早期发育过程中细胞效力的转变。eLife 8,e42930(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rayon, T. et al. Notch and Hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev. Cell 30, 410–422 (2014).Article
Rayon,T。等人Notch和Hippo聚集在Cdx2上,以指定小鼠胚泡中的滋养外胚层谱系。Dev.Cell 30410–422(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Panayi, H. et al. Sox1 is required for the specification of a novel p2-derived interneuron subtype in the mouse ventral spinal cord. J. Neurosci. 30, 12274–12280 (2010).Article
Panayi,H。等人Sox1是在小鼠腹侧脊髓中指定新型p2衍生的中间神经元亚型所必需的。J、 神经科学。3012274-12280(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kono, K., Tamashiro, D. A. & Alarcon, V. B. Inhibition of RHO–ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev. Biol. 394, 142–155 (2014).Article
Kono,K.,Tamashiro,D.A。和Alarcon,V.B。抑制RHO-ROCK信号通过激活小鼠胚泡中的Hippo信号传导来增强ICM并抑制TE特征。开发生物。394142-155(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dietrich, J. E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–4231 (2007).Article
Dietrich,J.E。&Hiiragi,T。小鼠植入前胚胎中的随机模式。发展1344219-4231(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ohnishi, Y. et al. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16, 27–37 (2014).Article
Ohnishi,Y。等人。细胞间表达变异性,然后是信号增强,逐渐分离早期小鼠谱系。自然细胞生物学。16,27-37(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Messerschmidt, D. M. & Kemler, R. Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Dev. Biol. 344, 129–137 (2010).Article
Messerschmidt,D.M。&Kemler,R.Nanog是通过非细胞自主机制形成原始内胚层所必需的。开发生物。344129-137(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Le Bin, G. C. et al. Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst. Development 141, 1001–1010 (2014).Article
Le Bin,G.C。等人,Oct4是小鼠胚泡发育中的内细胞团中谱系启动所必需的。发展1411001-1010(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).Article
Mitsui,K。等人。同源蛋白Nanog是维持小鼠外胚层和ES细胞多能性所必需的。细胞113631-642(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pastor, W. A. et al. TFAP2C regulates transcription in human naive pluripotency by opening enhancers. Nat. Cell Biol. 20, 553–564 (2018).Article
Pastor,W.A.等人,TFAP2C通过开放增强子来调节人类幼稚多能性的转录。自然细胞生物学。20553-564(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, D. et al. The TFAP2C-regulated OCT4 naive enhancer is involved in human germline formation. Cell Rep. 25, 3591–3602 e5 (2018).Article
Chen,D。等人。TFAP2C调节的OCT4幼稚增强子参与人类种系的形成。Cell Rep.253591–3602 e5(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Deng, Q., Ramskold, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).Article
Deng,Q.,Ramskold,D.,Reinius,B。&Sandberg,R。单细胞RNA-seq揭示了哺乳动物细胞中动态,随机的单等位基因表达。科学343193-196(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lorthongpanich, C. et al. Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation. Genes Dev. 27, 1441–1446 (2013).Article
Lorthongparich,C。等人。早期植入前胚胎中LATS激酶的时间减少可防止ICM谱系分化。Genes Dev.271441–1446(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kinisu, M. et al. Klf5 establishes bi-potential cell fate by dual regulation of ICM and TE specification genes. Cell Rep. 37, 109982 (2021).Article
Kinisu,M。等人,Klf5通过ICM和TE规范基因的双重调节建立双潜能细胞命运。细胞代表37109982(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Boroviak, T. et al. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development 145, dev167833 (2018).Article
Boroviak,T。等人。人类,mar猴和小鼠胚胎的单细胞转录组分析揭示了植入前发育的共同和不同特征。发展145,dev167833(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).Article
Petropoulos,S。等人。单细胞RNA-seq揭示了人类植入前胚胎的谱系和X染色体动力学。细胞1651012-1026(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3151–3165 (2015).Article
Blakeley,P.等人通过单细胞RNA-seq定义了人类胚泡的三个细胞谱系。发展1423151-3165(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gerri, C. et al. Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature 587, 443–447 (2020).Article
Gerri,C。等人。在人,牛和小鼠胚胎中启动保守的滋养外胚层程序。《自然》587443-447(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhu, M. et al. Human embryo polarization requires PLC signaling to mediate trophectoderm specification. eLife 10, e65068 (2021).Article
Zhu,M.等人。人类胚胎极化需要PLC信号传导来介导滋养外胚层的规格。eLife 10,e65068(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, J. et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256–260 (2018).Article
Wu,J。等人。人类早期发育中的染色质分析揭示了ZGA期间的表观遗传转变。自然557256-260(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zheng, Y. & Pan, D. The Hippo signaling pathway in development and disease. Dev. Cell 50, 264–282 (2019).Article
Zheng,Y。&Pan,D。Hippo信号通路在发育和疾病中的作用。Dev.Cell 50264-282(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tomikawa, J. et al. Cell division- and DNA replication-free reprogramming of somatic nuclei for embryonic transcription. iScience 24, 103290 (2021).Article
Tomikawa,J.等人。体细胞核的无细胞分裂和DNA复制重编程用于胚胎转录。iScience 24103290(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Home, P. et al. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc. Natl Acad. Sci. USA 109, 7362–7367 (2012).Article
Home,P。等人。转录因子TEAD4的亚细胞定位改变调节了第一个哺乳动物细胞谱系的承诺。程序。国家科学院。科学。美国1097362–7367(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hirate, Y. et al. Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos. Dev. Growth Differ. 57, 544–556 (2015).Article
Hirate,Y。等人。Par-aPKC依赖性和非依赖性机制协同控制16细胞期小鼠胚胎中的细胞极性,Hippo信号传导和细胞定位。开发增长不同。57544-556(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhu, M. & Zernicka-Goetz, M. Principles of self-organization of the mammalian embryo. Cell 183, 1467–1478 (2020).Article
Zhu,M。&Zernicka-Goetz,M。哺乳动物胚胎自组织原理。细胞1831467-1478(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657 (2016).Article
Wu,J.等人。哺乳动物植入前胚胎中可获得染色质的景观。自然534652-657(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zernicka-Goetz, M. et al. Following cell fate in the living mouse embryo. Development 124, 1133–1137 (1997).Article
Zernicka-Goetz,M.等人在活小鼠胚胎中追踪细胞命运。发展1241133-1137(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Horn, T. & Boutros, M. E-RNAi: a web application for the multi-species design of RNAi reagents—2010 update. Nucleic Acids Res. 38, W332–W339 (2010).Article
Horn,T。&Boutros,M。E-RNAi:RNAi试剂多物种设计的网络应用程序-2010更新。核酸研究38,W332–W339(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article
Schindelin,J。等人。斐济:生物图像分析的开源平台。《自然方法》9676-682(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank all reviewers and A. Andersen from the Life Science Foundation for their constructive comments and extremely valuable suggestions. We thank S. Malas (The Cyprus Institute) for providing the Gata3–GFP transgenic line, C. Graham for helping to process human embryos for immunostaining in University of Oxford and S.
下载参考文献致谢我们感谢所有审稿人和生命科学基金会的A.Andersen提出的建设性意见和极为宝贵的建议。我们感谢S.Malas(塞浦路斯研究所)提供Gata3-GFP转基因品系,C.Graham帮助牛津大学和S。
Junyent Espinosa, W. Hu and Z. Liao for the help in some pilot experiments at Caltech. This work was supported by grants from the Wellcome Trust (098287/Z/12/Z), European Research Council (ERC) (669198), Leverhulme Trust (RPG-2018-085), Open Philanthropy/Silicon Valley, Weston Havens Foundations and National Institutes of Health R01HD100456A to M.Z.-G.
Junyent Espinosa、W.Hu和Z.Liao在加州理工学院的一些试点实验中提供了帮助。这项工作得到了惠康信托基金(098287/Z/12/Z),欧洲研究理事会(ERC)(669198),Leverhulme信托基金(RPG-2018-085),开放慈善/硅谷,韦斯顿港基金会和国立卫生研究院R01HD100456A对M.Z.-G的资助。
Program of China grants 2017YFA0102802 and 2019YFA0110001 to J.N. M.Z. is a Human Frontier Science program long-term fellow. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.Author informationAuthor notesMeng ZhuPresent address: Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USAAuthors and AffiliationsMammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UKMeng Zhu, Maciej Meglicki, Adiyant Lamba & Magdalena Zernicka-GoetzDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USAMeng Zhu, Muhammad Abdullah Jauhar & Magdalena Zernicka-GoetzCentre for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, ChinaPeizhe Wang & Jie NaDepartment of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UKChristophe RoyerOxford Fertility, Institute of Reproductive Sciences, Oxford, UKKaren T.
中国计划向J.N.M.Z.授予2017YFA0102802和2019YFA0111001。是人类前沿科学计划长期研究员。资助者在研究设计,数据收集和分析,决定发表或准备稿件方面没有任何作用。作者信息作者注朱明明目前的地址:美国马萨诸塞州波士顿哈佛医学院布拉瓦尼克研究所遗传学系作者和附属机构剑桥大学生理学,发育与神经科学系哺乳动物胚胎与干细胞组,英国剑桥大学,朱明明,马西吉·梅格里基,阿迪扬特·兰巴和马格达莱娜·泽尼卡·戈茨加利福尼亚理工学院生物与生物工程系,加利福尼亚州帕萨迪纳,朱明明,穆罕默德·阿卜杜拉·贾哈尔和马格达莱娜·泽尼卡·戈茨清华大学医学院干细胞生物学和再生医学中心牛津大学,牛津大学,生理学,解剖学和遗传学,英国克里斯托弗·罗耶,牛津生殖科学研究所,英国卡伦·T。
PubMed Google ScholarMaciej MeglickiView author publicationsYou can also search for this author in
PubMed Google ScholarMaciej MeglickiView作者出版物您也可以在
PubMed Google ScholarAdiyant LambaView author publicationsYou can also search for this author in
PubMed Google ScholarAdiyant LambaView作者出版物您也可以在
PubMed Google ScholarPeizhe WangView author publicationsYou can also search for this author in
PubMed Google ScholarPeizhe WangView作者出版物您也可以在
PubMed Google ScholarChristophe RoyerView author publicationsYou can also search for this author in
PubMed谷歌学术评论RoyerView作者出版物您也可以在
PubMed Google ScholarKaren TurnerView author publicationsYou can also search for this author in
PubMed Google ScholarKaren TurnerView作者出版物您也可以在
PubMed Google ScholarMuhammad Abdullah JauharView author publicationsYou can also search for this author in
PubMed Google ScholarMuhammad Abdullah JauharView作者出版物您也可以在
PubMed Google ScholarCeline JonesView author publicationsYou can also search for this author in
PubMed Google ScholarCeline JonesView作者出版物您也可以在
PubMed Google ScholarTim ChildView author publicationsYou can also search for this author in
PubMed Google ScholarTim ChildView作者出版物您也可以在
PubMed Google ScholarKevin CowardView author publicationsYou can also search for this author in
PubMed Google ScholarKevin CowardView作者出版物您也可以在
PubMed Google ScholarJie NaView author publicationsYou can also search for this author in
PubMed Google ScholarJie NaView作者出版物您也可以在
PubMed Google ScholarMagdalena Zernicka-GoetzView author publicationsYou can also search for this author in
PubMed Google ScholarMagdalena Zernicka GoetzView作者出版物您也可以在
PubMed Google ScholarContributionsM.Z. and M.Z.-G. conceived the project. M.Z., M.M., A.L., P.W., C.R. and M.A.J. performed the experiments. M.Z. and P.W. analyzed the data. K.T., C.J., T.C. and K.C. provided the human embryo samples. M.Z.-G. and J.N. supervised the project.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献。Z、 M.Z.-G.构思了这个项目。M、 Z.,M.M.,A.L.,P.W.,C.R.和M.A.J.进行了实验。M、 Z.和P.W.分析了数据。K、 T.,C.J.,T.C.和K.C.提供了人类胚胎样本。M、 Z.-G.和J.N.监督了这个项目。对应作者对应。
Magdalena Zernicka-Goetz.Ethics declarations
Magdalena Zernicka Goetz。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Structural & Molecular Biology thanks Jason Knott for their contribution to the peer review of this work. Dimitris Typas was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.
Nature Structural&Molecular Biology感谢Jason Knott为这项工作的同行评审做出的贡献。Dimitris Typas是本文的主要编辑,并与其他编辑团队合作管理其编辑过程和同行评审。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Expression of Tfap2c, Tead4 and activated Rho GTPase are sufficient to advance the first cell fate decision.(a) Representative images of the reconstructed blastocysts from Ezrin-only or TTRhoA embryos.
Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1 Tfap2c,Tead4和活化的Rho GTPase的表达足以推进第一个细胞命运决定。(a) 仅来自Ezrin或TTRhoA胚胎的重建胚泡的代表性图像。
Embryos were immunostained to reveal CDX2 (TE), NANOG (epiblast) and SOX17 (primitive endoderm). Experimental procedures were described as in Fig. 1c. (b) Quantifications of TE and ICM cell numbers in each reconstructed blastocyst generated from experiment described in Fig. 1c. * p = 0.0276; ns, not significant, Two-sided student’s t test.
对胚胎进行免疫染色以显示CDX2(TE),NANOG(外胚层)和SOX17(原始内胚层)。实验程序如图1c所示。(b) 从图1c中描述的实验产生的每个重建胚泡中TE和ICM细胞数量的定量。*p = 0.0276;ns,不显着,双面学生t检验。
Each dot indicates the datapoint obtained from one embryo. N = 19 embryos for Ezrin-only group, N = 16 embryos for TTRhoA group. N = 2 experiments. (c) Representative images of embryos injected with Ezrin-RFP or with Tfap2c+Tead4+RhoA mRNA in one cell of the 2-cell stage, and immunostained with DAPI with TFAP2C at the 4–8 cell stage.
每个点表示从一个胚胎获得的数据点。N = 仅Ezrin组的19个胚胎,N = TTRhoA组有16个胚胎。N = 2个实验。(c) 在2细胞阶段的一个细胞中注射了Ezrin-RFP或Tfap2c+Tead4+RhoA mRNA的胚胎的代表性图像,并在4-8细胞阶段用DAPI和Tfap2c进行了免疫染色。
(d) Representative images of embryos injected with Ezrin-RFP or with Tfap2c+Tead4+RhoA mRNA at the one cell of the 2-cell stage, and immunostained with DAPI with TEAD4 at the 8-cell stage. (e) Representative images of embryos injected with EZRIN-RFP and dsRNA targeting Tfap2c at the one cell of the 2-cell stage, and immunostained with DAPI with TFAP2C at the 8- stage.
(d) 在2细胞阶段的一个细胞中注射了Ezrin-RFP或Tfap2c+Tead4+RhoA mRNA的胚胎的代表性图像,并在8细胞阶段用DAPI和Tead4进行了免疫染色。(e) 在2细胞阶段的一个细胞中注射靶向Tfap2c的EZRIN-RFP和dsRNA的胚胎的代表性图像,并在8阶段用DAPI与Tfap2c进行免疫染色。
(f) Representative images of embryos injected with EZRIN-RFP and dsRNA targeting Tead4 at both cells of the 2-cell stage, and immunostained with DAPI with TEAD4 at the 8- stage. N = 2 experiments for c-f. Scale bars, 15 μm.Source dataExtended Data Fig. 2 AMOT protein is tethered to the prematurely formed apical domain by the expression of Tfap2c, Tead4, an.
(f) 在2细胞阶段的两个细胞中注射靶向Tead4的EZRIN-RFP和dsRNA的胚胎的代表性图像,并在8阶段用Tead4的DAPI进行免疫染色。N = 2个c-f实验。比例尺,15μm。来源数据扩展数据图2 AMOT蛋白通过Tfap2c,Tead4,an的表达与过早形成的顶端结构域相连。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleZhu, M., Meglicki, M., Lamba, A. et al. Tead4 and Tfap2c generate bipotency and a bistable switch in totipotent embryos to promote robust lineage diversification.
转载和许可本文引用本文Zhu,M.,Meglicki,M.,Lamba,A。等人。Tead4和Tfap2c在全能胚胎中产生双能性和双稳态转换,以促进强大的谱系多样化。
Nat Struct Mol Biol (2024). https://doi.org/10.1038/s41594-024-01311-9Download citationReceived: 06 February 2024Accepted: 09 April 2024Published: 24 May 2024DOI: https://doi.org/10.1038/s41594-024-01311-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Struct Mol Biol(2024)。https://doi.org/10.1038/s41594-024-01311-9Download引文收到日期:2024年2月6日接受日期:2024年4月9日发布日期:2024年5月24日OI:https://doi.org/10.1038/s41594-024-01311-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供