登录

用于皮肤视频速率功能成像的SPECTRAL灌注臂夹紧dAtaset(SPECTRAPACA)

The SPECTRAL Perfusion Arm Clamping dAtaset (SPECTRALPACA) for video-rate functional imaging of the skin

Nature 2024-05-25 16:03 翻译由动脉网AI生成,点击反馈

可切换为仅中文


AbstractSpectral imaging has the potential to become a key technique in interventional medicine as it unveils much richer optical information compared to conventional RBG (red, green, and blue)-based imaging. Thus allowing for high-resolution functional tissue analysis in real time. Its higher information density particularly shows promise for the development of powerful perfusion monitoring methods for clinical use.

摘要光谱成像有可能成为介入医学的关键技术,因为与传统的基于RBG(红色,绿色和蓝色)的成像相比,它揭示了更丰富的光学信息。因此可以实时进行高分辨率功能组织分析。它更高的信息密度特别显示出开发用于临床的强大灌注监测方法的前景。

However, even though in vivo validation of such methods is crucial for their clinical translation, the biomedical field suffers from a lack of publicly available datasets for this purpose. Closing this gap, we generated the SPECTRAL Perfusion Arm Clamping dAtaset (SPECTRALPACA). It comprises ten spectral videos (∼20 Hz, approx.

然而,尽管这些方法的体内验证对于其临床翻译至关重要,但生物医学领域缺乏为此目的公开可用的数据集。缩小这一差距,我们生成了光谱灌注臂钳制数据集(SPECTRALPACA)。它包括十个光谱视频(〜20 Hz,约。

20,000 frames each) systematically recorded of the hands of ten healthy human participants in different functional states. We paired each spectral video with concisely tracked regions of interest, and corresponding diffuse reflectance measurements recorded with a spectrometer. Providing the first openly accessible in human spectral video dataset for perfusion monitoring, our work facilitates the development and validation of new functional imaging methods..

每个20000帧)系统地记录了十名处于不同功能状态的健康人类参与者的手。我们将每个光谱视频与简要跟踪的感兴趣区域配对,并用光谱仪记录相应的漫反射测量值。我们的工作为灌注监测提供了第一个可公开访问的人类光谱视频数据集,有助于开发和验证新的功能成像方法。。

Background & SummaryThe enhanced perception of tissues and structures that are invisible to the naked eye, conventionally by RGB (red, green, and blue)-based imaging, has become indispensable for various types of interventional clinical procedures. As these imaging methods mimic the function of the human eye by collecting light in three broad spectral regions (red, green, and blue), they inherently limit practitioners to the morphological analysis of tissue.

背景与总结通常通过基于RGB(红色,绿色和蓝色)的成像增强对肉眼看不见的组织和结构的感知,已成为各种类型的介入临床程序必不可少的。由于这些成像方法通过在三个宽光谱区域(红色,绿色和蓝色)收集光线来模拟人眼的功能,因此它们固有地限制了从业者对组织的形态分析。

However, the ability to functionally assess tissue in real time is crucial in a number of medical interventions, such as partial kidney resection (nephrectomy)1, anastomosis2,3, and wound monitoring4,5.Addressing this clinical need, spectral imaging (SI)2 techniques have evolved as a promising alternative.

然而,实时功能评估组织的能力在许多医学干预中至关重要,例如部分肾切除术(肾切除术)1,吻合术2,3和伤口监测4,5。为了满足这种临床需求,光谱成像(SI)2技术已经发展成为一种有前途的替代方案。

In contrast to RGB imaging, SI is capable of collecting light in many more and narrower regions of the optical spectrum. This property, in combination with tissue-specific spectral signatures, caused by the unique interaction of different molecules with light, enables SI to encode optical information of much higher density than traditional imaging techniques, ultimately allowing for the development of methods that offer functional tissue assessment in real time.

与RGB成像相反,SI能够在光谱的更多和更窄的区域收集光。这种特性与由不同分子与光的独特相互作用引起的组织特异性光谱特征相结合,使SI能够编码比传统成像技术高得多的密度的光学信息,最终允许开发实时提供功能组织评估的方法。

Over the last decade, many approaches to functional tissue monitoring in vivo, notably of perfusion and oxygenation, have emerged, using both gray-scale and spectral imaging. These approaches can be classified into two main categories: a) model-based approaches2,4,5,6,7,8,9,10, and b) approaches that leverage machine learning-based tools1,11,12,13,14.

在过去的十年中,已经出现了许多使用灰度和光谱成像进行体内功能组织监测的方法,特别是灌注和氧合。这些方法可以分为两大类:a)基于模型的方法2,4,5,6,7,8,9,10,以及b)利用基于机器学习的工具的方法1,11,12,13,14。

For the remainder of the manuscript, we will use the term perfusion to refer to properties related to the assessment of tissue perfusion such as oxygenation and blood volume fraction.The majority of these met.

对于手稿的其余部分,我们将使用术语灌注来指代与组织灌注评估相关的特性,例如氧合和血容量分数。其中大多数人都遇到了。

(1)

(1)

Subsequently, an \({\ell }_{1}\)-normalization across the different bands was performed to compensate for the influence of light source intensity changes due to variation in the distance of the camera to the surface of the hand:$${({\widehat{I}}_{(i,j)})}_{k}=\frac{{({\bar{I}}_{(i,j)})}_{k}}{{\parallel {\bar{I}}_{(i,j)}\parallel }_{1}}\quad ;\quad {\parallel {\bar{I}}_{(i,j)}\parallel }_{1}=\mathop{\sum }\limits_{k=1}^{B}{({\bar{I}}_{(i,j)})}_{k}$$.

随后,对不同波段进行了\({\ ell}\{1}\)归一化,以补偿由于相机到手表面的距离变化而引起的光源强度变化的影响:$${({\ widehat{I}}{(I,j)}}{k}=\ frac{({\ bar{I}}{(I,j)}}}{k}{\ parallel{\ bar{I}}{(I,j)}\并行}{1}}\四元;\quad{\ parallel{\ bar{I}}{(I,j)}\ parallel}{1}=\ mathop{\ sum}\ limits\u{k=1}^{B}{({\ bar{I}}{(I,j)}}}{k}$$。

(2)

(2)

The resulting spectra \({({\widehat{I}}_{(i,j)})}_{k}\) can be compared between different image sequences.As part of the validation of the spectral camera, the diffuse reflectance data measured with the spectrometer \(r(\lambda )\) were transformed into the spectral camera space, thus yielding the measurement \({r}_{k}\) at band k according to:$${r}_{k}=\frac{{\int }_{{\lambda }_{min}}^{{\lambda }_{max}}{\mathcal{J}}(\lambda )\cdot J(\lambda )\cdot {f}_{k}(\lambda )\cdot r(\lambda )d\lambda }{{\int }_{{\lambda }_{min}}^{{\lambda }_{max}}{\mathcal{J}}(\lambda )\cdot J(\lambda )\cdot {f}_{k}(\lambda )d\lambda },$$.

可以在不同的图像序列之间比较得到的光谱\({({\ widehat{I}}}{(I,j)})}{k}\)。作为光谱相机验证的一部分,用光谱仪(r(\ lambda))测量的漫反射数据被转换到光谱相机空间,从而产生测量结果\({r}_{k} \)在k波段,根据:$${r}_{k} =\frac{{\int}\u{{\ lambda}\u{min}}}^{\lambda}\u{max}}{\mathcal{J}(\lambda)\cdot J(\lambda)\cdot{f}_{k} (\lambda)\cdot r(\lambda)d\lambda}{{\int}\u{{\ lambda}\u{min}}^{{\lambda}\u{max}}{\mathcal{J}(\lambda)\cdot J(\lambda)\cdot{f}_{k} (\λ)d \λ},$$。

(3)

(3)

were \([{\lambda }_{min},{\lambda }_{max}]\) is the spectral range of each band k of the spectral camera, \(I(\lambda )\) represents the optical transmission profile of the optical components of our hardware setup (Fig. 2), \({\mathcal{J}}(\lambda )\) is the relative irradiance of the light source, and \({f}_{k}(\lambda )\) characterizes the kth optical filter response of the camera.Data RecordsThe SPECTRALPACA27 dataset can be downloaded from Synapse (SynID syn51625685) following the instructions provided in this link.

是光谱相机每个波段k的光谱范围,\(I(\ lambda)\)表示我们硬件设置的光学组件的光学传输曲线(图2),\({\ mathcal{J}}(\ lambda)\)是光源的相对辐照度,并且\({f}_{k} (\ lambda)\)表征相机的第k个光学滤波器响应。数据记录SPECTRALPACA27数据集可以按照此链接中提供的说明从Synapse(SynID syn51625685)下载。

The dataset is mainly composed of spectral videos and spectrometer diffuse reflectance data, and is organized in two levels. The first level refers to the two types of data included in the archive: spectral videos and spectrometer measurements. The spectral videos are provided as individual files for all ten subjects, which can be loaded with the sample Python code provided together with the dataset.

数据集主要由光谱视频和光谱仪漫反射数据组成,分为两个层次。第一级是指档案中包含的两种类型的数据:光谱视频和光谱仪测量。光谱视频作为所有十个主题的单独文件提供,可以与数据集一起提供的示例Python代码一起加载。

Each spectral video is named subject_NN.b2nd, where NN represents the subject ID (see Table 1), and is stored in a lossless, highly optimized compressed format developed by BLOSC (NDArray). This facilitates fast data decompression, and loading of individual frames from each video. The spectral videos are accompanied by dark and white reference measurements that can be used to calibrate the spectral videos.

每个光谱视频都被命名为subject\u NN.b2nd,其中NN代表主题ID(见表1),并以BLOSC(NDArray)开发的无损、高度优化的压缩格式存储。这有助于快速解压缩数据,并从每个视频中加载单个帧。光谱视频伴随着黑白参考测量,可用于校准光谱视频。

In addition, the filter responses of the spectral camera and the relative irradiance of the light source used to record the spectral videos is provided as comma-separated values (CSV) and in Feather format for faster data loading. The spectrometer measurements for all subjects are contained in a single file, provided in both CSV and Feather format.Table 1 Human subjects recruited for our clinical study.Full size tableSimilarly to the spectr.

此外,光谱相机的滤波器响应和用于记录光谱视频的光源的相对辐照度以逗号分隔值(CSV)和羽毛格式提供,以更快地加载数据。所有受试者的光谱仪测量都包含在一个文件中,以CSV和Feather格式提供。表1招募用于我们临床研究的人类受试者。与光谱相似的全尺寸表。

Code availability

代码可用性

The SPECTRALPACA27 dataset includes the Python code that facilitates loading of the spectral data. This code and its usage instructions can be found in the dataset archive in the folder named code.

SPECTRALPACA27数据集包含有助于加载光谱数据的Python代码。此代码及其使用说明可以在名为code的文件夹中的dataset archive中找到。

ReferencesAyala, L. et al. Spectral imaging enables contrast agent-free real-time ischemia monitoring in laparoscopic surgery. Science Advances 9 (2023).Clancy, N. T. et al. Intraoperative colon perfusion assessment using multispectral imaging. Biomedical Optics Express 12, 7556–7567 (2021).Article .

参考文献Sayala,L。等人。光谱成像可在腹腔镜手术中实现无造影剂的实时缺血监测。科学进步9(2023)。Clancy,N.T.等人。使用多光谱成像进行术中结肠灌注评估。生物医学光学快报127556-7567(2021)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Köhler, H. et al. Evaluation of hyperspectral imaging (hsi) for the measurement of ischemic conditioning effects of the gastric conduit during esophagectomy. Surgical Endoscopy 33, 3775–3782 (2019).Article

Köhler,H.等人。评估高光谱成像(hsi)在食管切除术中测量胃导管的缺血调节作用。外科内窥镜检查333775-3782(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Holmer, A., Marotz, J., Wahl, P., Dau, M. & Kämmerer, P. W. Hyperspectral imaging in perfusion and wound diagnostics - methods and algorithms for the determination of tissue parameters. Biomedizinische Technik 63, 547–556 (2018).Article

Holmer,A.,Marotz,J.,Wahl,P.,Dau,M。&Kämmer,P.W。灌注和伤口诊断中的高光谱成像-确定组织参数的方法和算法。Biomedizinische Technik 63547-556(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kulcke, A. et al. A compact hyperspectral camera for measurement of perfusion parameters in medicine. Biomedizinische Technik 63, 519–527 (2018).Article

Kulcke,A。等人。用于测量医学灌注参数的紧凑型高光谱相机。Biomedizinische Technik 63519-527(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kumar, M., Suliburk, J. W., Veeraraghavan, A. & Sabharwal, A. Pulsecam: a camera-based, motion-robust and highly sensitive blood perfusion imaging modality. Scientific Reports 10, 4825 (2020).Article

Kumar,M.,Suliburk,J.W.,Veeraraghavan,A。&Sabharwal,A。Pulsecam:一种基于相机的,运动稳健且高度敏感的血液灌注成像模式。科学报告104825(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kumar, M., Veeraraghavan, A. & Sabharwal, A. DistancePPG: Robust non-contact vital signs monitoring using a camera. Biomedical Optics Express 6, 1565–1588 (2015).Article

Kumar,M.,Veeraraghavan,A。和Sabharwal,A。DistancePPG:使用相机进行强大的非接触生命体征监测。生物医学光学快报61565-1588(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Köhler, H. et al. Laparoscopic system for simultaneous high-resolution video and rapid hyperspectral imaging in the visible and near-infrared spectral range. Journal of Biomedical Optics 25, 086004 (2020).Article

Köhler,H.等人。腹腔镜系统,用于在可见光和近红外光谱范围内同时进行高分辨率视频和快速高光谱成像。生物医学光学杂志25086004(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guo, H. et al. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nature Communications 13, 3009 (2022).Article

郭,H。等。用于连续监测皮瓣和器官移植物中氧饱和度的无线植入式光学探针。自然通讯133009(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Felli, E. et al. Automatic liver viability scoring with deep learning and hyperspectral imaging. Diagnostics 11, 1527 (2021).Article

Felli,E.等人。深度学习和高光谱成像自动肝脏活力评分。诊断111527(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wirkert, S. J. et al. Robust near real-time estimation of physiological parameters from megapixel multispectral images with inverse monte carlo and random forest regression. International Journal of Computer Assisted Radiology and Surgery 11, 909–917 (2016).Article

Wirkert,S.J.等人。使用逆蒙特卡罗和随机森林回归从百万像素多光谱图像中鲁棒近实时估计生理参数。国际计算机辅助放射学和外科杂志11909-917(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wirkert, S. J. et al. Physiological parameter estimation from multispectral images unleashed. MICCAI 2017 Lecture Notes in Computer Science, 10435 (2017).Ayala, L. et al. Multispectral imaging enables visualization of spreading depolarizations in gyrencephalic brain. Bildverarbeitung für die Medizin (2019).PrzybyÅ‚o, J.

Wirkert,S.J.等人。释放多光谱图像的生理参数估计。MICCAI 2017计算机科学讲稿,10435(2017)。Ayala,L。等人。多光谱成像可以可视化脑回大脑中扩散的去极化。Bildverarbeitung für die Medizin(2019)。PrzybyÅ,o,J。

A deep learning approach for remote heart rate estimation. Biomedical Signal Processing and Control 74, 103457 (2022).Article .

远程心率估计的深度学习方法。生物医学信号处理与控制74103457(2022)。文章。

Google Scholar

谷歌学者

Bruins, A. A. et al. The vascular occlusion test using multispectral imaging: a validation study. Journal of Clinical Monitoring and Computing 35, 113–121 (2021).Article

Bruins,A.A.等人。使用多光谱成像的血管闭塞测试:验证研究。临床监测与计算杂志35113-121(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kossack, B. et al. Perfusion assessment via local remote photoplethysmography (rppg). Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2192–2201 (2022).Rasche, S. et al. Association of remote imaging photoplethysmography and cutaneous perfusion in volunteers.

Kossack,B。等人。通过局部远程光体积描记术(rppg)进行灌注评估。IEEE/CVF计算机视觉和模式识别会议论文集,2192-2201(2022)。Rasche,S.等人。远程成像光体积描记术与志愿者皮肤灌注的关联。

Scientific Reports 10, 16464 (2020).Article .

科学报告1016464(2020)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dybbroe, A. et al. Satellite sensor relative spectral response data (v1.2.2) [Data set]. Zenodo https://doi.org/10.5281/zenodo.7311143 (2022).Thompson, D. Spectral fidelity of earth’s terrestrial and aquatic ecosystems: Source data [Data set]. Zenodo https://doi.org/10.5281/zenodo.3735479 (2021).Salmi, P.

Dybbroe,A.等人。卫星传感器相对光谱响应数据(v1.2.2)[数据集]。泽诺多https://doi.org/10.5281/zenodo.7311143(2022年)。Thompson,D。地球陆地和水生生态系统的光谱保真度:源数据[数据集]。泽诺多https://doi.org/10.5281/zenodo.3735479(2021年)。萨尔米,P。

& Pölönen, I. Transmittance hyperspectral images of microalgae on well plates [Data set]. Zenodo https://doi.org/10.5281/zenodo.5061719 (2021).Ritter, D. J. Angle dependent spectral reflectance material dataset based on 945 nm time-of-flight camera measurements (v1.0.1) [Data set]. Zenodo https://doi.org/10.5281/zenodo.7467552 (2022).Cooksey, C.

&Pölönen,I.微孔板上微藻的透射高光谱图像[数据集]。泽诺多https://doi.org/10.5281/zenodo.5061719(2021年)。Ritter,D.J。基于945的角度相关光谱反射材料数据集 nm飞行时间相机测量(v1.0.1)[数据集]。泽诺多https://doi.org/10.5281/zenodo.7467552(2022年)。库克西,C。

C., Allen, D. W. & Tsai, B. K. Reference data set of human skin reflectance. Journal of Research of the National Institute of Standards and Technology 122 (2017).Fabelo, H. et al. In-vivo hyperspectral human brain image database for brain cancer detection. IEEE Access 7, 39098–39116, https://doi.org/10.1109/ACCESS.2019.2904788 (2019).Article .

C、 ,Allen,D.W。和Tsai,B.K。人体皮肤反射率的参考数据集。国家标准与技术研究所研究杂志122(2017)。Fabelo,H.等人。用于脑癌检测的体内高光谱人脑图像数据库。IEEE Access 739098–39116,https://doi.org/10.1109/ACCESS.2019.2904788(2019年)。文章。

Google Scholar

谷歌学者

Hyttinen, J., Fält, P., Jäberg, H., Kullaa, A. & Hauta-Kasari, M. Oral and dental spectral image database-odsi-db. Applied Sciences 10 https://doi.org/10.3390/app10207246 (2020).Bauer, J. R., Thomas, J.-B., Hardeberg, J. Y. & Verdaasdonk, R. M. An evaluation framework for spectral filter array cameras to optimize skin diagnosis.

Hyttinen,J.,Fält,P.,Jäberg,H.,Kullaa,A。&Hauta Kasari,M。口腔和牙科光谱图像数据库odsi db。应用科学10https://doi.org/10.3390/app10207246(2020年)。Bauer,J.R.,Thomas,J.-B.,Hardeberg,J.Y.&Verdaasdonk,R.M。用于优化皮肤诊断的光谱滤波器阵列相机的评估框架。

Sensors 19 (2019).Winne, J. D. et al. Multispectral indices for real-time and non-invasive tissue ischemia monitoring using snapshot cameras. Biomed. Opt. Express 15, 641–655 (2024).Article .

传感器19(2019)。Winne,J.D.等人。使用快照相机进行实时和非侵入性组织缺血监测的多光谱指数。生物医学。选择。Express 15641–655(2024)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ayala, L. et al. SPECTRAL Perfusion Arm Clamping dAtaset (SPECTRALPACA). Synapse https://doi.org/10.7303/syn51625685 (2024).Maceo, A. Friction ridge skin: Morphogenesis and overview anatomy outer morphology of the skin, Wiley Encyclopedia of Forensic Science (2009).Pizer, S. M. et al.

Ayala,L。等人。光谱灌注臂钳制数据集(SPECTRALPACA)。突触https://doi.org/10.7303/syn51625685(2024年)。Maceo,A。摩擦脊皮肤:形态发生和概述解剖学皮肤的外部形态,Wiley Encyclopedia of Forensic Science(2009)。Pizer,S.M.等人。

Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing 39, 355–368 (1987).Article .

自适应直方图均衡化及其变化。计算机视觉、图形和图像处理39355-368(1987)。文章。

Google Scholar

谷歌学者

Lukezic, A., Vojir, T., Cehovin Zajc, L., Matas, J. & Kristan, M. Discriminative correlation filter tracker with channel and spatial reliability. International Journal of Computer Vision 126, 671–688 (2018).Article

Lukezic,A.,Vojir,T.,Cehovin-Zajc,L.,Matas,J。&Kristan,M。具有信道和空间可靠性的判别相关滤波器跟踪器。国际计算机视觉杂志126671-688(2018)。文章

MathSciNet

MathSciNet

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (NEURAL SPICING, Grant agreement No. 101002198). This project also received support from the Helmholtz Association under the joint research school “HIDSS4Health – Helmholtz Information and Data Science School for Health”.

下载参考文献致谢该项目获得了欧盟地平线2020研究与创新计划(NEURAL SPICING,Grant agreement No.101002198)下欧洲研究理事会(ERC)的资助。该项目还得到了联合研究学校“HIDSS4Health–亥姆霍兹信息和数据科学健康学校”下亥姆霍兹协会的支持。

This work was also supported by the “Model-Based AI” project, which is funded by the Carl Zeiss Foundation. Some icons shown in the figures were provided by Freepik and DinosoftLabs from Flaticon.com.FundingOpen Access funding enabled and organized by Projekt DEAL.Author informationAuthors and AffiliationsGerman Cancer Research Center (DKFZ), Division of Intelligent Medical Systems, Heidelberg, GermanyLeonardo Ayala, Diana Mindroc-Filimon, Maike Rees, Marco Hübner, Jan Sellner, Silvia Seidlitz, Minu Tizabi, Sebastian Wirkert, Alexander Seitel & Lena Maier-HeinMedical Faculty, Heidelberg University, Heidelberg, GermanyLeonardo Ayala & Lena Maier-HeinFaculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, GermanyMaike Rees, Marco Hübner, Jan Sellner, Silvia Seidlitz & Lena Maier-HeinHelmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, GermanyJan Sellner, Silvia Seidlitz & Lena Maier-HeinNational Center for Tumor Diseases (NCT) Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, GermanyJan Sellner, Silvia Seidlitz & Lena Maier-HeinAuthorsLeonardo AyalaView author publicationsYou can also search for this author in.

这项工作也得到了卡尔·蔡司基金会资助的“基于模型的人工智能”项目的支持。图中所示的一些图标是由Freepik和DinosoftLabs从Flaticon.com.FundingOpen-Access-funding提供的,由Projekt DEAL启用和组织。作者信息作者和附属机构德国癌症研究中心(DKFZ),智能医疗系统部,海德堡,德国莱昂纳多·阿亚拉,戴安娜·明德罗·菲利蒙,梅克·里斯,马尔科·赫布纳,扬·塞尔纳,西尔维亚·塞德利兹,米努蒂扎比,塞巴斯蒂安·维尔克特,亚历山大·塞特尔和莱娜·梅耶·海因德医学院,海德堡大学,海德堡,德国莱昂纳多·阿亚拉和莱娜·梅耶·海因德数学和计算机科学学院,海德堡,德国梅克·里斯,马尔科·赫布纳,扬·塞尔纳,西尔维亚·塞德勒伊茨和莱娜·迈尔·海因霍尔茨健康信息与数据科学学院,卡尔斯鲁厄/海德堡,德国扬·塞尔纳,西尔维亚·塞德利茨和莱娜·迈尔·海因霍尔茨国家肿瘤疾病中心(NCT)海德堡,DKFZ与海德堡大学医院合作,海德堡,德国扬·塞尔纳,西尔维亚·塞德利茨和莱娜·迈尔·海因霍尔茨作者莱昂纳多·阿亚拉维作者出版物你也可以在中搜索这位作者。

PubMed Google ScholarDiana Mindroc-FilimonView author publicationsYou can also search for this author in

PubMed Google Scholardina Mindroc FilimonView作者出版物您也可以在

PubMed Google ScholarMaike ReesView author publicationsYou can also search for this author in

PubMed谷歌学术类ReesView作者出版物您也可以在

PubMed Google ScholarMarco HübnerView author publicationsYou can also search for this author in

PubMed Google ScholarMarco HübnerView作者出版物您也可以在

PubMed Google ScholarJan SellnerView author publicationsYou can also search for this author in

PubMed Google ScholarJan SellnerView作者出版物您也可以在

PubMed Google ScholarSilvia SeidlitzView author publicationsYou can also search for this author in

PubMed Google ScholarSilvia SeidlitzView作者出版物您也可以在

PubMed Google ScholarMinu TizabiView author publicationsYou can also search for this author in

PubMed Google Scholarmarinu TizabiView作者出版物您也可以在

PubMed Google ScholarSebastian WirkertView author publicationsYou can also search for this author in

PubMed Google ScholarSebastian WirkertView作者出版物您也可以在

PubMed Google ScholarAlexander SeitelView author publicationsYou can also search for this author in

PubMed Google ScholarAlexander SeitelView作者出版物您也可以在

PubMed Google ScholarLena Maier-HeinView author publicationsYou can also search for this author in

PubMed Google ScholarLena Maier HeinView作者出版物您也可以在

PubMed Google ScholarContributionsL.A., D.M., M.T., A.S. and L.M. conceptualized and designed the clinical trial. L.A. D.M., M.H. and M.T. recorded the data. S.W. and L.M. developed the regression algorithm based on random forests. L.A., M.R., and L.M. interpreted the results of the project.

PubMed谷歌学术贡献l。A、 ,D.M.,M.T.,A.S.和L.M.概念化并设计了临床试验。五十、 A.D.M.,M.H.和M.T.记录了数据。S、 W.和L.M.开发了基于随机森林的回归算法。五十、 A.,M.R。和L.M.解释了项目的结果。

L.A., D.M., and M.R. performed the data analysis. J.S., and S.S provided guidance on the compression and organization of the dataset. L.A., M.R., L.M., S.S., and J.S. designed the figures. All authors contributed to writing and revising the manuscript.Corresponding authorCorrespondence to.

五十、 A.,D.M。和M.R.进行了数据分析。J、 S.和S.S为数据集的压缩和组织提供了指导。五十、 A.,M.R.,L.M.,S.S。和J.S.设计了这些数字。所有作者都为撰写和修改手稿做出了贡献。对应作者对应。

Leonardo Ayala.Ethics declarations

莱昂纳多·阿亚拉。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleAyala, L., Mindroc-Filimon, D., Rees, M. et al. The SPECTRAL Perfusion Arm Clamping dAtaset (SPECTRALPACA) for video-rate functional imaging of the skin.

转载和许可本文引用本文Ayala,L.,Mindroc-Filimon,D.,Rees,M。等人。用于皮肤视频功能成像的光谱灌注臂钳制数据集(SPECTRALPACA)。

Sci Data 11, 536 (2024). https://doi.org/10.1038/s41597-024-03307-yDownload citationReceived: 20 June 2023Accepted: 24 April 2024Published: 25 May 2024DOI: https://doi.org/10.1038/s41597-024-03307-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci数据11536(2024)。https://doi.org/10.1038/s41597-024-03307-yDownload引文接收日期:2023年6月20日接收日期:2024年4月24日发布日期:2024年5月25日OI:https://doi.org/10.1038/s41597-024-03307-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

推荐阅读

Lupin任命Abdelaziz Toumi为新成立的子公司的首席执行官

economictimes.indiatimes 2024-06-17 15:39

中华中医药学会中药制药工程分会举行换届会议

新华健康 2024-06-17 15:33

免疫疗法开发商Bright Peak Therapeutics获得9000万美元融资,将铅项目推进临床试验

startupticker 2024-06-17 15:31

Nature

292篇

最近内容 查看更多

精神分裂症患者大脑皮层形态相似网络的拓扑异常

8 小时后

真皮胚胎毛细血管细胞的免疫组织化学特性

8 小时后

基于整合miRNA-TF的调控网络分析揭示心力衰竭的关键基因

8 小时后

产业链接查看更多