商务合作
动脉网APP
可切换为仅中文
AbstractThe mitochondrial genomes of D. melacanthus and D. furcatus were sequenced and used to investigate the phylogenetic relationships with 54 species of Pentatomidae. Their mitogenomes are 17,197 and 15,444 bp-long, respectively, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22/21 transfer RNA genes, with conserved gene arrangement.
摘要对D.melacanthus和D.furcatus的线粒体基因组进行了测序,并用于研究与54种蝽科的系统发育关系。它们的有丝分裂基因组分别长17197和15444 bp,包括13个蛋白质编码基因(PCG),2个核糖体RNA基因和22/21个转移RNA基因,具有保守的基因排列。
Leu, Lys, and Ser were the most common amino acids in their PCGs. PCGs evolutionary analysis indicated their mitogenomes are under purifying selection, and the most conserved genes are from the cytochrome complex, reinforcing their suitability as markers for molecular taxonomy. We identified 490 mtSSRs in 56 Pentatomidae species, with large variation and a positive correlation between mtSSR number and genome size.
Leu,Lys和Ser是其PCG中最常见的氨基酸。PCGs进化分析表明,它们的有丝分裂基因组正在纯化选择中,最保守的基因来自细胞色素复合物,增强了它们作为分子分类学标记的适用性。我们在56种蝽科物种中鉴定出490个mtSSR,变异较大,mtSSR数量与基因组大小呈正相关。
Three mtSSRs were identified in each Diceraeus species. Only the mtSSR in the nad6 (D. melacanthus) and nad4 (D. furcatus) appear to have application as molecular markers for species characterization. Phylogenetic analysis confirmed the monophyly of Pentatomidae. However, our analysis challenged the monophyly of Pentatominae and Podopinae.
在每个Diceraeus物种中鉴定出三个mtSSR。只有nad6(D.melacanthus)和nad4(D.furcatus)中的mtSSR似乎可以用作物种表征的分子标记。系统发育分析证实了蝽科的单系性。然而,我们的分析挑战了Pentatominae和Podopinae的单一性。
We also detected unexpected relationships among some tribes and genera, highlighting the complexity of the internal taxonomic structure of Pentatomidae. Both Diceraeus species were grouped in the same clade with the remaining Carpocorini analyzed..
我们还发现了一些部落和属之间意想不到的关系,突出了蝽科内部分类结构的复杂性。两种Diceraeus物种被分组在同一进化枝中,其余的Carpocorini被分析。。
IntroductionThe green-belly bugs Diceraeus furcatus and D. melacanthus (Hemiptera: Pentatomidae) are important pests of soybean, winter cereal, and especially maize in Brazil1,2,3,4. Their increased abundance is attributed to the agricultural system in practice in Brazil, with the continuous cultivation of maize following soybean harvest.
引言绿腹蝽Diceraeus furcatus和D.melacanthus(半翅目:蝽科)是巴西大豆,冬谷物,尤其是玉米的重要害虫1,2,3,4。它们丰富度的增加归因于巴西的农业系统,大豆收获后玉米的持续种植。
This system provides year-round food and shelter for green-belly bugs and other pests5,6,7. Despite their relevance as agricultural pests, few molecular studies have been conducted on these species8,9, especially concerning their genetic delimitation, given their morphological similarity and considerable phenotypic plasticity10.The identification of some insects is challenging and it requires additional tools, such as the use of integrative diagnostic methods based on molecular, morphological, and paleontological data11.
该系统为绿腹蝽和其他鼠疫提供全年的食物和庇护所5,6,7。尽管它们与农业害虫有关,但鉴于它们的形态相似性和相当大的表型可塑性,对这些物种8,9进行的分子研究很少,特别是关于它们的遗传划界10。一些昆虫的鉴定具有挑战性,需要额外的工具,例如使用基于分子,形态学和古生物学数据的综合诊断方法11。
In recent decades, the use of DNA barcode markers based on a short region of the mitochondrial cytochrome oxidase I gene (cox1) has been the most used molecular tool. The cox1 became widely used for species recognition and delineation in various taxonomic groups12, although it has shown limited application for species delineation in taxonomic groups carrying low intraspecific variability13.The mitochondrial genome (mtDNA) has emerged as a powerful tool for insect diversity and phylogenetic studies, expanding the potential pool of informative marker genes13.
近几十年来,基于线粒体细胞色素氧化酶I基因(cox1)短区域的DNA条形码标记的使用一直是最常用的分子工具。cox1被广泛用于各种分类群的物种识别和描绘12,尽管它在种内变异性较低的分类群中的物种描绘应用有限13。线粒体基因组(mtDNA)已成为昆虫多样性和系统发育研究的有力工具,扩大了潜在的信息标记基因库13。
Its unique features, such as small size14, stable genetic composition15, maternal inheritance16, orthologous genes and low intermolecular recombination rates17, make it suitable for evolutionary studies. mtDNA serves as a source of molecular markers for population genetics, comparative evolution, divergence time analysis18,19,20, and gene rearrangements21,22.
其独特的特征,如小尺寸14,稳定的遗传组成15,母体遗传16,直系同源基因和低分子间重组率17,使其适用于进化研究。mtDNA是群体遗传学,比较进化,分歧时间分析18,19,20和基因重排21,22的分子标记来源。
mtDNA .
线粒体dna。
Four phylogenetic trees were obtained using different analytical methods (ML, CAT + GTR + C4, C60, and BI) of concatenated amino acid sequences of PCGs from 56 species of Pentatomidae (+ 2 outgroup species) (Fig. 9 and 2S). Topology tests (Table 1S) indicated tree topologies produced using CAT + GTR + C4, C60, and BI methods resulted in significant different log-likelihoods (p < 0.05).
使用来自56种蝽科(+2个外群物种)的PCG的串联氨基酸序列的不同分析方法(ML,CAT++GTR++C4,C60和BI)获得了四个系统发育树(图9和2S)。拓扑测试(表1S)表明,使用CAT++GTR++C4,C60和BI方法产生的树拓扑导致显着不同的对数可能性(p<0.05)。
We chose to explore the BI tree due to the highest posterior probability value obtained (Fig. 9). The recovered phylogeny demonstrated that the Pentatomidae family is a monophyletic group with maximum posterior probability support (PP = 1), reinforcing previous reports68,69,123,124,125,126. However, our data challenge the monophyly hypothesis of Pentatominae and Podopinae, as representatives from both subfamilies intermingle, corroborating published findings69.
由于获得的后验概率值最高,我们选择探索双树(图9)。恢复的系统发育表明,蝽科是一个具有最大后验概率支持的单系群(PP = 1),加强了以前的报道68,69123124125126。然而,我们的数据挑战了Pentatominae和Podopinae的单系假说,因为两个亚科的代表混合在一起,证实了已发表的发现69。
Asopinae and Phyllocephalinae formed independent clades (PP = 1), although within Pentatominae. The monophyly and position of Asopinae within Pentatominae have been previously proposed based on morphology124 and molecular taxonomy81,127, highlighting the need for more detailed internal classification, especially because Asopinae is not divided into tribes126,128,129.
Asopinae和Phyllocephalinae形成了独立的进化枝(PP=1),尽管在Pentatominae内。先前已经基于形态学124和分子分类学81127提出了在Pentatominae中Asopinae的单系性和位置,强调需要更详细的内部分类,特别是因为Asopinae不分为部落126128129。
Neojurtina typica (Pentatominae: Pentatomini) is placed as the oldest representative within the family94,95. Other Pentatominae species are also dispersed on the tree, such as Placosternum urus and Piezodorus guildinii, forming sister group relationships with representatives of Phyllocephalinae and Podopinae, respectively (Fig. 9).Figure 9Phylogenetic relationships of tribes within Pentatomidae reconstructed from mtDNA sequences of 13 PCGs using the BI method.
Neojurtina typica(Pentatominae:Pentatomini)是该家族中最古老的代表94,95。其他Pentatominae物种也分布在树上,如Placosternum urus和Piezodorus guildinii,分别与Phyllocephalinae和Podopinae的代表形成姐妹群关系(图9)。图9使用BI方法从13个PCG的mtDNA序列重建的蝽科内部落的系统发育关系。
The numbers on the branches are the posterior probabilities (PP). The length of the branches is proportional t.
分支上的数字是后验概率(PP)。分支的长度与t成正比。
Data availability
数据可用性
The new mitogenomes have been deposited in GenBank at https://www.ncbi.nlm.nih.gov/ under accession numbers PP235949 e PP235950. The other datasets analysed during the current study are available in GenBank, as referenced in the article.
新的有丝分裂基因组已保存在GenBank中https://www.ncbi.nlm.nih.gov/登录号为PP235949 e PP235950。如本文所述,在当前研究期间分析的其他数据集可在GenBank中获得。
ReferencesÁvila, C. J. & Panizzi, A. R. Occurrence and damage by Dichelops (Neodichelops) melacanthus (Dallas) (Heteroptera: Pentatomidae) on corn. An. Soc. Entomol. Bras. 24, 193–194 (1995).Article
参考文献Ávila,C。J。和Panizzi,A。R。玉米上Dichelops(Neodichelops)melacanthus(Dallas)(异翅目:蝽科)的发生和危害。安。Soc。Entomol。胸罩。24193-194(1995)。文章
Google Scholar
谷歌学者
Chocorosqui, V. R. & Panizzi, A. R. Impact of cultivation systems on Dichelops melacanthus (Dallas) (Heteroptera: Pentatomidae) population and damage and its chemical control on wheat. Neotrop. Entomol. 33, 487–492 (2004).Article
Chocorosqui,V。R。和Panizzi,A。R。栽培系统对Dichelops melacanthus(Dallas)(异翅目:蝽科)种群和危害的影响及其对小麦的化学控制。Neotrop公司。Entomol。33487-492(2004)。文章
Google Scholar
谷歌学者
Manfredi-Coimbra, S., Silva, J. J., Chocorosqui, V. R. & Panizzi, A. R. Danos do percevejo barriga-verde Dichelops melacanthus (Dallas) (Heteroptera: Pentatomidae) em trigo. Cien. Rural 35, 1243–1247 (2005).Article
Manfredi Coimbra,S.,Silva,J.J.,Chocorosqui,V.R.和Panizzi,A.R.绿腹蝽Dichelops melacanthus(Dallas)(异翅目:Pentatomicae)在小麦中的危害。Cien。农村351243–1247(2005)。文章
Google Scholar
谷歌学者
Salvadori, J. R., Pereira, P. R. V. S. & Corrêa-Ferreira, B. S. Pragas ocasionais em lavouras de soja no Rio Grande do Sul. Embrapa Trigo: Documentos Online 91, 34 (2007).
Salvador,J.R.,Pereira,P.R.V.S.和Corrêa-Ferreira,B.S.南里奥格兰德州大豆作物中偶尔发生的害虫。Embrapa小麦:在线文献91,34(2007)。
Google Scholar
谷歌学者
Chiesa, A. C. M., Sismeiro, M. N. S., Pasini, A. & Roggia, S. Tratamento de sementes para manejo do percevejo-barriga-verde na cultura de soja e milho em sucessão. Pesqui. Agropecu. Bras. 51, 301–308 (2016).Article
Chiesa,A.C.M.,Sismeiro,M.N.S.,Pasini,A.和Roggia,S。佩斯基。Agropecu。胸罩。51, 301–308 (2016).文章
Google Scholar
谷歌学者
Gomes, E. C., Hayashida, R. & Bueno, A. F. Dichelops melacanthus and Euschistus heros injury on maize: Basis for re-evaluating stink bug thresholds for IPM decisions. Crop Prot. 130, 105050 (2020).Article
Gomes,E.C.,Hayashida,R。&Bueno,A.F。Dichelops melacanthus和Euschistus heros对玉米的伤害:重新评估IPM决策的臭虫阈值的基础。作物保护。130105050(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Smaniotto, L. F. & Panizzi, A. R. Interactions of selected species of stink bugs (Hemiptera: Heteroptera: Pentatomidae) from leguminous crops with plants in the Neotropics. Fla. Entomol. 98, 7–17 (2015).Article
Smaniotto,L。F。&Panizzi,A。R。来自豆类作物的选定种类的臭虫(半翅目:异翅目:蝽科)与新热带植物的相互作用。佛罗里达州Entomol。98,7-17(2015)。文章
Google Scholar
谷歌学者
Pinheiro, D. H. et al. Suitable reference genes for RT-qPCR analysis in Dichelops melacanthus (Hemiptera: Pentatomidae). Mol. Biol. Rep. 47, 4989–5000 (2020).Article
Pinheiro,D.H.等人。适用于Dichelops melacanthus(半翅目:蝽科)RT-qPCR分析的参考基因。分子生物学。代表474989–5000(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Silva, J. J., Ventura, M. U., Silva, F. A. C. & Panizzi, A. R. Population dynamics of Dichelops melacanthus (Dallas) (Heteroptera: Pentatomidae) on host plants. Neotrop. Entomol. 42, 141–145 (2013).Article
Silva,J.J.,Ventura,M.U.,Silva,F.A.C。和Panizzi,A.R。Dichelops melacanthus(达拉斯)(异翅目:蝽科)在寄主植物上的种群动态。Neotrop公司。Entomol。42141-145(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Grazia, J. Revisão do gênero Dichelops Spinola, 1837 (Heteroptera, Pentatomidae, Pentatomini). Iheringia. Serie Zoologia 53, 3–119 (1978).
Grazia,J.Dichelops Spinola属的修订,1837(异翅目,Pentatomice,Pentatomini)。Iheringia。《动物学系列》53,3–119(1978)。
Google Scholar
谷歌学者
Trautwein, M. D., Wiegmann, B. M., Beutel, R., Kjer, K. M. & Yeates, D. K. Advances in insect phylogeny at the dawn of the postgenomic era. Annu. Rev. Entomol. 57, 449–468 (2012).Article
Trautwein,M.D.,Wiegmann,B.M.,Beutel,R.,Kjer,K.M。和Yeates,D.K。后基因组时代黎明时昆虫系统发育的进展。年。修订版Entomol。57449-468(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hebert, P. D. N. & Gregory, T. R. The promise of dna barcoding for taxonomy. Syst. Biol. 54, 852–859 (2005).Article
Hebert,P.D.N。和Gregory,T.R。dna条形码在分类学中的前景。系统。生物学54852-859(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nelson, L. A. et al. Beyond barcoding: A mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene 511, 131–142 (2012).Article
Nelson,L.A.等人,《超越条形码:用于苍蝇分子系统发育和诊断的线粒体基因组学方法》(双翅目:丽蝇科)。基因511131-142(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cameron, S. L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95–117 (2014).Article
Cameron,S.L。昆虫线粒体基因组学:对进化和系统发育的影响。年。修订版Entomol。59,95-117(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wolstenholme, D. Genetic novelties in mitochondrial genomes of multicellular animals. Curr. Opin. Genet. Dev. 2, 918–925 (1992).Article
Wolstenholme,D。多细胞动物线粒体基因组中的遗传新颖性。货币。奥平。基因。Dev.2918–925(1992)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Barr, C. M., Neiman, M. & Taylor, D. R. Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol. 168, 39–50 (2005).Article
Barr,C.M.,Neiman,M。&Taylor,D.R。植物,真菌和动物线粒体基因组的遗传和重组。新植物醇。168,39-50(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dellaporta, S. L. et al. Mitochondrial genome of Trichoplax adhaerens supports Placozoa as the basal lower metazoan phylum. Proc. Natl. Acad. Sci. USA 103, 8751–8756 (2006).Article
Dellaporta,S.L.等人。adhaerens毛滴虫的线粒体基因组支持Placozoa作为基础的后生动物门。程序。纳特尔。阿卡德。科学。美国1038751–8756(2006)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hao, Y. J. et al. Complete mitochondrial genomes of Anopheles stephensi and A. dirus and comparative evolutionary mitochondriomics of 50 mosquitoes. Sci. Rep. 7, 7666 (2017).Article
Hao,Y.J.等人。斯氏按蚊和大劣按蚊的完整线粒体基因组以及50只蚊子的比较进化线粒体组学。科学。代表77666(2017)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pakrashi, A., Kumar, V., Banerjee, D., Tyagi, K. & Kalleshwaraswamy, C. M. Gene rearrangements in the mitochondrial genomes of whiteflies (Hemiptera: Aleyrodinae): plesiomorphies, synapomorphies and autapomorphies. Mol. Biol. Rep. (PrePrint) (2021)Yang, L. et al. Characterization of the complete mitochondrial genome of Orthaga olivacea Warre (Lepidoptera Pyralidae) and comparison with other lepidopteran insects.
Pakrashi,A.,Kumar,V.,Banerjee,D.,Tyagi,K。&Kalleshwaraswamy,C.M。粉虱线粒体基因组中的基因重排(半翅目:Aleyrodinae):plesiomorphies,synapomorphies和autapomorphies。分子生物学。Rep.(预印本)(2021)Yang,L.等人。Orthaga olivacea Warre(鳞翅目Pyralidae)完整线粒体基因组的表征以及与其他鳞翅目昆虫的比较。
PloS One 15, e0227831. https://doi.org/10.1371/journal.pone.0227831 (2020).Article .
PloS One 15,e0227831。https://doi.org/10.1371/journal.pone.0227831(2020年)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tyagi, K. et al. Rearrangement and evolution of mitochondrial genomes in Thysanoptera (Insecta). Sci. Rep. 10, 695 (2020).Article
Tyagi,K。等人。缨翅目(昆虫纲)线粒体基因组的重排和进化。科学。代表10695(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tyagi, K. et al. The gene arrangement and phylogeny using mitochondrial genomes in spiders (Arachnida: Araneae). Int. J. Biol. Macromol. 146, 488–496 (2020).Article
Tyagi,K。等人。蜘蛛线粒体基因组的基因排列和系统发育(蜘蛛纲:蜘蛛目)。国际生物学杂志。大分子。146488-496(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Higgs, P. G., Jameson, D., Jow, H. & Rattray, M. The evolution of tRNA-Leu genes in animal mitochondrial genomes. J. Mol. Evol. 57, 435–445 (2003).Article
Higgs,P.G.,Jameson,D.,Jow,H。&Rattray,M。动物线粒体基因组中tRNA-Leu基因的进化。J、 分子进化。57435-445(2003)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Song, N., Liang, A. P. & Bu, C. P. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PloS One 7, e48778. https://doi.org/10.1371/journal.pone.0048778 (2012).Article
Song,N.,Liang,A.P。&Bu,C.P。从线粒体基因组序列推断的半翅目分子系统发育。PloS One 7,e48778。https://doi.org/10.1371/journal.pone.0048778(2012年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, D. X. & Hewitt, G. M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol. 25, 99–120 (1997).Article
Zhang,D.X。&Hewitt,G.M。昆虫线粒体控制区:其结构,进化和在进化研究中的有用性的综述。生物化学。系统。Ecol公司。25,99-120(1997)。文章
Google Scholar
谷歌学者
Curole, J. P. & Kocher, T. D. Mitogenomics: Digging deeper with complete mitochondrial genomes. Trends Ecol. Evol. 14, 394–398 (1999).Article
Curole,J.P。&Kocher,T.D。Mitogenomics:用完整的线粒体基因组进行更深入的挖掘。趋势Ecol。进化。14394-398(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Boore, J. L., Lavrov, D. V. & Brown, W. M. Gene translocation links insects and crustaceans. Nature 392, 667–668 (1998).Article
Boore,J.L.,Lavrov,D.V。和Brown,W.M。基因易位将昆虫和甲壳类动物联系起来。自然392667-668(1998)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).Article
Boore,J.L。动物线粒体基因组。核酸研究271767-1780(1999)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuan, M. L., Zhang, Q. L., Guo, Z. L., Wang, J. & Shen, Y. Y. Comparative mitogenomic analysis of the superfamily Pentatomoidea (Insecta: Hemiptera: Heteroptera) and phylogenetic implications. BMC Genom. 16, 460. https://doi.org/10.1186/s12864-015-1679-x (2015).Article
Yuan,M.L.,Zhang,Q.L.,Guo,Z.L.,Wang,J。和Shen,Y.Y。Pentatomoidea(昆虫纲:半翅目:异翅目)超家族的比较线粒体基因组学分析和系统发育意义。BMC基因组。16460年。https://doi.org/10.1186/s12864-015-1679-x(2015年)。文章
CAS
中科院
Google Scholar
谷歌学者
Kumar, S., Singh, A. & Shanker, A. pSATdb: A database of mitochondrial common, polymorphic, and unique microsatellites. Life Sci. Alliance 5, e202101307. https://doi.org/10.2650/lsa.202101307 (2022).Article
Kumar,S.,Singh,A。&Shanker,A。pSATdb:线粒体常见,多态和独特微卫星的数据库。生命科学。联盟5,e202101307。https://doi.org/10.2650/lsa.202101307(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Parida, S. K. et al. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor. Appl. Genet. 118, 327–338 (2009).Article
Parida,S.K.等人。用于甘蔗有效基因分型应用的信息基因组微卫星标记。理论。应用。基因。118327-338(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gemayel, R., Cho, J., Boeynaems, S. & Verstrepen, K. J. Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences. Genes 3, 461–480. https://doi.org/10.3390/genes3030461 (2012).Article
Gemayel,R.,Cho,J.,Boeynaems,S。&Verstrepen,K.J。Beyond junk可变串联重复序列作为调节和编码序列快速进化的促进因子。基因3461-480。https://doi.org/10.3390/genes3030461(2012年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Christians, J. K. & Watt, C. A. Mononucleotide repeats represent an important source of polymorphic microsatellite markers in Aspergillus nidulans. Mol. Ecol. Resour. 9, 572–578 (2009).Article
Christians,J.K。&Watt,C.A。单核苷酸重复序列代表构巢曲霉中多态性微卫星标记的重要来源。摩尔Ecol。资源。9572-578(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tautz, D. & Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12, 4127–4138 (1984).Article
Tautz,D。&Renz,M。简单序列是真核基因组中普遍存在的重复成分。核酸研究124127-4138(1984)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zane, L., Bargelloni, L. & Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol. 11, 1–16 (2002).Article
Zane,L.,Bargelloni,L。&Patarnello,T。微卫星分离策略:综述。摩尔Ecol。11,1-16(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kalia, R. K., Rai, M. K., Kalia, S., Singh, R. & Dhawan, A. K. Microsatellite markers: An overview of the recent progress in plants. Euphytica 177, 309–334 (2011).Article
Kalia,R.K.,Rai,M.K.,Kalia,S.,Singh,R。&Dhawan,A.K。微卫星标记:植物最新进展概述。Euphytica 177309–334(2011)。文章
CAS
中科院
Google Scholar
谷歌学者
Phumichai, C., Phumichai, T. & Wongkaew, A. Novel chloroplast microsatellite (cpSSR) markers for genetic diversity assessment of cultivated and wild Hevea rubber. Plant Mol. Biol. 33, 1486–1498 (2015).Article
Phumichai,C.,Phumichai,T。&Wongkaew,A。用于栽培和野生橡胶遗传多样性评估的新型叶绿体微卫星(cpSSR)标记。植物分子生物学。331486-1498(2015)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhao, Z. et al. Genome-wide analysis of tandem repeats in plants and green algae. G3: Genes Genomes Genet. 4, 67–78. https://doi.org/10.1534/g3.113.008524 (2014).Article
Zhao,Z.等人。植物和绿藻中串联重复序列的全基因组分析。G3:基因基因组Genet。4,67-78。https://doi.org/10.1534/g3.113.008524(2014年)。文章
CAS
中科院
Google Scholar
谷歌学者
Rajendrakumar, P. et al. Simple sequence repeats in organellar genomes of rice: Frequency and distribution in genic and intergenic regions. Bioinformatics 23, 1–4 (2007).Article
Rajendrakumar,P。等人。水稻细胞器基因组中的简单序列重复:基因和基因间区域的频率和分布。生物信息学23,1-4(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Soranzo, N., Provan, J. & Powell, W. An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42, 158–161 (1999).Article
Soranzo,N.,Provan,J。&Powell,W。针叶树线粒体基因组中微卫星长度变异的例子。基因组42158-161(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lawson, M. J. & Zhang, L. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol. 7, R14 (2006).Article
Lawson,M.J。&Zhang,L。拟南芥和水稻基因组中SSR分布的不同模式。基因组生物学。7,R14(2006)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vieira, M. L. C., Santini, L., Diniz, A. L. & Munhoz, C. F. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39, 312–328 (2016).Article
Vieira,M.L.C.,Santini,L.,Diniz,A.L。&Munhoz,C.F。微卫星标记:它们的意思以及为什么它们如此有用。基因。分子生物学。39312-328(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Andrews, S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010)Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article
Andrews,S。FastQC:高通量序列数据的质量控制工具。http://www.bioinformatics.babraham.ac.uk/projects/fastqc(2010)Bolger,A.M.,Lohse,M。和Usadel,B。Trimmomatic:用于Illumina序列数据的柔性修剪器。生物信息学302114-2120(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18 (2017).PubMed
Dierckxsens,N.,Mardulyn,P。&Smits,G。NOVOPlasty:从全基因组数据从头组装细胞器基因组。核酸研究45,e18(2017)。PubMed出版社
Google Scholar
谷歌学者
Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).Article
Bernt,M。等。MITOS:改进的从头后生动物线粒体基因组注释。分子系统发育。进化。69313-319(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Conant, G. C. & Wolfe, K. H. GenomeVx: Simple web-based creation of editable circular chromosome maps. Bioinformatics 24, 861–862 (2008).Article
Conant,G.C。&Wolfe,K.H。GenomeVx:简单的基于网络的可编辑圆形染色体图谱的创建。生物信息学24861-862(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).Article
Kumar,S.,Stecher,G.,Li,M.,Knyaz,C。和Tamura,K。MEGA X:跨计算平台的分子进化遗传学分析。分子生物学。进化。351547-1549(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grant, J. R. & Stothard, P. The CGView server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 36, W181–W184 (2008).Article
Grant,J.R。&Stothard,P。CGView服务器:用于环状基因组的比较基因组学工具。核酸研究36,W181–W184(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 33, 2583–2585. https://doi.org/10.1093/bioinformatics/btx198 (2017).Article
Beier,S.,Thiel,T.,Münch,T.,Scholz,U。&Mascher,M.MISA web:用于微卫星预测的web服务器。生物信息学332583-2585。https://doi.org/10.1093/bioinformatics/btx198(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Freitas, K. E. J. et al. An empirical analysis of mtSSRs: Could microsatellite distribution patterns explain the evolution of mitogenomes in plants?. Funct. Integr. Genom. 22, 35–53 (2022).Article
Freitas,K.E.J.等人,《MTSSR的实证分析:微卫星分布模式能否解释植物中有丝分裂基因组的进化?》?。函数。整数。基因组。22,35-53(2022)。文章
Google Scholar
谷歌学者
Tan, M. H., Gan, H. M., Schultz, M. B. & Austin, C. M. MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mitogenomes including eight new freshwater crayfish mitogenomes. Mol. Phylogenet. Evol. 85, 180–188 (2015).Article
Tan,M.H.,Gan,H.M.,Schultz,M.B。&Austin,C.M。MitoPhAST,一种后基因组时代的新型自动化线粒体系统发育工具,以89个十足类线粒体基因组为例,包括8个新的淡水小龙虾线粒体基因组。分子系统发育。进化。85180-188(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol. Syst. Biol. 7, 539. https://doi.org/10.1038/msb.2011.75 (2011).Article
Sievers,F。等人。使用Clustal omega快速,可扩展地生成高质量蛋白质多序列比对。分子系统。生物学7539。https://doi.org/10.1038/msb.2011.75(2011年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348 (2009).Article
Capella Gutiérrez,S.,Silla Martínez,J.M。&Gabaldón,T.trimAl:大规模系统发育分析中自动比对修剪的工具。生物信息学251972-1973。https://doi.org/10.1093/bioinformatics/btp348(2009年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nguyen, T. T. T., Meewan, M., Ryan, S. & Austin, C. M. Genetic diversity and translocation in the marron, Cherax tenuimanus (Smith): Implications for management and conservation. Fish. Manag. Ecol. 9, 163–173 (2002).Article
Nguyen,T.T.T.,Meewan,M.,Ryan,S。&Austin,C.M。Cherax tenuimanus(Smith)马龙的遗传多样性和易位:对管理和保护的影响。鱼。管理。Ecol公司。9163-173(2002)。文章
Google Scholar
谷歌学者
Kalyaanamoorthy, S. et al. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).Article
Kalyanamoorthy,S。等人。ModelFinder:用于准确系统发育估计的快速模型选择。自然方法14587-589(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ronquist, F. et al. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article
Ronquist,F。等人。MrBayes 3.2:在大模型空间中有效的贝叶斯系统发育推断和模型选择。系统。生物学61539-542(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Miller, M., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 1–8. https://doi.org/10.1109/GCE.2010.5676129 (2010)Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
Miller,M.,Pfeiffer,W。&Schwartz,T。创建CIPRES科学门户,用于推断大型系统发育树。网关计算环境研讨会(GCE),1-8。https://doi.org/10.1109/GCE.2010.5676129(2010)Nguyen,L.T.,Schmidt,H.A.,von Haeseler,A。&Minh,B.Q。IQ-TREE:一种快速有效的估计最大似然系统发育的随机算法。
Mol. Biol. Evol. 32, 268–274 (2015).Article .
Mol Biol。无法初始化Evol。32268–274(2015)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kishino, H. & Hasegawa, M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J. Mol. Evol. 29, 170–179 (1989).Article
Kishino,H。&Hasegawa,M。从DNA序列数据评估进化树拓扑的最大似然估计,以及类人亚科的分支顺序。J、 分子进化。29170-179(1989)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shimodaira, H. & Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114 (1999).Article
Shimodaira,H。&Hasegawa,M。对数可能性的多重比较及其在系统发育推断中的应用。分子生物学。进化。161114(1999)。文章
CAS
中科院
Google Scholar
谷歌学者
Strimmer, K. & Rambaut, A. Inferring confidence sets of possibly misspecified gene trees. Proc. R. Soc. B. 269, 137–142 (2002).Article
Strimmer,K。&Rambaut,A。推断可能错误指定的基因树的置信集。程序。R、 Soc.B.269137-142(2002)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).Article
Shimodaira,H。系统发育树选择的近似无偏测试。系统。生物学51492-508(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mu, Y. L., Zhang, C. H., Zhang, Y. J., Yang, L. & Chen, X. S. Characterizing the complete mitochondrial genome of Arma custos and Picromerus lewisi (Hemiptera: Pentatomidae: Asopinae) and conducting phylogenetic analysis. J. Insect Sci. 22, 6 (2022).Article
Mu,Y.L.,Zhang,C.H.,Zhang,Y.J.,Yang,L。&Chen,X.S。表征了Arma custos和Lewis(半翅目:Pentatomidae:Asopinae)的完整线粒体基因组并进行了系统发育分析。J、 昆虫科学。22,6(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, Y. et al. Characterization of the complete mitochondrial genome of Arma custos (Hemiptera: Pentatomidae). Mitochondrial DNA Part B 5, 2624–2626 (2020).Article
Wu,Y.等人。Arma custos(半翅目:蝽科)线粒体基因组的完整表征。线粒体DNA B部分52624-2626(2020)。文章
Google Scholar
谷歌学者
Liu, Y. et al. Higher-level phylogeny and evolutionary history of Pentatomomorpha (Hemiptera: Heteroptera) inferred from mitochondrial genome sequences. Syst. Entomol. 44, 810–819 (2019).Article
Liu,Y。等人。从线粒体基因组序列推断的五翅目(半翅目:异翅目)的更高水平的系统发育和进化史。系统。Entomol。44810-819(2019)。文章
Google Scholar
谷歌学者
Jiang, P. Studies on the comparative mitochondrial genomics and phylogeny of Heteroptera (Insecta: Hemiptera). PhD, China Agricultural University, Beijing (2017)Xu, S. et al. Comparative mitogenomics and phylogenetic analyses of Pentatomoidea (Hemiptera: Heteroptera). Genes 12, 1306.
Jiang,P。异翅目(昆虫纲:半翅目)线粒体基因组学和系统发育的比较研究。中国农业大学博士,北京(2017)Xu,S。等人。Pentatomoidea(半翅目:异翅目)的比较线粒体基因组学和系统发育分析。基因121306。
https://doi.org/10.3390/genes12091306 (2021).Article .
https://doi.org/10.3390/genes12091306 (2021).Article .
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gonçalves, L. T., Pezzi, P. H. & Bianchi, F. M. Four new stink bug mitogenomes corroborate the internal inconsistencies in the classification of Pentatomidae (Hemiptera). Zootaxa 5120, 128–142 (2022).Article
Gonçalves,L.T.,Pezzi,P.H。和Bianchi,F.M。四个新的臭虫有丝分裂基因组证实了蝽科(半翅目)分类的内部不一致性。Zootaxa 5120128-142(2022)。文章
Google Scholar
谷歌学者
Zhao, Q. et al. Complete mitochondrial genome of Dinorhynchus dybowskyi (Hemiptera: Pentatomidae: Asopinae) and phylogenetic analysis of Pentatomomorpha species. J. Insect Sci. 18, 44 (2018).Article
Zhao,Q。等人。Dinorhynchus dybowskyi(半翅目:蝽科:Asopinae)的完整线粒体基因组和Pentatomorpha物种的系统发育分析。J、 昆虫科学。18,44(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Q. L. et al. Adaptive evidence of mitochondrial genomes in Dolycoris baccarum (Hemiptera: Pentatomidae) to divergent altitude environments. Mitochondrial DNA Part A 30, 9–15 (2019).Article
Zhang,Q.L.等人。Dolycoris baccarum(半翅目:蝽科)线粒体基因组对不同海拔环境的适应性证据。线粒体DNA A部分30,9-15(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Guo, Y., Xiao, J., Li, D. & Wang, J. The complete mitochondrial genome of the stink bug Eocanthecona furcellata (Hemiptera: Pentatomidae). Mitochondrial DNA Part B 6, 3085–3086 (2021).Article
Guo,Y.,Xiao,J.,Li,D。&Wang,J。臭虫Eocanthecona furcellata(半翅目:蝽科)的完整线粒体基因组。线粒体DNA B部分63085-3086(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gao, S. et al. PacBio full-length transcriptome profiling of insect mitochondrial gene expression. RNA Biol. 13, 820–825 (2016).Article
Gao,S。等人。昆虫线粒体基因表达的PacBio全长转录组分析。RNA生物学。13820-825(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, W. et al. Comparative mitogenomic analysis of the Eurydema genus in the context of representative Pentatomidae (Hemiptera: Heteroptera) taxa. J. Insect Sci. 19, 1–12 (2019).Article
Zhao,W.等人。在代表性蝽科(半翅目:异翅目)分类群的背景下,对Eurydema属进行比较线粒体基因组学分析。J、 昆虫科学。19,1-12(2019)。文章
Google Scholar
谷歌学者
Zhao, Q., Chen, C., Liu, J. & Wei, J. Characterization of the complete mitochondrial genome of Eysarcoris aeneus (Heteroptera: Pentatomidae), with its phylogenetic analysis. Mitochondrial DNA Part B 4, 2096–2097 (2019).Article
Zhao,Q.,Chen,C.,Liu,J。&Wei,J。Eysarcoris aeneus(异翅目:蝽科)完整线粒体基因组的表征及其系统发育分析。线粒体DNA B部分42096-2097(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, R., Li, M., Yan, J., Bai, M. & Zhang, H. Five mitochondrial genomes of the genus Eysarcoris Hahn, 1834 with phylogenetic implications for the Pentatominae (Hemiptera: Pentatomidae). Insects 12, 597. https://doi.org/10.3390/insects12070597 (2021).Article
Li,R.,Li,M.,Yan,J.,Bai,M。&Zhang,H。Eysarcoris Hahn属的五个线粒体基因组,1834年,对Pentatominae(半翅目:Pentatomidae)具有系统发育意义。昆虫12597。https://doi.org/10.3390/insects12070597(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, Q., Niu, X., Fang, Z. & Weng, Q. The complete mitochondrial genome of Eysarcoris guttigerus (Hemiptera: Pentatomidae). Mitochondrial DNA Part B 5, 687–688 (2020).Article
Chen,Q.,Niu,X.,Fang,Z。&Weng,Q。Eysarcoris guttigerus(半翅目:蝽科)的完整线粒体基因组。线粒体DNA B部分5687-688(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, C., Wei, J., Ji, W. & Zhao, Q. The first complete mitochondrial genome from the subfamily Phyllocephalinae (Heteroptera: Pentatomidae) and its phylogenetic analysis. Mitochondrial DNA Part B. 2, 938–939 (2017).Article
Chen,C.,Wei,J.,Ji,W。&Zhao,Q。来自Phyllocephalinae亚科(异翅目:蝽科)的第一个完整线粒体基因组及其系统发育分析。线粒体DNA部分B.2938-939(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, J., Zhang, L., Yang, X. Z., Zhou, M. Q. & Yuan, M. L. The first mitochondrial genome for the subfamily Podopinae (Hemiptera: Pentatomidae) and its phylogenetic implications. Mitochondrial DNA Part B 2, 219–220 (2017).Article
Wang,J.,Zhang,L.,Yang,X.Z.,Zhou,M.Q。&Yuan,M.L。Podopinae亚科(半翅目:蝽科)的第一个线粒体基因组及其系统发育意义。线粒体DNA B部分2219-220(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, Y. et al. A mitochondrial genome phylogeny of Mytilidae (Bivalvia: Mytilida). Mol. Phylogenetics Evol. 139, 106533 (2019).Article
Lee,Y.等人,《线粒体基因组系统发育中的线粒体》(Bivalvia:Mytilida)。系统发育进化。139,106533(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Li, Q. et al. Characterization and comparative analysis of six complete mitochondrial genomes from ectomycorrhizal fungi of the Lactarius genus and phylogenetic analysis of the Agaricomycetes. Int. J. Biol. Macromol. 121, 249–260 (2019).Article
Li,Q.等人。乳菇属外生菌根真菌的六个完整线粒体基因组的表征和比较分析以及蘑菇菌的系统发育分析。国际生物学杂志。大分子。121249-260(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhao, L. et al. The complete mitochondrial genome of Menida violacea (Hemiptera: Pentatomidae) and its phylogenetic implication. Mitochondrial DNA Part B 4, 1953–1954 (2019).Article
Zhao,L。等人。紫锥蝽(半翅目:蝽科)的线粒体全基因组及其系统发育意义。线粒体DNA B部分41953-1954(2019)。文章
Google Scholar
谷歌学者
Hua, J. et al. Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (Insecta: Hemiptera: Heteroptera). BMC Genom. 9, 610. https://doi.org/10.1186/1471-2164-9-610 (2008).Article
Hua,J.等人。Pentatomorpha(昆虫纲:半翅目:异翅目)线粒体基因组的比较和系统发育基因组学研究。BMC基因组。9610页。https://doi.org/10.1186/1471-2164-9-610(2008年)。文章
CAS
中科院
Google Scholar
谷歌学者
Chen, W. T., Zhang, L. J., Cao, Y. & Yuan, M. L. The complete mitochondrial genome of Palomena viridissima (Hemiptera: Pentatomidae) and phylogenetic analysis. Mitochondrial DNA Part B 6, 1326–1327 (2021).Article
Chen,W.T.,Zhang,L.J.,Cao,Y。&Yuan,M.L。绿色Palomena viridissima(半翅目:蝽科)的完整线粒体基因组和系统发育分析。线粒体DNA B部分61326-1327(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, L. et al. The complete mitochondrial genome of Pentatoma rufipes (Hemiptera, pentatomidae) and its phylogenetic implications. ZooKeys 1042, 51–72 (2021).Article
Zhao,L.等人。普通蝽(半翅目,蝽科)的完整线粒体基因组及其系统发育意义。缩放键1042,51-72(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, Q. et al. The first mitochondrial genome for the subfamily Asopinae (Heteroptera: Pentatomidae) and its phylogenetic implications. Mitochondrial DNA Part B 2, 804–805 (2017).Article
Zhao,Q。等人。Asopinae亚科(异翅目:蝽科)的第一个线粒体基因组及其系统发育意义。线粒体DNA B部分2804-805(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Y., Duan, Y. & Yang, X. The complete mitochondrial genome of Plautia crossota (Hemiptera: Pentatomidae). Mitochondrial DNA Part B 4, 2281–2282 (2019).Article
Wang,Y.,Duan,Y。&Yang,X。Plautia crossota(半翅目:蝽科)的完整线粒体基因组。线粒体DNA B部分42281-2282(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, Q. et al. The complete mitochondrial genome of Zicrona caerulea (Linnaeus) (Hemiptera: Pentatomidae: Asopinae) and its phylogenetic implications. Zootaxa 4747, 547–561 (2020).Article
Zhao,Q。等人。Zicrona caerulea(Linnaeus)(半翅目:Pentatomidae:Asopinae)的完整线粒体基因组及其系统发育意义。Zootaxa 4747547-561(2020)。文章
Google Scholar
谷歌学者
Thao, M. L. L., Baumann, L. & Baumann, P. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evol. Biol. 4, 25 (2004).Article
Thao,M.L.L.,Baumann,L。&Baumann,P。粉虱,蚜虫和木虱(半翅目,Sternorrhyncha)线粒体基因组的组织。BMC进化。生物学杂志4,25(2004)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dotson, E. M. & Beard, C. B. Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol. Biol. 10, 205–215 (2001).Article
Dotson,E.M。和Beard,C.B。南美锥虫病载体Triatoma dimidiata线粒体基因组的序列和组织。昆虫分子生物学。10205-215(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Guo, Z. & Yuan, M. Research progress of mitochondrial genomes of Hemiptera insects. Sci. Sin. 46, 151–166 (2016).
Guo,Z。&Yuan,M。半翅目昆虫线粒体基因组的研究进展。科学。罪恶。46151-166(2016)。
Google Scholar
谷歌学者
Hassanin, A., Léger, N. & Deutsch, J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Syst. Biol. 54, 277–298 (2005).Article
Hassanin,A.,Léger,N。&Deutsch,J。后生动物线粒体基因组进化过程中不对称突变约束多次逆转的证据,以及系统发育推断的后果。系统。生物学54277-298(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wei, S. J. et al. New views on strand asymmetry in insect mitochondrial genomes. PloS One 5, 1–10. https://doi.org/10.1371/journal.pone.0012708 (2010).Article
Wei,S.J.等人。昆虫线粒体基因组中链不对称的新观点。PloS One 5、1-10。https://doi.org/10.1371/journal.pone.0012708(2010年)。文章
CAS
中科院
Google Scholar
谷歌学者
Ding, X. et al. Comparative mitogenomics and phylogenetic analyses of the genus Menida (Hemiptera, Heteroptera, Pentatomidae). ZooKeys 1138, 29–48 (2023).Article
Ding,X.等人。弯蝽属(半翅目,异翅目,蝽科)的比较线粒体基因组学和系统发育分析。缩放键1138,29-48(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lian, D. et al. Comparative analysis and phylogeny of mitochondrial genomes of Pentatomidae (Hemiptera: Pentatomoidea). Front. Genet. https://doi.org/10.3389/fgene.2022.1045193 (2022).Article
Lian,D.等人。蝽科(半翅目:蝽总科)线粒体基因组的比较分析和系统发育。正面。基因。https://doi.org/10.3389/fgene.2022.1045193(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, W. et al. Characterization of the complete mitochondrial genome and phylogenetic implications for Eurydema maracandica (Hemiptera: Pentatomidae). Mitochondrial DNA Part B 2, 550–551 (2017).Article
Zhao,W.等人。完整线粒体基因组的表征和对Eurydema maracandica(半翅目:蝽科)的系统发育意义。线粒体DNA B部分2550-551(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jühling, F. et al. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res. 40, 2833–2845 (2012).Article
Jühling,F。等人改进的系统tRNA基因注释可以为线粒体tRNA结构的进化和线粒体基因组重排的机制提供新的见解。核酸研究402833-2845(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lu, C., Huang, X. & Deng, J. The challenge of Coccidae (Hemiptera: Coccoidea) mitochondrial genomes: The case of Saissetia coffeae with novel truncated tRNAs and gene rearrangements. Int. J. Biol. Macromol. 158, 854–864 (2020).Article
Lu,C.,Huang,X。&Deng,J。球菌科(半翅目:球菌科)线粒体基因组的挑战:具有新的截短tRNA和基因重排的Saissetia coffeae的情况。国际生物学杂志。大分子。158854-864(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, H. et al. Comparative mitogenomic analysis of damsel bugs representing three tribes in the family Nabidae (Insecta: Hemiptera). PloS One 7, e45925. https://doi.org/10.1371/journal.pone.0045925 (2012).Article
Li,H.等人。代表Nabidae家族三个部落的少女虫的比较线粒体基因组学分析(昆虫纲:半翅目)。PloS One 7,e45925。https://doi.org/10.1371/journal.pone.0045925(2012年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, S. C. et al. The complete mitochondrial genome of Aleurocanthus camelliae: Insights into gene arrangement and genome organization within the family Aleyrodidae. Int. J. Mol. Sci. 17, 1843 (2016).Article
Chen,S.C.等人。粉虱的完整线粒体基因组:粉虱科内基因排列和基因组组织的见解。Int.J.Mol.Sci。171843(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Adams, K. & Palmer, J. D. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol. Phylogenetics Evol. 29, 380–395 (2003).Article
Adams,K。&Palmer,J.D。线粒体基因含量的进化:基因丢失和转移到细胞核。分子系统发育进化。29380-395(2003)。文章
CAS
中科院
Google Scholar
谷歌学者
Rogalski, M., Karcher, D. & Bock, R. Superwobbling facilitates translation with reduced tRNA sets. Nat. Struct. Mol. Biol. 15, 192–198 (2008).Article
Rogalski,M.,Karcher,D。&Bock,R。Superwobbling通过减少tRNA集促进翻译。自然结构。分子生物学。15192-198(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Salinas, T., Duchêne, A. M. & Maréchal-Drouard, L. Recent advances in tRNA mitochondrial import. Trends Biochem. Sci. 33, 320–329 (2008).Article
Salinas,T.,Duchêne,A.M。和Maréchal Drouard,L。tRNA线粒体导入的最新进展。趋势生物化学。科学。33320-329(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saunier, A. et al. Mitochondrial genomes of the Baltic clam Macoma balthica (Bivalvia: Tellinidae): Setting the stage for studying mito-nuclear incompatibilities. BMC Evol. Biol. 14, 259 (2014).Article
波罗的海蛤Macoma balthica(双壳类:Tellinidae)的线粒体基因组:为研究线粒体-核不相容性奠定了基础。BMC进化。生物学14259(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Warren, J. M. & Sloan, D. B. Interchangeable parts: The evolutionarily dynamic tRNA population in plant mitochondria. Mitochondrion 52, 144–156 (2020).Article
Warren,J.M.和Sloan,D.B.可互换部分:植物线粒体中进化动态的tRNA群体。线粒体52144-156(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Adams, K. L., Qiu, Y. L., Stoutemyer, M. & Palmer, J. D. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc. Natl. Acad. Sci. USA 99, 9905–9912 (2002).Article
Adams,K.L.,Qiu,Y.L.,Stoutemyer,M。&Palmer,J.D。线粒体基因含量的间断进化:被子植物进化过程中线粒体基因丢失和转移到细胞核的高和可变率。程序。纳特尔。阿卡德。科学。美国999905-9912(2002)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lynch, M. Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes. Mol. Biol. Evol. 14, 914–925 (1997).Article
Lynch,M。突变在核,细胞器和原核转移RNA基因中的积累。分子生物学。进化。14914-925(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Domes, K., Maraun, M., Scheu, S. & Cameron, S. L. The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: Genome rearrangements and loss of tRNAs. BMC Genom. 9, 532. https://doi.org/10.1186/1471-2164-9-532 (2008).Article
Domes,K.,Maraun,M.,Scheu,S。&Cameron,S.L。有性甲螨Steganacarus magnus的完整线粒体基因组:基因组重排和tRNA丢失。BMC基因组。9532页。https://doi.org/10.1186/1471-2164-9-532(2008年)。文章
CAS
中科院
Google Scholar
谷歌学者
Li, H. & Li, J. Comparative analysis of four complete mitogenomes from hoverfly genus Eristalinus with phylogenetic implications. Sci. Rep. 12, 4164 (2022).Article
Li,H。&Li,J。对来自气垫蝇属Eristalinus的四个完整有丝分裂基因组的比较分析,具有系统发育意义。科学。代表124164(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fourdrilis, S., Frias Martins, A. M. & Backeljau, T. Relation between mitochondrial DNA hyperdiversity, mutation rate and mitochondrial genome evolution in Melarhaphe neritoides (Gastropoda: Littorinidae) and other Caenogastropoda. Sci. Rep. 8, 17964 (2018).Article
Fourdrilis,S.,Frias-Martins,A.M。和Backeljau,T。Melarhaphe neritoides(腹足类:Littorinidae)和其他Caenograpoda中线粒体DNA超多样性,突变率和线粒体基因组进化之间的关系。科学。代表817964(2018)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, Z. & Bielawski, J. P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15, 496–503 (2000).Article
Yang,Z。&Bielawski,J.P。用于检测分子适应的统计方法。趋势Ecol。进化。15496-503(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol. 3, 294–299 (1994).CAS
Folmer,O.,Black,M.,Hoeh,W.,Lutz,R。&Vrijenhoek,R。用于扩增来自不同后生动物无脊椎动物的线粒体细胞色素c氧化酶亚基I的DNA引物。摩尔海洋生物。生物技术。3294-299(1994)。中科院
Google Scholar
谷歌学者
Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).Article
Geller,J.,Meyer,C.,Parker,M。&Hawk,H。重新设计用于海洋无脊椎动物的线粒体细胞色素C氧化酶亚基I的PCR引物,并在所有分类群生物调查中应用。摩尔Ecol。资源。13851-861(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ding, S., Wang, S., He, K., Jiang, M. & Li, F. Large-scale analysis reveals that the genome features of simple sequence repeats are generally conserved at the family level in insects. BMC Genom. 18, 848. https://doi.org/10.1186/s12864-017-4234-0 (2017).Article
Ding,S.,Wang,S.,He,K.,Jiang,M。&Li,F。大规模分析表明,简单序列重复的基因组特征在昆虫的家族水平上通常是保守的。BMC基因组。1848年。https://doi.org/10.1186/s12864-017-4234-0(2017年)。文章
CAS
中科院
Google Scholar
谷歌学者
Levdansky, E. et al. Coding tandem repeats generate diversity in Aspergillus fumigatus genes. Eukaryot. Cell 6, 1380–1391 (2007).Article
Levdansky,E。等人。编码串联重复序列在烟曲霉基因中产生多样性。真核生物。细胞61380-1391(2007)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shakyawar, S. K., Joshi, B. K. & Kumar, D. SSR repeat dynamics in mitochondrial genomes of five domestic animal species. Bioinformation 4, 158–163 (2009).Article
Shakyawar,S.K.,Joshi,B.K。&Kumar,D。五种家畜线粒体基因组中的SSR重复动力学。生物信息4158-163(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hancock, J. M. The contribution of slippage-like processes to genome evolution. J. Mol. Evol. 41, 1038–1047 (1995).Article
Hancock,J.M。类滑移过程对基因组进化的贡献。J、 分子进化。411038-1047(1995)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Anand, K., Kumar, S., Alam, A. & Shankar, A. Mining of microsatellites in mitochondrial genomes of order Hypnales (Bryopsida). Plant Sci. Today 6, 635–638. https://doi.org/10.14719/pst.2019.6.sp1.697 (2019).Article
Anand,K.,Kumar,S.,Alam,A。&Shankar,A。在Hypnales(苔藓纲)的线粒体基因组中挖掘微卫星。植物科学。今天是6635-638。https://doi.org/10.14719/pst.2019.6.sp1.697(2019年)。文章
Google Scholar
谷歌学者
Filiz, E. SSRs mining of Brassica species in mitochondrial genomes: Bioinformatic approaches. Hortic. Environ. Biotechnol. 54, 548–553 (2013).Article
Filiz,E。线粒体基因组中芸薹属物种的SSRs挖掘:生物信息学方法。霍特语。环境。生物技术。54548-553(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
George, B., Bhatt, B. S., Awasthi, M., George, B. & Singh, A. K. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr. Genet. 61, 665–677 (2015).Article
George,B.,Bhatt,B.S.,Awasthi,M.,George,B。&Singh,A.K。低等植物和高等植物叶绿体基因组中微卫星的比较分析。货币。基因。61665-677(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Khera, P., Saxena, R., Sameerkumar, C. V., Saxena, K. & Varshney, R. K. Mitochondrial SSRs and their utility in distinguishing wild species, CMS lines and maintainer lines in pigeonpea (Cajanus cajan L.). Euphytica 206, 737–746 (2015).Article
Khera,P.,Saxena,R.,Sameerkumar,C.V.,Saxena,K。&Varshney,R.K。线粒体SSR及其在区分木豆(Cajanus cajan L.)野生种,CMS系和保持系中的应用。Euphytica 206737-746(2015)。文章
CAS
中科院
Google Scholar
谷歌学者
Kuntal, H., Sharma, V. & Daniell, H. Microsatellite analysis in organelle genomes of Chlorophyta. Bioinformation 8, 255–259 (2012).Article
Kuntal,H.,Sharma,V。和Daniell,H。绿藻细胞器基因组中的微卫星分析。生物信息8255-259(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bianchi, F. M. & Gonçalves, L. T. Borrowing the Pentatomomorpha tome from the DNA barcode library: Scanning the overall performance of cox1 as a tool. J. Zoolog. Syst. Evol. Res. 59, 992–1012 (2021).Article
Bianchi,F.M。和Gonçalves,L.T。从DNA条形码库中借用Pentatomorpha大部头:扫描cox1作为工具的整体性能。J、 Zoolog。系统。进化。第59992-1012号决议(2021年)。文章
Google Scholar
谷歌学者
Gapud, V. D. L. P. A generic revision of the subfamily Asopinae, with consideration of its phylogenetic position in the family Pentatomidae and superfamily Pentatomoidea (Hemiptera Heteroptera). Philipp. Entomol. 8, 865–961 (1991).
Gapud,V。D。L。P。Asopinae亚科的一般修订,考虑到其在Pentatomidae家族和Pentatomoidea超家族(Hemiptera Heteroptera)中的系统发育位置。菲利普。Entomol。8865-961(1991)。
Google Scholar
谷歌学者
Grazia, J., Schuh, R. T. & Wheeler, W. C. Phylogenetic relationships of family groups in Pentatomoidea based on morphology and DNA sequences (Insecta: Heteroptera). Cladistics 24, 932–976 (2008).Article
Grazia,J.,Schuh,R.T。和Wheeler,W.C。基于形态学和DNA序列的Pentatomoidea家族群的系统发育关系(昆虫纲:异翅目)。分支学24932-976(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Roca-Cusachs, M. et al. Opening Pandora’s box: molecular phylogeny of the stink bugs (Hemiptera: Heteroptera: Pentatomidae) reveals great incongruences in the current classification. Syst. Entomol. 47, 36–51 (2022).Article
Roca Cusachs,M.等人,《打开潘多拉盒子:臭虫的分子系统发育》(半翅目:异翅目:蝽科)揭示了当前分类中的巨大不一致。系统。Entomol。47,36-51(2022)。文章
Google Scholar
谷歌学者
Wu, Y. Z. et al. The evolutionary position of Lestoniidae revealed by molecular autapomorphies in the secondary structure of rRNA besides phylogenetic reconstruction (Insecta: Hemiptera: Heteroptera). Zool. J. Linn. Soc. 177, 750–763 (2016).Article
Wu,Y.Z.等人。除了系统发育重建之外,rRNA二级结构中的分子自同态揭示了Lestoniidae的进化位置(昆虫纲:半翅目:异翅目)。佐尔。J、 林恩。Soc.177750–763(2016)。文章
Google Scholar
谷歌学者
Rider, D. A. Stirotarsinae, new subfamily for Stirotarsus abnormis Bergroth (Heteroptera: Pentatomidae). Ann. Entomol. Soc. Am. 93, 802–806 (2000).Article
Rider,D.A.Stirotarsinae,Stirotarsus abnormis Bergroth的新亚科(异翅目:蝽科)。安·恩托莫。《美国法典》第93卷第802-806页(2000年)。文章
Google Scholar
谷歌学者
Rider, D. A. et al. Higher Systematics of the Pentatomoidea. In Invasive Stink Bugs and Related Species (Pentatomoidea) (ed. McPherson, J. E.) 178 (CRC Press, 2018).
Rider,D.A.等人,《Pentatomoidea的高等系统学》。入侵性臭虫和相关物种(Pentatomoidea)(ed.McPherson,J.E.)178(CRC Press,2018)。
Google Scholar
谷歌学者
Genevcius, B. C. et al. Phylogeny of the stink bug tribe Chlorocorini (Heteroptera, Pentatomidae) based on DNA and morphological data: The evolution of key phenotypic traits. Syst. Entomol. 46, 327–338 (2021).Article
Genevcius,B.C.等人。基于DNA和形态学数据的臭虫部落Chlorocorini(异翅目,蝽科)的系统发育:关键表型性状的进化。系统。Entomol。46327-338(2021)。文章
Google Scholar
谷歌学者
Gross, G. F. Plant-Feeding and Other Bugs (Hemiptera) of South Australia, Heteroptera–Part 1. In Handbook of the Flora and Fauna of South Australia (eds Jessop, J. P. & Toelken, H. R.) 1–250 (Handbooks Committee, 1975).
Gross,G.F。南澳大利亚的植物饲养和其他昆虫(半翅目),异翅目-第1部分。在《南澳大利亚动植物手册》(编辑Jessop,J.P。和Toelken,H.R.)1-250(手册委员会,1975年)。
Google Scholar
谷歌学者
Linnavuori, R. E. Pentatomidae and Acanthosomatidae (Heteroptera) of Nigeria and the Ivory Coast, with remarks on species of the adjacent countries in West and Central Africa. Acta Zool. Fenn. 163, 1–176 (1982).
尼日利亚和科特迪瓦的Linnavuori,R。E。Pentatomidae和Acanthosomatidae(异翅目),并对西非和中非邻国的物种进行了评论。动物学报。芬恩。163,1-176(1982)。
Google Scholar
谷歌学者
Roca-Cusachs, M. & Jung, S. Redefining Stagonomus Gorski based on morphological and molecular data (Pentatomidae: Eysarcorini). Zootaxa 4658, 368–374 (2019).Article
Roca Cusachs,M。&Jung,S。根据形态学和分子数据重新定义了Stagonomus Gorski(蝽科:Eysarcorini)。Zootaxa 4658368-374(2019)。文章
Google Scholar
谷歌学者
Zhang, H. F. Studies on the cytotaxonomy of five species of the family Pentatomidae (Hemiptera: Heteroptera). Entomotaxonomia 23, 265–276 (2001).
Zhang,H.F。五种蝽科昆虫的细胞分类学研究(半翅目:异翅目)。Entomotaxonomia 23265-276(2001)。
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe authors acknowledge the Coordination of Higher Education Personnel Improvement (CAPES–CODE 1) for providing a PhD. fellowship to support LCD.Author informationAuthors and AffiliationsInsect Interactions Laboratory, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, BrazilLilian Cris Dallagnol & Fernando Luís CônsoliAuthorsLilian Cris DallagnolView author publicationsYou can also search for this author in.
下载参考文献致谢作者承认提供博士学位的高等教育人员改进协调(CAPES–代码1)。支持LCD的奖学金。作者信息作者和附属机构圣保罗大学路易斯·德·奎罗斯农业学院,圣保罗大学,皮拉西卡巴,SP,巴西克里斯蒂·达拉尼奥和费尔南多·路易斯·科尼索利亚作者或莉莉安·克里斯蒂·达拉诺维作者出版物你也可以在中搜索这位作者。
PubMed Google ScholarFernando Luís CônsoliView author publicationsYou can also search for this author in
PubMed谷歌学者Fernando Luís Côsoliview作者出版物您也可以在
PubMed Google ScholarContributionsConceptualization: L. C. D. and F. L. C.; data curation: L. C. D.; formal analysis: L. C. D. and F. L. C.; funding acquisition: F. L. C.; investigation: L. C. D. and F. L. C.; methodology: L. C. D. and F. L. C.; project administration: F. L. C.; supervision: F.
PubMed谷歌学术贡献概念:L.C.D.和F.L.C。;数据管理:L.C.D。;形式分析:L.C.D.和F.L.C。;资金获取:F.L.C。;调查:L.C.D.和F.L.C。;方法:L.C.D.和F.L.C。;项目管理:F.L.C。;监督:F。
L. C.; writing original draft: L. C. D. and F. L. C.; writing, review and editing: all authors read and approved the manuscript.Corresponding authorCorrespondence to.
五十、 C。;撰写原稿:L.C.D.和F.L.C。;写作,评论和编辑:所有作者都阅读并批准了手稿。对应作者对应。
Fernando Luís Cônsoli.Ethics declarations
费尔南多·卢伊斯·科索利。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleDallagnol, L.C., Cônsoli, F.L. Evolutionary and phylogenetic insights from the mitochondrial genomic analysis of Diceraeus melacanthus and D. furcatus (Hemiptera: Pentatomidae).
转载和许可本文引用本文Dallagnol,L.C.,Cônsoli,F.L。来自Diceraeus melacanthus和D.furcatus(半翅目:蝽科)线粒体基因组分析的进化和系统发育见解。
Sci Rep 14, 12861 (2024). https://doi.org/10.1038/s41598-024-63584-wDownload citationReceived: 23 January 2024Accepted: 30 May 2024Published: 04 June 2024DOI: https://doi.org/10.1038/s41598-024-63584-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1412861(2024)。https://doi.org/10.1038/s41598-024-63584-wDownload引文收到日期:2024年1月23日接受日期:2024年5月30日发布日期:2024年6月4日OI:https://doi.org/10.1038/s41598-024-63584-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。