商务合作
动脉网APP
可切换为仅中文
AbstractRecent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development.
摘要最近的研究结果表明,造血干细胞(HSC)和祖细胞已经在胚胎主动脉-性腺-中肾区域同时独立出现,但尚不清楚它们的不同特征是如何建立的。在这里,我们发现IκBα(Nfkbia,NF-κB的抑制剂)是整个发育过程中HSC增殖的关键调节剂。
IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation.
IκBα与表观遗传沉默子PRC2(特别是在HSC中)一起平衡视黄酸信号传导水平。IκBα的缺失会降低HSC的增殖,并诱导与休眠相关的基因表达特征。此外,IκBα缺陷型HSC对体外培养和连续移植具有优异的激活作用。
At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling..
在分子水平上,对于IκBα缺陷型HSC中PRC2依赖性H3K27me3标记,带有视黄酸信号传导结合基序的染色质区域被低甲基化。总体而言,我们显示发育中的HSC中的增殖指数受IκBα-PRC2轴调节,该轴控制视黄酸信号传导。。
IntroductionHSCs can replenish the adult blood system by generating mature blood cells of all lineages through intermediate stages of multipotent progenitors1. Understanding the molecular programming underlying the formation of HSCs during development is critical to improve the feasibility of generating them from Pluripotent Stem cells, or through re-programming of somatic cells to treat blood malignancies2.
引言HSC可以通过多能祖细胞的中间阶段产生所有谱系的成熟血细胞来补充成人血液系统1。了解发育过程中HSC形成的分子编程对于提高从多能干细胞产生HSC的可行性至关重要,或者通过重新编程体细胞来治疗血液恶性肿瘤2。
Blood stem and progenitor cell (HSPC) emerge through trans-differentiation of specialized endothelial-like cells, termed hemogenic endothelium (HE), and the first cells capable to regenerate the hematopoietic system are found in the Aorta-Gonad-Mesonephros (AGM) region between embryonic day (E) 10.25 and 11.5 in the mouse embryo3,4,5 and accumulate as intra-aortic hematopoietic clusters (IAHC) within the ventral wall of the dorsal aorta (vDA, DA)6,7,8.Hemogenic potential in the DA can be readily identified by the expression of transcription factors such as Gata2 and Gfi19,10,11,12 and a few cells in IAHC co-express markers associated with HSC activity.
造血干细胞和祖细胞(HSPC)是通过特殊的内皮样细胞(称为血源性内皮细胞(HE))的转分化而出现的,第一批能够再生造血系统的细胞是在小鼠胚胎的胚胎日(E)10.25和11.5之间的主动脉-性腺-中肾(AGM)区域中发现的3,4,5,并在背主动脉腹壁(vDA,DA)6,7,8内积累为主动脉内造血簇(IAHC)。DA中的造血潜能可以通过转录因子如Gata2和Gfi19,10,11,12的表达以及IAHC co中的一些细胞来容易地鉴定表达与HSC活性相关的标记。
Some of the IAHC that are cKIT and CD41 positive (Pre-HSCs/T1 HSCs), gain HSC-specific markers, including CD45, SCA1, and EPCR (CD201/PROCR) (T2 HSCs)13. From the AGM, the first HSCs migrate to the FL by E12.5 to amplify and acquire an adult HSC phenotype14. There, the hematopoietic hierarchy is first evident, and a pool of long-term HSCs (LT-HSCs, LSKCD48-CD150+) resides at its apex.Recent studies indicate that (LT-) HSC and HPCs fate is already segregated in the AGM and that the fetal liver merely serves as a niche for their amplification as separate populations, with the (LT)-HSCs pool remaining smaller than the extensively proliferating HPC pool15,16,17.
一些cKIT和CD41阳性(前HSC/T1 HSC)的IAHC获得HSC特异性标记,包括CD45,SCA1和EPCR(CD201/PROCR)(T2 HSC)13。从AGM开始,第一批HSC通过E12.5迁移到FL,以扩增并获得成年HSC表型14。在那里,造血系统的层次结构首先显而易见,并且长期HSC(LT-HSC,LSKCD48-CD150+)的库位于其顶点。最近的研究表明,(LT-)HSC和HPC的命运已经在AGM中分离,胎儿肝脏只是作为单独群体扩增的利基,而(LT)-HSC池仍然小于广泛增殖的HPC池15,16,17。
Signals that allow this segregation, and how these LT-HSCs p.
允许这种分离的信号,以及这些LT-HSC如何p。
IκBα KO has reduced cKIT+CD45+SCA1+EPCR+HSC in the AGMSince we had identified a retention of the AGM HSC signature in IκBα KO LT-HSCs of the E14.5 FL (Fig. 3B), and NF-κB activity is already required during AGM hematopoiesis28,29,30 we aimed to study the spatial distribution of IκBα by performing Immunohistochemistry (IHC) on E11.5 AGM sagittal sections.
IκBαKO在AGM中降低了cKIT+CD45+SCA1+EPCR+HSC,因为我们已经确定了E14.5 FL的IκBαKO LT HSC中AGM HSC特征的保留(图3B),并且在AGM造血过程中已经需要NF-κB活性28,29,30我们旨在通过在E11.5 AGM矢状切片上进行免疫组织化学(IHC)来研究IκBα的空间分布。
We used the Gfi1:tomato embryos to enrich for HSC containing IAHC in the AGM11.Besides the expected cytoplasmic staining, we discovered an accumulation of a punctuated and nuclear signal for IκBα mainly in GFI1 positive HE and IAHC (Fig. 3D and Supplementary Fig. S5D). The nuclear localization of IκBα raised the possibility that we were additionally detecting the form of the (nuclear) IκBα that has been previously linked to stem cell function33,34.
我们使用Gfi1:番茄胚胎来富集AGM11中含有HSC的IAHC。除了预期的细胞质染色外,我们还发现IκBα的点状和核信号主要在Gfi1阳性HE和IAHC中积累(图3D和补充图S5D)。IκBα的核定位增加了我们另外检测先前与干细胞功能相关的(核)IκBα形式的可能性33,34。
Phosphorylated, nuclear IκBα is protected from degradation by SUMOylation43, and is predominantly detected as phosphorylated Ser32,36 IκBα with a specific antibody (p-IκBα). Thus, we examined the presence of p-IκBα in cKIT or GFI1 positive cells and detected nuclear p-IκBα staining mainly in IAHC (Fig. 3E and Supplementary Fig. S5E) with a heterogeneous distribution in around 50% cKIT positive cells (Fig. 3F), strongly suggesting this additional function for IκBα already in the IAHC of the AGM.We next assessed the impact of IκBα deletion in E11.5 AGMs and compared IκBα WT and KO by FACS analysis.
磷酸化的核IκBα被SUMO化43保护免于降解,并且主要被特异性抗体(p-IκBα)检测为磷酸化的Ser32,36 IκBα。因此,我们检测了cKIT或GFI1阳性细胞中p-IκBα的存在,并检测到主要在IAHC中的核p-IκBα染色(图3E和补充图S5E),在约50%的cKIT阳性细胞中具有异质分布(图3F),强烈表明AGM的IAHC中已经存在IκBα的这种额外功能。接下来,我们评估了E11.5 AGM中IκBα缺失的影响,并通过FACS分析比较了IκBαWT和KO。
The frequency of the overall CD31+cKIT+/CD45+ (HSPCs) was not altered in IκBα KO embryos when compared with the controls (Fig. 3G(i), Supplementary Fig. S5F). However, when additional markers that restrict this population further to HSCs were included, i.e. by sub-gating for GFI1/EPCR or SCA1/EPCR13,44,45 then we detected a significant decline in the percentage of HSCs in the IκBα KO.
与对照组相比,IκBαKO胚胎中总体CD31+cKIT+/CD45+(HSPC)的频率没有改变(图3G(I),补充图S5F)。然而,当包括将该群体进一步限制为HSC的其他标记时,即通过对GFI1/EPCR或SCA1/EPCR13,44,45进行亚门控,然后我们检测到iκBαKO中HSC的百分比显着下降。
IκBα KO LT-HSC shows a functional dormant phenotype in vivo and in vitroNext, we aimed to investigate the activation capacity of LT-HSCs by measuring the clonogenic activity of individual IκBα WT and KO LT-HSCs in vitro (Supplementary Fig. S9A). LT-HSCs that are in a dormant/slow-cycling state need more time to proliferate than their already activated counterparts18.
IκBαKO LT-HSC在体内和体外均表现出功能性休眠表型,我们旨在通过测量单个IκBαWT和KO LT-HSC的体外克隆形成活性来研究LT-HSC的活化能力(补充图S9A)。处于休眠/缓慢循环状态的LT-HSC比其已经激活的对应物需要更多的时间增殖18。
In fact, dormant HSCs show a paradoxical behavior upon stress stimuli, including transplantation assays or ex vivo culture: the cells become activated with a delay which has been attributed to their need to exit the quiescent state first. However, once activated, dormant cells possess a higher self-renewal and repopulation capacity than their already activated HSC counterparts49, and even outperform their WT equivalent over time18,19.
事实上,休眠的HSC在应激刺激下表现出矛盾的行为,包括移植试验或离体培养:细胞被激活的延迟归因于它们首先需要退出静止状态。然而,一旦激活,休眠细胞比已经激活的HSC对应物具有更高的自我更新和再增殖能力49,并且随着时间的推移甚至优于其WT等效物18,19。
We, therefore, compared the clonogenic potential of IκBα WT and KO LT-HSC in vitro by sorting single LT-HSCs into individual wells and assessing for the cell number of the clonogenic colonies after 10 days. We detected an overall trend towards increased colony numbers from IκBα KO LT-HSC with the small colonies (10–100 cells) showing the highest increase (Supplementary Fig. S9Aii, iii), suggesting that IκBα KO LT-HSC have a delayed response to stress (more small colonies) but greater proliferation potential (higher overall number of colonies) (Supplementary Fig. S9A).Ultimately, we assessed the dormant phenotype in serial transplantation settings (Fig. 6A).
因此,我们通过将单个LT-HSC分选到单个孔中并评估10天后克隆形成集落的细胞数量,比较了IκBαWT和KO LT-HSC在体外的克隆形成潜力。我们检测到IκBαKO LT-HSC菌落数量增加的总体趋势,其中小菌落(10-100个细胞)显示出最高的增加(补充图S9Aii,iii),这表明IκBαKO LT-HSC对压力的反应延迟(菌落越小),但增殖潜力越大(菌落总数越高)(补充图S9A)。最终,我们评估了连续移植环境中的休眠表型(图6A)。
We evaluated the hematopoietic activity of IκBα KO LT-HSCs (200 per recipient) or LSK (1000 cells) in competition with 500.000 lin- depleted bone marrow WT cells, respectively, in transplantation assay (Fig. 6A). Indeed, PB blood analysis 4 weeks after the transplantation showed a significantly lower blood chimerism from Iκ.
我们在移植试验中分别评估了IκBαKO LT HSC(每个受体200个)或LSK(1000个细胞)与500000个lin耗尽的骨髓WT细胞竞争的造血活性(图6A)。实际上,移植后4周的PB血液分析显示Iκ的血液嵌合体明显降低。
Single-cell RNA-seq data from Zhou et al.13 (https://www.nature.com/articles/nature17997) was downloaded from Gene Expression Omnibus (GEO), accession number GSE67120. The downloaded SRR files were converted to Illumina paired-end fastq using the SRA Toolkit (version 3.0.1) using the function “fastq-dump –split-e” with default parameters.
来自Zhou等人的单细胞RNA-seq数据(https://www.nature.com/articles/nature17997)从Gene Expression Omnibus(GEO)下载,登录号为GSE67120。使用SRA工具包(版本3.0.1),使用带有默认参数的函数“fastq dump–split-e”,将下载的SRR文件转换为Illumina配对端fastq。
We subsequently mapped the fastq files with STAR (REF - https://pubmed.ncbi.nlm.nih.gov/23104886/) (version 2.7.9a) using the STARsolo to the mouse reference genome on 10x genomics webpage (https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mm10-2020-A.tar.gz). The STARsolo mapping and quantification command were with the following parameters; soloUMIdedup Exact, soloStrand Unstranded, soloFeatures Gene GeneFull, soloMultiMappers EM, outSAMtype BAM SortedByCoordinate.
随后,我们用STAR(参考-https://pubmed.ncbi.nlm.nih.gov/23104886/)(版本2.7.9a)在10x genomics网页上使用STARsolo对小鼠参考基因组(https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mm10-2020-A.tar.gz)。STARsolo映射和量化命令具有以下参数;soloUMIdedup Exact,soloStrand Unstranded,soloFeatures GeneFull,soloMultiMappers EM,outSAMtype BAM SortedByCoordinate。
Following mapping, the output of STARsolo was loaded into R (version 4.1.0) using the DropletUtils package (version 1.12.1). We obtained 262 cells from the public repository and retained cells with <15% mitochondria reads, leaving 261 cells. Cell identify was taken directly from the Zhou et al.13 metadata with the following population numbers.AGM E11.0 Endothelial (n = 16); AGM E11.0 T1-preHSC CD201 negative (n = 42), AGM E11.0 T1-preHSC CD 201 high (n = 28); AGM E11.0 T2-preHSC CD201high (n = 44); AGM E11.0 T2-preHSC (n = 32); Fetal liver E12.0 HSC (n = 21), Fetal liver E14.0 HSC (n = 32), Bone marrow adult HSC (n = 46).The list of gene signatures (Nfkb members, inflammation) and scripts to process Zhou et al.13 data can be found at: https://github.com/zakiF/PublishedPapers/tree/master/Nat_comms_Ikba.
映射之后,使用DropletUtils软件包(版本1.12.1)将STARsolo的输出加载到R(版本4.1.0)中。我们从公共存储库中获得了262个细胞,并保留了线粒体读数小于15%的细胞,剩下261个细胞。细胞鉴定直接来自Zhou等人的元数据,具有以下人口数量。AGM E11.0内皮(n=16);AGM E11.0 T1 preHSC CD201阴性(n=42),AGM E11.0 T1 preHSC CD 201高(n=28);AGM E11.0 T2 preHSC CD201high(n=44);AGM E11.0 T2 preHSC(n=32);胎肝E12.0 HSC(n=21),胎肝E14.0 HSC(n=32),骨髓成人HSC(n=46)。基因特征(Nfkb成员,炎症)和处理Zhou等人13数据的脚本列表可以在以下网址找到:https://github.com/zakiF/PublishedPapers/tree/master/Nat_comms_Ikba.
Two group comparisons were performed using the t-test comparison using the ggsignif package (version 0.6.4).Genotyping PCRSmall pieces of embryonic tissue or yolk sac wer.
使用ggsignif软件包(版本0.6.4),使用t检验比较进行两组比较。基因分型PCR胚胎组织或卵黄囊的小块。
Data availability
数据可用性
Single-cell RNA-seq, bulk RNA-seq and CUT&Tag data generated in this study have been deposited in NCBI Gene Expression Omnibus (GEO) repository under GEO SuperSeries accession no. GSE188525, composed in respective SubSeries GSE214699 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE214699], GSE188523 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188523] and GSE188524 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188524].
本研究中产生的单细胞RNA-seq、大量RNA-seq和CUT&Tag数据已保存在NCBI基因表达综合库(GEO)中,GEO超级系列登录号为GSE188525,由各自的子系列GSE214699组成[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE214699],GSE188523[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188523]和GSE188524[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188524]。
Additionally, single-cell RNA-seq data from Zhou et al.13 was downloaded from GEO with accession number GSE67120. Source data are provided with this paper..
此外,Zhou等人13的单细胞RNA-seq数据已从GEO下载,登录号为GSE67120。本文提供了源数据。。
Code availability
代码可用性
Scripts that have been used to process data published in Zhou et al.13 are deposited in Github repository: https://github.com/zakiF/PublishedPapers/tree/master/Nat_comms_Ikba Scripts that have been used to process the in house bulk RNA-seq and CUT &Tag assay are deposited in Github repository: https://github.com/BigaSpinosaLab/HSC_dormancy_Ikba_via_retinoic_acid..
用于处理Zhou等人13中发布的数据的脚本存放在Github存储库中:https://github.com/zakiF/PublishedPapers/tree/master/Nat_comms_Ikba用于处理内部批量RNA-seq和切割标签分析的脚本存放在Github存储库中:https://github.com/BigaSpinosaLab/HSC_dormancy_Ikba_via_retinoic_acid..
ReferencesChallen, G. A., Boles, N., Lin, K. K. Y. & Goodell, M. A. Mouse hematopoietic stem cell identification and analysis. Cytom. Part A 75, 14–24 (2009).Article
参考文献Challen,G.A.,Boles,N.,Lin,K.K.Y。&Goodell,M.A。小鼠造血干细胞鉴定和分析。Cytom公司。A部分75,14–24(2009)。文章
Google Scholar
谷歌学者
Slukvin, I. I. Generating human hematopoietic stem cells in vitro -exploring endothelial to hematopoietic transition as a portal for stemness acquisition. FEBS Lett. 590, 4126–4143 (2016).Article
Slukvin,I.I.在体外产生人类造血干细胞-探索内皮细胞向造血细胞的转变,作为获取干细胞的门户。FEBS Lett公司。5904126-4143(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cumano, A., Ferraz, J. C., Klaine, M., Di Santo, J. P. & Godin, I. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15, 477–485 (2001).Article
Cumano,A.,Ferraz,J.C.,Klaine,M.,Di Santo,J.P。&Godin,I。在循环前分离的胚胎内而非卵黄囊造血前体提供了长期的多谱系重建。免疫力15477-485(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996).Article
Medvinsky,A。&Dzierzak,E。确定性造血是由AGM区域自主发起的。细胞86897-906(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
North, T. E. et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16, 661–672 (2002).Article
North,T.E.等人,Runx1的表达标志着妊娠中期小鼠胚胎中造血干细胞的长期再生。免疫力16661-672(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
de Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465–2474 (2000).Article
de Bruijn,M.F.,Speck,N.A.,Peeters,M.C。&Dzierzak,E。确定性造血干细胞首先在小鼠胚胎的主要动脉区域内发育。EMBO J.192465–2474(2000)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
de Bruijn, M. F. et al. Hematopoietic stem cells localize to the endothelial cell layer in the midgestation mouse aorta. Immunity 16, 673–683 (2002).Article
de Bruijn,M.F.等人。造血干细胞定位于妊娠中期小鼠主动脉的内皮细胞层。免疫力16673-683(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jaffredo, T., Gautier, R., Eichmann, A. & Dieterlen-Lievre, F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125, 4575–4583 (1998).Article
Jaffredo,T.,Gautier,R.,Eichmann,A。&Dieterlen-Lievre,F。主动脉内造血细胞在个体发育过程中来源于内皮细胞。发展1254575-4583(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fadlullah, M. Z. et al. Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood 139, 343–356 (2022).Article
Fadlullah,M.Z.等人。鼠AGM单细胞分析鉴定了以ACE标记的血源性内皮分化的连续性。血液139343-356(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gao, L. et al. RUNX1 and the endothelial origin of blood. Exp. Hematol. 68, 2–9 (2018).Article
Gao,L。等人。RUNX1和血液的内皮起源。实验血液学。68,2-9(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thambyrajah, R. et al. GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nat. Cell Biol. 18, 21–32 (2016).Article
Thambyrajah,R。等人。GFI1蛋白通过募集LSD1来协调造血干细胞的出现。自然细胞生物学。18,21-32(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tsai, F. Y. et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221–226 (1994).Article
Tsai,F.Y.等人。缺乏转录因子GATA-2的小鼠的早期造血缺陷。自然371221-226(1994)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, F. et al. Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533, 487–492 (2016).Article
Zhou,F。等人。以单细胞分辨率追踪造血干细胞的形成。自然533487-492(2016)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mahony, C. B. & Bertrand, J. Y. How HSCs colonize and expand in the fetal niche of the vertebrate embryo: an evolutionary perspective. Front. Cell Dev. Biol. 7, 34 (2019).Article
Mahony,C.B。&Bertrand,J.Y。HSC如何在脊椎动物胚胎的胎儿生态位中定殖和扩展:进化的观点。正面。细胞开发生物学。7,34(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Patel, S. H. et al. Lifelong multilineage contribution by embryonic-born blood progenitors. Nature 606, 747–753 (2022).Article
Patel,S.H.等人。胚胎出生的血液祖细胞对终身多谱系的贡献。自然606747-753(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yokomizo, T. et al. Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature 609, 779–784 (2022).Article
Yokomizo,T。等人。胎儿肝脏造血干细胞和祖细胞的独立起源。自然609779-784(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ganuza, M. et al. Murine foetal liver supports limited detectable expansion of life-long haematopoietic progenitors. Nat. Cell Biol. 24, 1475–1486 (2022).Article
Ganuza,M。等人。小鼠胎肝支持终身造血祖细胞的有限可检测扩增。自然细胞生物学。241475-1486(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cabezas-Wallscheid, N. et al. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169, 807–823 e19 (2017).Article
Cabezas-Wallscheid,N。等人。维生素A-视黄酸信号调节造血干细胞休眠。细胞169807-823 e19(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kaufmann, K. B. et al. A latent subset of human hematopoietic stem cells resists regenerative stress to preserve stemness. Nat. Immunol. 22, 723–734 (2021).Article
考夫曼,K.B。等人。人类造血干细胞的一个潜在子集抵抗再生应激以保持干性。自然免疫。22723-734(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Collins, A., Mitchell, C. A. & Passegue, E. Inflammatory signaling regulates hematopoietic stem and progenitor cell development and homeostasis. J. Exp. Med. 218, e20201545 (2021).Article
Collins,A.,Mitchell,C.A。&Passegue,E。炎症信号调节造血干细胞和祖细胞的发育和体内平衡。J、 实验医学218,e20201545(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Essers, M. A. G. et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).Article
Essers,M.A.G.等人,IFNα在体内激活休眠的造血干细胞。《自然》458904-908(2009)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Trumpp, A. & Essers, M. Stress-mediated activation of dormant hematopoietic stem cells in vivo. Blood 120, SCI-41–SCI-41 (2012).Article
Trumpp,A。&Essers,M。应激介导的体内休眠造血干细胞的激活。血液120,SCI-41–SCI-41(2012)。文章
Google Scholar
谷歌学者
Chanda, B., Ditadi, A., Iscove, N. N. & Keller, G. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155, 215–227 (2013).Article
Chanda,B.,Ditadi,A.,Iscove,N.N。&Keller,G。视黄酸信号传导对于胚胎造血干细胞发育至关重要。细胞155215-227(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Goldie, L. C., Lucitti, J. L., Dickinson, M. E. & Hirschi, K. K. Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis. Blood 112, 3194–3204 (2008).Article
Goldie,L.C.,Lucitti,J.L.,Dickinson,M.E。和Hirschi,K.K。细胞信号传导指导小鼠胚胎发生过程中血源性内皮的形成和功能。血液1123194-3204(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Purton, L. E. Roles of retinoids and retinoic acid receptors in the regulation of hematopoietic stem cell self-renewal and differentiation. PPAR Res. 2007, 87934 (2007).Article
Purton,L.E。类视黄醇和视黄酸受体在调节造血干细胞自我更新和分化中的作用。PPAR Res.200787934(2007)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Purton, L. E., Bernstein, I. D. & Collins, S. J. All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells. Blood 95, 470–477 (2000).Article
Purton,L.E.,Bernstein,I.D。&Collins,S.J。全反式维甲酸增强培养的造血干细胞的长期再生活性。血液95470-477(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dzierzak, E. & Bigas, A. Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22, 639–651 (2018).Article
Dzierzak,E。和Bigas,A。血液发育:造血干细胞依赖性和独立性。细胞干细胞22639-651(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sawamiphak, S., Kontarakis, Z. & Stainier, D. Y. Interferon gamma signaling positively regulates hematopoietic stem cell emergence. Dev. Cell 31, 640–653 (2014).Article
Sawamiphak,S.,Kontarakis,Z。&Stainier,D.Y。干扰素-γ信号正向调节造血干细胞的出现。Dev.Cell 31640–653(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, Y. et al. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev. 28, 2597–2612 (2014).Article
Li,Y。等人。炎症信号调节胚胎造血干细胞和祖细胞的产生。基因发展282597-2612(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Espin-Palazon, R. et al. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 159, 1070–1085 (2014).Article
Espin Palazon,R。等人。促炎信号调节造血干细胞的出现。细胞1591070-1085(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zabel, U. & Baeuerle, P. A. Purified human IκB can rapidly dissociate the complex of the NF-κB transcription factor with its cognate DNA. Cell 61, 255–265 (1990).Article
Zabel,U。&Baeuerle,P.A。纯化的人IκB可以快速解离NF-κB转录因子与其同源DNA的复合物。细胞61255-265(1990)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brena, D. et al. Ancestral function of Inhibitors-of-kappaB regulates Caenorhabditis elegans development. Sci. Rep. 10, 16153 (2020).Article
Brena,D。等人。kappaB抑制剂的祖先功能调节秀丽隐杆线虫的发育。科学。代表1016153(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marruecos, L. et al. IkappaBalpha deficiency imposes a fetal phenotype to intestinal stem cells. EMBO Rep. 21, e49708 (2020).Article
Marruecos,L。等人,IkappaBalpha缺乏症将胎儿表型强加给肠道干细胞。EMBO Rep.21,e49708(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mulero, M. C. et al. Chromatin-bound IkappaBalpha regulates a subset of polycomb target genes in differentiation and cancer. Cancer Cell 24, 151–166 (2013).Article
染色质结合的IkappaBalpha在分化和癌症中调节多梳靶基因的子集。癌细胞24151-166(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Beg, A. A. & Baldwin, A. S. The IKB proteins: multifunctional egulators of Rel/NF-KB transcription actors The IKB proteins: identification and mechanisms of interaction with NF-KB. Genes Dev. 7, 2064–2070 (1993).Article
Beg,A.A。&Baldwin,A.S。IKB蛋白:Rel/NF-KB转录因子的多功能调节因子IKB蛋白:鉴定和与NF-KB相互作用的机制。Genes Dev.72064–2070(1993)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Klement, J. F. et al. IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol. Cell. Biol. 16, 2341–2349 (1996).Article
Klement,J.F.等人IkappaBalpha缺乏会导致小鼠持续的NF-κB反应和严重的广泛性皮炎。摩尔电池。生物学162341-2349(1996)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Feng, B., Cheng, S., Pear, W. S. & Liou, H. C. NF-kB inhibitor blocks B cell development at two checkpoints. Med. Immunol. 3, 1 (2004).Article
Feng,B.,Cheng,S.,Pear,W.S。和Liou,H.C。NF-kB抑制剂在两个检查点阻断B细胞发育。医学免疫学。3,1(2004)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liou, H. C. & Hsia, C. Y. Distinctions between c-Rel and other NF-kappaB proteins in immunity and disease. Bioessays 25, 767–780 (2003).Article
Liou,H.C。&Hsia,C.Y。C-Rel和其他NF-κB蛋白在免疫和疾病中的区别。生物测定25767-780(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Beg, A. A., Sha, W. C., Bronson, R. T. & Baltimore, D. Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev. 9, 2736–2746 (1995).Article
Beg,A.A.,Sha,W.C.,Bronson,R.T。&Baltimore,D。IκBα缺陷小鼠的组成型NF-κB活化,增强的粒细胞生成和新生儿致死率。基因发展92736-2746(1995)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).Article
Rodriguez-Fraticelli,A.E.等人。天然造血中谱系命运的克隆分析。自然553212-216(2018)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thambyrajah, R. et al. Cis inhibition of NOTCH1 through JAGGED1 sustains embryonic hematopoietic stem cell fate. Nat. Commun. 15, 1604 (2024).Article
Thambyrajah,R。等人。通过JAGGED1顺式抑制NOTCH1维持胚胎造血干细胞的命运。国家公社。151604(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Manesia, J. K. et al. Distinct molecular signature of murine fetal liver and adult hematopoietic stem cells identify novel regulators of hematopoietic stem cell function. Stem Cells Dev. 26, 573–584 (2017).Article
Manesia,J.K.等人。小鼠胎肝和成人造血干细胞的独特分子标记鉴定了造血干细胞功能的新型调节剂。干细胞开发26573-584(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marruecos, L. et al. Dynamic chromatin association of IkappaBalpha is regulated by acetylation and cleavage of histone H4. EMBO Rep. 22, e52649 (2021).Article
Marruecos,L。等人。IkappaBalpha的动态染色质缔合受组蛋白H4的乙酰化和裂解调节。EMBO代表22,e52649(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dignum, T. et al. Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo. Cell Rep. 36, 109675 (2021).Article
Dignum,T。等人。多能祖细胞和造血干细胞独立于小鼠胚胎中的血源性内皮细胞产生。Cell Rep.36109675(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hadland, B. et al. Engineering a niche supporting hematopoietic stem cell development using integrated single-cell transcriptomics. Nat. Commun. 13, 1584 (2022).Article
Hadland,B.等人利用整合的单细胞转录组学设计了一个支持造血干细胞发育的生态位。国家公社。131584(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schönberger, K. et al. Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity. Cell Stem Cell 29, 131–148.e10 (2022).Article
Schönberger,K。等人。多层组学分析揭示了调节造血干细胞身份的非经典视黄酸信号轴。细胞干细胞29131–148.e10(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
García-Prat, L. et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 28, 1838–1850.e10 (2021).Article
García-Prat,L。等人。TFEB介导的内溶酶体活性控制人类造血干细胞的命运。细胞干细胞281838-1850.e10(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Garcia-Prat, L. et al. Dichotomous regulation of lysosomes by MYC and Tfeb controls hematopoietic stem cell fate. Blood 136, 34 (2020).Article
Garcia-Prat,L。等人。MYC和Tfeb对溶酶体的二分调节控制造血干细胞的命运。血液136,34(2020)。文章
Google Scholar
谷歌学者
Viale, A. & Pelicci, P. G. Awaking stem cells from dormancy: growing old and fighting cancer. EMBO Mol. Med. 1, 88–91 (2009).Article
Viale,A。&Pelicci,P.G。将干细胞从休眠中唤醒:衰老和抗癌。EMBO Mol.Med。1,88–91(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mariani, S. A. et al. Pro-inflammatory aorta-associated macrophages are involved in embryonic development of hematopoietic stem cells. Immunity 50, 1439–1452 e5 (2019).Article
Mariani,S.A。等人。促炎性主动脉相关巨噬细胞参与造血干细胞的胚胎发育。豁免501439-1452 e5(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Beg, A. A. & Baldwin, A. S. Jr. The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev. 7, 2064–2070 (1993).Article
Beg,A.A。&Baldwin,A.S.Jr。IκB蛋白:Rel/NFκB转录因子的多功能调节剂。Genes Dev.72064–2070(1993)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bowie, M. B. et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 116, 2808–2816 (2006).Article
Bowie,M.B.等人,造血干细胞在出生后一直增殖,并表现出可逆的阶段特异性植入缺陷。J、 临床。投资。1162808-2816(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grace, C. S. et al. Protagonist or antagonist? The complex roles of retinoids in the regulation of hematopoietic stem cells and their specification from pluripotent stem cells. Exp. Hematol. 65, 1–16 (2018).Article
格雷斯,C.S。等人。主角还是拮抗剂?类维生素A在造血干细胞调节中的复杂作用及其来自多能干细胞的规格。实验血液学。65,1-16(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Luff, S. A. et al. Identification of a retinoic acid-dependent haemogenic endothelial progenitor from human pluripotent stem cells. Nat. Cell Biol. 24, 616–624 (2022).Article
Luff,S.A.等人。从人多能干细胞中鉴定视黄酸依赖性血源性内皮祖细胞。自然细胞生物学。24616-624(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marcelo, K. L. et al. Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Dev. Cell 27, 504–515 (2013).Article
Marcelo,K.L.等人。血源性内皮细胞规格需要c-Kit,Notch信号传导和p27介导的细胞周期控制。Dev.Cell 27504–515(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Purton, L. E., Bernstein, I. D. & Collins, S. J. All-trans retinoic acid delays the differentiation of primitive hematopoietic precursors (lin-c-kit+Sca-1+) while enhancing the terminal maturation of committed granulocyte/monocyte progenitors. Blood 94, 483–495 (1999).Article
Purton,L.E.,Bernstein,I.D。&Collins,S.J。全反式维甲酸延迟原始造血前体(lin-c-kit+Sca-1+)的分化,同时增强定型粒细胞/单核细胞祖细胞的终末成熟。血液94483-495(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rebholz, B. et al. Crosstalk between keratinocytes and adaptive immune cells in an IκBα protein-mediated inflammatory disease of the skin. Immunity 27, 296–307 (2007).Article
Rebholz,B。等人。IκBα蛋白介导的皮肤炎症性疾病中角质形成细胞和适应性免疫细胞之间的串扰。豁免27296-307(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article
Kaya Okur,H.S.等人的CUT&Tag用于小样本和单细胞的有效表观基因组分析。国家公社。101930(2019)。Martin,M。Cutadapt从高通量测序读数中删除了衔接子序列。EMBnet J.17,10–12(2011)。文章
Google Scholar
谷歌学者
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article
Langmead,B。&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chundru, V. K. et al. Federated analysis of the contribution of recessive coding variants to 29,745 developmental disorder patients from diverse populations. medRxiv https://doi.org/10.1101/2023.07.24.23293070 (2023).Meers, M. P., Tenenbaum, D. & Henikoff, S. Peak calling by sparse enrichment analysis for CUT&RUN chromatin profiling.
Chundru,V.K.等人对来自不同人群的29745名发育障碍患者的隐性编码变异贡献的联合分析。medRxiv公司https://doi.org/10.1101/2023.07.24.23293070(2023年)。Meers,M.P.,Tenenbaum,D。&Henikoff,S。通过稀疏富集分析进行切割和运行染色质分析的峰值调用。
Epigenet. Chromatin 12, 42 (2019).Article .
表基因。染色质12,42(2019)。文章
Google Scholar
谷歌学者
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article
Quinlan,A.R。&Hall,I.M。BEDTools:用于比较基因组特征的灵活实用程序套件。生物信息学26841-842(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).Article
Ramírez,F。等人。deepTools2:用于深度测序数据分析的下一代web服务器。核酸研究44,W160–W165(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, G., Wang, L. G. & He, Q. Y. ChIP seeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).Article
Yu,G.,Wang,L.G。&He,Q.Y。ChIP seeker:用于ChIP峰注释,比较和可视化的R/生物导体封装。生物信息学312382-2383(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bailey, T. L. STREME: accurate and versatile sequence motif discovery. Bioinformatics 37, 2834–2840 (2021).Article
Bailey,T.L.STREME:准确且多功能的序列基序发现。生物信息学372834-2840(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 46, D252–D259 (2018).Article
Kulakovskiy,I.V.等人,HOCOMOCO:通过大规模ChIP-Seq分析,建立完整的人和小鼠转录因子结合模型。核酸研究46,D252-D259(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Krueger, F., James, F., Ewels, P., Afyounian, E. & Schuster-Boeckler, B. FelixKrueger/TrimGalore. Babraham Bioinformatics (2021).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article
克鲁格(Krueger,F.),詹姆斯(James,F.),埃维尔斯(Ewels),P。阿夫尤尼亚(Afyounian),E。和舒斯特·博克勒(Schuster Boeckler),B。费利克斯·克鲁格(FelixKrueger)/特里姆加洛尔(TrimGalore)。Babraham生物信息学(2021)。Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).Article
Ritchie,M.E.等人limma为RNA测序和微阵列研究提供了差异表达分析的能力。核酸研究43,e47(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhu, R. et al. orthoDr: semiparametric dimension reduction via orthogonality constrained optimization. R J. 11, 24–37 (2019).Article
Zhu,R。et al。orthoDr:通过正交约束优化进行半参数降维。R J.11,24-37(2019)。文章
Google Scholar
谷歌学者
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser B Methodol. 57, 289–300 (1995).Article
Benjamini,Y。&Hochberg,Y。控制错误发现率-一种实用且强大的多重测试方法。J、 R.Stat.Soc.Ser B方法。57289-300(1995)。文章
MathSciNet
MathSciNet
Google Scholar
谷歌学者
Korotkevich, G., Sukhov, V., Budin, N., Atryomov, M. N. & Sergushichev, A. Fast gene set enrichment analysis. bioRxiv https://doi.org/10.1101/060012 (2021).Thambyrajah, R. et al. Cis inhibition of NOTCH1 through JAGGED1 sustains embryonic hematopoietic stem cell fate. Nat. Commun. 15, 1604 (2024).Download referencesAcknowledgementsWe thank all members of Espinosa and Bigas laboratories for helpful discussions and technical support.
Korotkevich,G.,Sukhov,V.,Budin,N.,Atryomov,M.N。&Sergushichev,A。快速基因集富集分析。生物十四https://doi.org/10.1101/060012(2021年)。Thambyrajah,R。等人。通过JAGGED1顺式抑制NOTCH1维持胚胎造血干细胞的命运。国家公社。151604(2024)。下载参考文献致谢我们感谢Espinosa和Bigas实验室的所有成员进行了有益的讨论和技术支持。
We also thank the animal facility, FACS facility, and genomic facility of the PRBB, CRUK Manchester Institute, and the single-cell Unit of the IJC for their technical support. This work was funded by grants from SAF2016-75613-R, PID2019-104695RB-I00, and PDC2021-120817-I00 from Agencia Estatal de Investigación (AEI) and SLT002/16/00299 from Department of Health, Generalitat de Catalunya.
我们还感谢PRBB的动物设施,FACS设施和基因组设施,克鲁克曼彻斯特研究所以及IJC的单细胞部门提供的技术支持。这项工作由SAF2016-75613-R,PID2019-104695RB-I00和PDC2021-120817-I00(AEI)和SLT002/16/00299(加泰罗尼亚卫生部)资助。
The work in G.L. laboratory is supported by Blood Cancer UK (19014) and Cancer Research UK Manchester Institute Core Grant (C5759/A27412). R.T. is a recipient of BP2016(00021) and BP/MSCA 2018(00034) fellowship programs from Generalitat de Catalunya/MSCA. M.M. is a recipient of a grant from the Instituto Carlos III, grant number CA22/00011 (co-funded by the European Social Fund Plus, ESF+, and by the European Union).Author informationAuthor notesNoemi CastelluccioPresent address: Ghent University Hospital, Ghent, BelgiumThese authors jointly supervised this work: Roshana Thambyrajah, Anna Bigas.Authors and AffiliationsProgram in Cancer Research, Hospital del Mar Research Institute, Barcelona, SpainRoshana Thambyrajah, Maria Maqueda, Martin Proffitt, Yolanda Guillén, Patricia Herrero-Molinero, Carla Brujas, Noemi Castelluccio, Jessica González, Arnau Iglesias, Laura Marruecos, Cristina Ruiz-Herguido, Lluis Espinosa & Anna BigasJosep Carreras Le.
G.L.实验室的工作得到了英国血癌研究所(19014)和英国曼彻斯特癌症研究所核心资助(C5759/A27412)的支持。R、 T.是加泰罗尼亚/MSCA Generalitat de Catalunya/MSCA的BP2016(00021)和BP/MSCA 2018(00034)奖学金项目的获得者。M、 M.是卡洛斯三世研究所(Instituto Carlos III)的资助对象,资助号为CA22/00011(由欧洲社会基金会(European Social Fund Plus),ESF+和欧盟共同资助)。作者信息作者注释Noemi Castelluccio目前的地址:比利时根特根特大学医院这些作者共同监督了这项工作:Roshana Thambyrajah,Anna Bigas。作者和附属机构巴塞罗那德尔马研究所医院癌症研究计划,斯宾罗莎娜·桑比拉贾,玛丽亚·马奎达,马丁·普洛菲特,尤兰达·吉兰,帕特丽夏·埃雷罗·莫利内罗,卡拉·布鲁哈斯,诺埃米·卡斯特卢西奥,杰西卡·冈萨雷斯,阿尔诺·伊格莱西亚斯,劳拉·马鲁埃科斯,克里斯蒂娜·鲁伊斯·赫尔圭多,路易丝·埃斯皮诺萨和安娜·比加·斯约塞普·卡雷拉斯·勒。
PubMed Google ScholarMaria MaquedaView author publicationsYou can also search for this author in
PubMed Google ScholarMaria MaquedaView作者出版物您也可以在
PubMed Google ScholarMuhammad Zaki FadlullahView author publicationsYou can also search for this author in
PubMed Google ScholarMuhammad Zaki Fadlulahview作者出版物您也可以在
PubMed Google ScholarMartin ProffittView author publicationsYou can also search for this author in
PubMed Google ScholarMartin ProffittView作者出版物您也可以在
PubMed Google ScholarWen Hao NeoView author publicationsYou can also search for this author in
PubMed Google ScholarWen Hao NeoView作者出版物您也可以在
PubMed Google ScholarYolanda GuillénView author publicationsYou can also search for this author in
PubMed Google ScholarYolanda GuillénView作者出版物您也可以在
PubMed Google ScholarMarta Casado-PelaezView author publicationsYou can also search for this author in
PubMed Google ScholarMarta Casado PelaezView作者出版物您也可以在
PubMed Google ScholarPatricia Herrero-MolineroView author publicationsYou can also search for this author in
PubMed Google ScholarPatricia Herrero MolineroView作者出版物您也可以在
PubMed Google ScholarCarla BrujasView author publicationsYou can also search for this author in
PubMed Google ScholarCarla BrujasView作者出版物您也可以在
PubMed Google ScholarNoemi CastelluccioView author publicationsYou can also search for this author in
PubMed Google ScholarNoemi CastelluccioView作者出版物您也可以在
PubMed Google ScholarJessica GonzálezView author publicationsYou can also search for this author in
PubMed谷歌奖学金Jessica González查看作者出版物您也可以在中搜索这位作者
PubMed Google ScholarArnau IglesiasView author publicationsYou can also search for this author in
PubMed Google ScholarArnau IglesiasView作者出版物您也可以在
PubMed Google ScholarLaura MarruecosView author publicationsYou can also search for this author in
PubMed Google ScholarLaura MarruecosView作者出版物您也可以在
PubMed Google ScholarCristina Ruiz-HerguidoView author publicationsYou can also search for this author in
PubMed谷歌学术评论Ruiz HerguidoView作者出版物您也可以在
PubMed Google ScholarManel EstellerView author publicationsYou can also search for this author in
PubMed Google ScholarManel EstellerView作者出版物您也可以在
PubMed Google ScholarElisabetta MereuView author publicationsYou can also search for this author in
PubMed Google ScholarElisabetta MereuView作者出版物您也可以在
PubMed Google ScholarGeorges LacaudView author publicationsYou can also search for this author in
PubMed Google Scholargees LacaudView作者出版物您也可以在
PubMed Google ScholarLluis EspinosaView author publicationsYou can also search for this author in
PubMed Google ScholarLluis EspinosaView作者出版物您也可以在
PubMed Google ScholarAnna BigasView author publicationsYou can also search for this author in
PubMed Google ScholarAnna BigasView作者出版物您也可以在
PubMed Google ScholarContributionsA.B., R.T., and L.E. conceptualized the study, designed the experiments, and analyzed data. R.T., W.H.N., P.H., C.B., A.I., J.G., N.C., L.M. and C.R.-H. performed experiments and analyzed data. M.M. and M.P. analyzed the CUT&Tag data. M.C.-P.
PubMed谷歌学术贡献。B、 ,R.T.和L.E.将研究概念化,设计实验并分析数据。R、 T.,W.H.N.,P.H.,C.B.,A.I.,J.G.,N.C.,L.M.和C.R.-H.进行了实验并分析了数据。M、 M.和M.P.分析了切割和标记数据。M、 C.-P。
analyzed the L.S.K. scRNAseq under supervision of E.M. and M.E. Y.G., M.Z.F., G.L. analyzed the E11.5 A.G.M. scRNAseq and Y.G. and M.M. analyzed the bulk RNA-sequencing data of L.T.-HSCs. A.B., R.T., M.M., and G.L. wrote the manuscript.Corresponding authorsCorrespondence to.
在E.M.和M.E.Y.G.,M.Z.F.,G.L.的监督下分析了L.S.K.scRNAseq。分析了E11.5 A.G.M.scRNAseq,Y.G.和M.M.分析了L.T.-HSC的大量RNA测序数据。A、 B.,R.T.,M.M。和G.L.撰写了手稿。通讯作者通讯。
Roshana Thambyrajah or Anna Bigas.Ethics declarations
Roshana Thambyrajah或Anna Bigas。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Reporting SummarySource dataSource DataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5报告摘要源数据源数据权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleThambyrajah, R., Maqueda, M., Fadlullah, M.Z. et al. IκBα controls dormancy in hematopoietic stem cells via retinoic acid during embryonic development.
转载和许可本文引用本文Thambyrajah,R.,Maqueda,M.,Fadlullah,M.Z.等人。IκBα在胚胎发育过程中通过视黄酸控制造血干细胞的休眠。
Nat Commun 15, 4673 (2024). https://doi.org/10.1038/s41467-024-48854-5Download citationReceived: 14 December 2022Accepted: 14 May 2024Published: 01 June 2024DOI: https://doi.org/10.1038/s41467-024-48854-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》154673(2024)。https://doi.org/10.1038/s41467-024-48854-5Download引文接收日期:2022年12月14日接收日期:2024年5月14日发布日期:2024年6月1日OI:https://doi.org/10.1038/s41467-024-48854-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。