EN
登录

MYCT1控制人类造血干细胞的环境传感

MYCT1 controls environmental sensing in human haematopoietic stem cells

Nature 等信源发布 2024-06-05 22:58

可切换为仅中文


AbstractThe processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1,2,3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs.

摘要控制人类造血干细胞(HSC)自我更新和植入的过程知之甚少,并且难以在培养中重现以可靠地扩增功能性HSC 1,2,3。在这里,我们确定MYC靶标1(MYCT1;也称为MTLC)是一种关键的人类HSC调节剂,可调节HSC的内吞作用和环境感应。

MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment.

MYCT1在未分化的人类造血干细胞和祖细胞(HSPC)和内皮细胞中选择性表达,但在HSC培养过程中显着下调。慢病毒介导的MYCT1敲低阻止了人胎肝和脐带血(CB)HSPC的扩增和植入。

By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity.

相比之下,恢复MYCT1表达改善了培养的CB HSPC的扩增和植入。其中MYCT1被敲低或过表达的人CB HSPC的单细胞RNA测序显示MYCT1控制HSC干性所必需的重要调节程序和细胞特性,例如ETS因子表达和低线粒体活性。

MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling.

MYCT1位于HSPC的内体膜中,并与囊泡运输调节剂和信号传导机制相互作用。HSPC中MYCT1的丢失导致过度的内吞作用和过度活跃的信号传导反应,而恢复MYCT1表达平衡培养诱导的内吞作用和信号失调。

Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness.

此外,根据最低的内吞率分选培养的CB HSPC,鉴定出具有保留的MYCT1表达和MYCT1调节的HSC干性程序的HSPC。我们的工作将MYCT1介导的内吞作用和环境感应确定为保护人类HSC干性所需的基本调节机制。

Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion..

我们的数据还指出,沉默MYCT1是一种细胞培养诱导的脆弱性,会损害人类HSC的扩增。。

MainHSCs sustain blood formation throughout life owing to their ability to respond to microenvironmental cues to balance self-renewal and differentiation. HSCs can provide life-saving therapy for patients with haematological malignancies and patients with inherited blood disorders. But access to HSC transplantation is limited by the difficulty in finding immune-compatible bone marrow (BM) donors and the low quantity of HSCs in cord blood (CB)1,2,3.

MainHSC在整个生命过程中维持血液形成,因为它们能够响应微环境线索以平衡自我更新和分化。造血干细胞可以为血液系统恶性肿瘤患者和遗传性血液疾病患者提供挽救生命的治疗。但是,由于难以找到免疫相容的骨髓(BM)供体以及脐带血(CB)1,2,3中HSC的含量低,HSC移植的途径受到限制。

Thus, it has been a long-standing goal to optimize the cell culture environment to expand human HSCs ex vivo4,5. However, transfer of human HSCs from their niche to culture results in extensive changes in transcriptome, epigenome, signalling, metabolism, proteostasis and other cellular functions that severely compromise HSC function4,6,7,8,9,10,11.The diverse approaches available to recapitulate human HSC self-renewal ex vivo include co-culture with niche cells such as BM mesenchymal stromal cells9,12 or endothelial cells (ECs)13, and 3D cultures within a hydrophilic matrix11.

因此,优化细胞培养环境以体外扩增人类HSC一直是一个长期目标4,5。然而,将人类HSC从其生态位转移到培养物中会导致转录组,表观基因组,信号传导,代谢,蛋白质稳态和其他细胞功能的广泛变化,从而严重损害HSC功能4,6,7,8,9,10,11。可用于概括人类HSC离体自我更新的多种方法包括与生态位细胞(如BM间充质基质细胞9,12或内皮细胞(EC)13)和亲水基质中的3D培养物11共培养。

Other methods include supplementation of HSC cytokines with HSC-supportive small molecules such as SR1 (ref. 14) or UM171 (ref. 15), and albumin-free conditions that replace cytokines with chemical agonists16. Moreover, transcriptional regulators that can promote human HSC expansion in culture, such as MLLT3 (ref.

其他方法包括用HSC支持性小分子如SR1(参考文献14)或UM171(参考文献15)补充HSC细胞因子,以及用化学激动剂替代细胞因子的无白蛋白条件16。此外,可以促进人类HSC在培养物中扩增的转录调节因子,如MLLT3(参考文献)。

10) and MSI2 (ref. 17), have been discovered and functionally validated following transplantation. Another goal is to identify molecular markers that indicate the preservation of HSC properties. Recent advances include more specific surface markers for cultured human HSCs, such as EPCR18, ITGA3 (ref.

10) 和MSI2(参考文献17)已在移植后被发现并进行了功能验证。另一个目标是鉴定表明HSC特性保存的分子标记。最近的进展包括培养的人HSC的更具特异性的表面标记,如EPCR18,ITGA3(参考文献)。

19) and RET20, and signature genes in the HSC transcriptome (for example, MLLT3 (ref. 10), HLF21,22 and MECOM23). Desirable cellular characterist.

19) 和RET20,以及HSC转录组中的特征基因(例如MLLT3(参考文献10),HLF21,22和MECOM23)。理想的细胞特征。

Data availability

数据可用性

The RNA-seq and scRNA-seq datasets generated during the current study are available at the GEO under the accession codes GSE233478 (bulk RNA-seq for human haematopoietic populations), GSE232360 (bulk RNA-seq for KG1 and E4EC), GSE232361 (scRNA-seq of MYCT1 OE and KD) and GSE254857 (scRNA-seq of endocytosis fractions).

本研究期间产生的RNA-seq和scRNA-seq数据集可在GEO获得,登录号为GSE233478(人类造血群体的大量RNA-seq),GSE232360(KG1和E4EC的大量RNA-seq),GSE232361(MYCT1 OE和KD的scRNA-seq)和GSE254857(内吞作用部分的scRNA-seq)。

The MS and phospho MS datasets are available at PRIDE under the accession code PXD042257. There are no restrictions on data availability. Published data from ref. 41 are available under GSE175400. Published data are available in table S1 of ref. 28, table S3 of ref. 19 and table S3 of ref. 9. Published data from ref.

MS和phospho-MS数据集可在PRIDE获得,登录号为PXD042257。数据可用性没有限制。参考文献41中公布的数据可在GSE175400下获得。公布的数据可在参考文献28的表S1,参考文献19的表S3和参考文献9的表S3中获得。参考文献中发布的数据。

10 are available at the GEO under accession GSE111483. Source data are provided with this paper..

10可在GEO获得,登录号为GSE111483。本文提供了源数据。。

ReferencesBallen, K. K., Gluckman, E. & Broxmeyer, H. E. Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122, 491–498 (2013).Article

参考文献Ballen,K.K.,Gluckman,E。&Broxmeyer,H.E。脐带血移植:前25年及以后。血液122491-498(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gragert, L. et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. Registry. N. Engl. J. Med. 371, 339–348 (2014).Article

Gragert,L.等人,《美国登记处造血干细胞移植物的HLA匹配可能性》。N、 英语。J、 医学杂志371339-348(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ng, A. P. & Alexander, W. S. Haematopoietic stem cells: past, present and future. Cell Death Discov. 3, 17002 (2017).Article

Ng,A.P。和Alexander,W.S。造血干细胞:过去,现在和未来。细胞死亡发现。317002(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pineault, N. & Abu-Khader, A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp. Hematol. 43, 498–513 (2015).Article

Pineault,N。&Abu Khader,A。脐带血干细胞扩增和临床翻译的进展。实验血液学。43498-513(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cohen, S. et al. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1–2 safety and feasibility study. Lancet Haematol. 7, e134–e145 (2020).Article

Cohen,S.等人,《使用单个UM171扩增脐带血的造血干细胞移植:单臂,1-2期安全性和可行性研究》。柳叶刀血液。7,e134–e145(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dahlberg, A., Delaney, C. & Bernstein, I. D. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood 117, 6083–6090 (2011).Article

Dahlberg,A.,Delaney,C。&Bernstein,I.D。人类造血干细胞和祖细胞的离体扩增。血液1176083-6090(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fares, I., Calvanese, V. & Mikkola, H. K. A. Decoding human hematopoietic stem cell self-renewal. Curr. Stem Cell Rep. https://doi.org/10.1007/s40778-022-00209-w (2022).Kumar, S. & Geiger, H. HSC niche biology and HSC expansion ex vivo. Trends Mol. Med. 23, 799–819 (2017).Article

Fares,I.,Calvanese,V。&Mikkola,H.K.A。解码人类造血干细胞自我更新。货币。干细胞代表。https://doi.org/10.1007/s40778-022-00209-w(2022年)。Kumar,S。&Geiger,H。HSC生态位生物学和HSC体外扩增。趋势分子医学23799-819(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Magnusson, M. et al. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability. PLoS ONE 8, e53912 (2013).Article

Magnusson,M。等人。基质细胞的扩增保留了人类造血干细胞的未分化状态,尽管重建能力受损。PLoS ONE 8,e53912(2013)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Calvanese, V. et al. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature 576, 281–286 (2019).Article

Calvanese,V。等人。MLLT3控制人类造血干细胞的自我更新和植入。自然576281-286(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bai, T. et al. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nat. Med. 25, 1566–1575 (2019).Article

Bai,T。等人。通过在两性离子水凝胶中培养来扩增原始人造血干细胞。《自然医学杂志》251566-1575(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nakahara, F. et al. Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nat. Cell Biol. 21, 560–567 (2019).Article

Nakahara,F。等人。通过振兴间充质基质细胞来设计造血干细胞生态位。自然细胞生物学。21560-567(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Butler, J. M. et al. Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood 120, 1344–1347 (2012).Article

Butler,J.M.等人。开发用于扩增再生人脐带血干细胞和祖细胞的血管生态位平台。血液1201344-1347(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boitano, A. E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348 (2010).Article

Boitano,A.E.等人。芳烃受体拮抗剂促进人类造血干细胞的扩增。科学3291345-1348(2010)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fares, I. et al. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345, 1509–1512 (2014).Article

Fares,I。等人。嘧啶吲哚衍生物是人类造血干细胞自我更新的激动剂。科学3451509-1512(2014)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sakurai, M. et al. Chemically defined cytokine-free expansion of human haematopoietic stem cells. Nature 615, 127–133 (2023).Article

Sakurai,M.等人。化学定义的人类造血干细胞的无细胞因子扩增。自然615127-133(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rentas, S. et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature 532, 508–511 (2016).Article

Rentas,S。等人,Musashi-2减弱AHR信号传导以扩增人类造血干细胞。自然532508-511(2016)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fares, I. et al. EPCR expression marks UM171-expanded CD34+ cord blood stem cells. Blood 129, 3344–3351 (2017).Article

Fares,I。等人。EPCR表达标志着UM171扩增的CD34+脐带血干细胞。血液1293344-3351(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tomellini, E. et al. Integrin-α3 is a functional marker of ex vivo expanded human long-term hematopoietic stem cells. Cell Rep. 28, 1063–1073.e5 (2019).Article

Tomellini,E。等人。整合素-α3是离体扩增的人类长期造血干细胞的功能标志物。Cell Rep.281063–1073.e5(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Grey, W. et al. Activation of the receptor tyrosine kinase RET improves long-term hematopoietic stem cell outgrowth and potency. Blood 136, 2535–2547 (2020).Article

受体酪氨酸激酶RET的激活可改善长期造血干细胞的生长和效力。血液1362535-2547(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lehnertz, B. et al. HLF expression defines the human hematopoietic stem cell state. Blood 138, 2642–2654 (2021).Article

Lehnertz,B。等人。HLF表达定义了人类造血干细胞的状态。血液1382642-2654(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Calvanese, V. et al. Mapping human haematopoietic stem cells from haemogenic endothelium to birth. Nature 604, 534–540 (2022).Article

Calvanese,V。等人。绘制人类造血干细胞从造血内皮到出生的图谱。自然604534-540(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goyama, S. et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3, 207–220 (2008).Article

Goyama,S。等人Evi-1是造血干细胞和转化白血病细胞的关键调节剂。细胞干细胞3207-220(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vannini, N. et al. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat. Commun. 7, 13125 (2016).Article

Vannini,N.等人。通过调节线粒体活性来规范造血干细胞的命运。国家公社。713125(2016)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Papa, L. et al. Limited mitochondrial activity coupled with strong expression of CD34, CD90 and EPCR determines the functional fitness of ex vivo expanded human hematopoietic stem cells. Front. Cell Dev. Biol. 8, 592348 (2020).Article

Papa,L.等人有限的线粒体活性加上CD34,CD90和EPCR的强表达决定了离体扩增的人类造血干细胞的功能适应性。正面。细胞开发生物学。8592348(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chua, B. A. & Signer, R. A. J. Hematopoietic stem cell regulation by the proteostasis network. Curr. Opin. Hematol. 27, 254 (2020).Article

Chua,B.A.&Signer,R.A.J。通过蛋白质稳态网络调节造血干细胞。Curr。奥平。血液学。27254(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chua, B. A. et al. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell 30, 460–472.e6 (2023).Article

Chua,B.A.等人,造血干细胞优先将错误折叠的蛋白质运输到聚集体,并依赖聚集性维持蛋白质稳态。细胞干细胞30460–472.e6(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

García-Prat, L. et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 28, 1838–1850.e10 (2021).Article

García-Prat,L。等人。TFEB介导的内溶酶体活性控制人类造血干细胞的命运。细胞干细胞281838-1850.e10(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).Article

Novershtern,N。等人。密集互连的转录电路控制人类造血中的细胞状态。细胞144296-309(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Prashad, S. L. et al. GPI-80 defines self-renewal ability in hematopoietic stem cells during human development. Cell Stem Cell 16, 80–87 (2015).Article

Prashad,S.L.等人GPI-80定义了人类发育过程中造血干细胞的自我更新能力。细胞干细胞16,80-87(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bagger, F. O., Kinalis, S. & Rapin, N. BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic Acids Res. 47, D881–D885 (2019).Article

Bagger,F.O.,Kinalis,S。&Rapin,N。BloodSpot:用纯化和单细胞mRNA测序谱更新的健康和恶性造血数据库。核酸研究47,D881-D885(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Laurenti, E. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16, 302–313 (2015).Article

Laurenti,E。等人。CDK6水平调节人类造血干细胞的静止退出。细胞干细胞16302-313(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article

Subramanian,A。等人。基因集富集分析:一种基于知识的方法,用于解释全基因组表达谱。程序。国家科学院。科学。美国10215545–15550(2005)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).Article

Cao,J。等人。胎儿基因表达的人类细胞图谱。科学370,eaba7721(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zheng, S., Papalexi, E., Butler, A., Stephenson, W. & Satija, R. Molecular transitions in early progenitors during human cord blood hematopoiesis. Mol. Syst. Biol. 14, e8041 (2018).Article

Zheng,S.,Papalexi,E.,Butler,A.,Stephenson,W。&Satija,R。人脐带血造血过程中早期祖细胞的分子转变。分子系统。生物学14,e8041(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hay, S. B., Ferchen, K., Chetal, K., Grimes, H. L. & Salomonis, N. The Human Cell Atlas bone marrow single-cell interactive web portal. Exp. Hematol. 68, 51–61 (2018).Article

Hay,S.B.,Ferchen,K.,Chetal,K.,Grimes,H.L。&Salomonis,N。人类细胞图谱骨髓单细胞交互式门户网站。实验血液学。68,51-61(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ciau-Uitz, A., Wang, L., Patient, R. & Liu, F. ETS transcription factors in hematopoietic stem cell development. Blood Cells Mol. Dis. 51, 248–255 (2013).Article

Ciau Uitz,A.,Wang,L.,Patient,R。&Liu,F。ETS转录因子在造血干细胞发育中的作用。血细胞分子分布。51248-255(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, L. et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science 345, 1251033 (2014).Article

Chen,L.等人。人类血液祖细胞谱系定型过程中的转录多样性。科学3451251033(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chan, D. C. H. et al. Arhgef2 regulates mitotic spindle orientation in hematopoietic stem cells and is essential for productive hematopoiesis. Blood Adv. 5, 3120–3133 (2021).Article

Chan,D.C.H.等人,Arhgef2调节造血干细胞中的有丝分裂纺锤体方向,对生产性造血至关重要。血液杂志53120-3133(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lv, K. et al. HectD1 controls hematopoietic stem cell regeneration by coordinating ribosome assembly and protein synthesis. Cell Stem Cell 28, 1275–1290.e9 (2021).Article

Lv,K。等人HectD1通过协调核糖体组装和蛋白质合成来控制造血干细胞再生。细胞干细胞281275–1290.e9(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Che, J. L. C. et al. Identification and characterization of in vitro expanded hematopoietic stem cells. EMBO Rep. 23, e55502 (2022).Article

Che,J.L.C.等人。体外扩增造血干细胞的鉴定和表征。EMBO代表23,e55502(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Holmfeldt, P. et al. Functional screen identifies regulators of murine hematopoietic stem cell repopulation. J. Exp. Med. 213, 433–449 (2016).Article

Holmfeldt,P。等人,《功能筛选》确定了小鼠造血干细胞再生的调节因子。J、 实验医学213433-449(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McIntosh, B. E. et al. Nonirradiated NOD,B6.SCID Il2rγ−/−KitW41/W41 (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Reports 4, 171–180 (2015).Article

McIntosh,B.E.等人。未经照射的NOD,B6.SCID Il2rγ-/-KitW41/W41(NBSGW)小鼠支持人类造血细胞的多谱系植入。干细胞报告4171-180(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hu, Y. & Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).Article

Hu,Y。&Smyth,G。K。ELDA:极端有限稀释分析,用于比较干细胞和其他测定中耗尽和富集的群体。J、 免疫。方法347,70-78(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yin, X., Grove, L., Rogulski, K. & Prochownik, E. V. Myc target in myeloid cells-1, a novel c-Myc target, recapitulates multiple c-Myc phenotypes. J. Biol. Chem. 277, 19998–20010 (2002).Article

Yin,X.,Grove,L.,Rogulski,K。&Prochownik,E.V。髓样细胞中的Myc靶标-1是一种新型的c-Myc靶标,概括了多种c-Myc表型。J、 生物。化学。27719998-20010(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rogulski, K. R., Cohen, D. E., Corcoran, D. L., Benos, P. V. & Prochownik, E. V. Deregulation of common genes by c-Myc and its direct target, MT-MC1. Proc. Natl Acad. Sci. USA 102, 18968–18973 (2005).Article

Rogulski,K.R.,Cohen,D.E.,Corcoran,D.L.,Benos,P.V。&Prochownik,E.V。通过c-Myc及其直接靶标MT-MC1放松对常见基因的调控。程序。国家科学院。科学。美国10218968–18973(2005)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, S. et al. Transmembrane domain is crucial to the subcellular localization and function of Myc target 1. J. Cell. Mol. Med. 20, 471–481 (2016).Article

Wu,S。等人。跨膜结构域对Myc靶标1的亚细胞定位和功能至关重要。J、 细胞。摩尔医学杂志20471-481(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007).Article

Käll,L.,Krogh,A。&Sonnhammer,E.L.L。跨膜拓扑结构和信号肽预测组合的优势恐惧网络服务器。核酸研究35,W429–W432(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article

Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).Article

Varadi,M。等人。AlphaFold蛋白质结构数据库:通过高精度模型大规模扩展蛋白质序列空间的结构覆盖范围。核酸研究50,D439–D444(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).Article

Szklarczyk,D。等人。STRING v11:覆盖率增加的蛋白质-蛋白质关联网络,支持全基因组实验数据集中的功能发现。核酸研究47,D607–D613(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Reider, A. & Wendland, B. Endocytic adaptors—social networking at the plasma membrane. J. Cell Sci. 124, 1613–1622 (2011).Article

Reider,A。&Wendland,B。内吞适配器在质膜上社交网络。J、 细胞科学。1241613-1622(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Murphy, J. E., Padilla, B. E., Hasdemir, B., Cottrell, G. S. & Bunnett, N. W. Endosomes: a legitimate platform for the signaling train. Proc. Natl Acad. Sci. USA 106, 17615–17622 (2009).Article

Murphy,J.E.,Padilla,B.E.,Hasdemir,B.,Cottrell,G.S。和Bunnett,N.W。内体:信号列车的合法平台。程序。国家科学院。科学。美国10617615–17622(2009)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10, 609–622 (2009).Article

Sorkin,A。&von Zastrow,M。内吞作用和信号传导:交织的分子网络。Nat。Rev。Mol。Cell Biol。10609-622(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wiredja, D. D., Koyutürk, M. & Chance, M. R. The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics. Bioinformatics 33, 3489–3491 (2017).Article

Wiredja,D.D.,Koyutürk,M。&Chance,M.R。KSEA应用程序:一种基于网络的工具,用于从定量磷酸化蛋白质组学推断激酶活性。生物信息学333489-3491(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krug, K. et al. A curated resource for phosphosite-specific signature analysis. Mol. Cell. Proteomics 18, 576–593 (2019).Article

Krug,K.等人。磷酸位点特异性特征分析的精选资源。摩尔电池。蛋白质组学18576-593(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cruse, G. et al. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol. Biol. Cell 26, 1711–1727 (2015).Article

Cruse,G。等人,CD20同源物MS4A4将KIT的运输导向不依赖网格蛋白的内吞作用途径,从而调节受体信号传导和再循环。分子生物学。细胞261711-1727(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, F., Chen, Z., Liu, J. & Hou, Y. The Akt–mTOR network at the interface of hematopoietic stem cell homeostasis. Exp. Hematol. 103, 15–23 (2021).Article

Wu,F.,Chen,Z.,Liu,J。&Hou,Y。造血干细胞稳态界面的Akt-mTOR网络。实验血液学。103,15-23(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kharas, M. G. et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115, 1406–1415 (2010).Article

Kharas,M.G.等人组成型活性AKT消耗造血干细胞并诱导小鼠白血病。血液1151406-1415(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sigismund, S., Lanzetti, L., Scita, G. & Di Fiore, P. P. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat. Rev. Mol. Cell Biol. 22, 625–643 (2021).Article

Sigismund,S.,Lanzetti,L.,Scita,G。&Di Fiore,P。P。内吞作用在个体和集体细胞特性的上下文依赖性调节中。Nat。Rev。Mol。Cell Biol。22625-643(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Narayana, Y. V., Gadgil, C., Mote, R. D., Rajan, R. & Subramanyam, D. Clathrin-mediated endocytosis regulates a balance between opposing signals to maintain the pluripotent state of embryonic stem cells. Stem Cell Reports 12, 152–164 (2019).Article

Narayana,Y.V.,Gadgil,C.,Mote,R.D.,Rajan,R。&Subramanyam,D。网格蛋白介导的内吞作用调节相反信号之间的平衡,以维持胚胎干细胞的多能状态。干细胞报告12152-164(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sangokoya, C. & Blelloch, R. MicroRNA-dependent inhibition of PFN2 orchestrates ERK activation and pluripotent state transitions by regulating endocytosis. Proc. Natl Acad. Sci. USA 117, 20625–20635 (2020).Article

Sangokoya,C。&Blelloch,R。PFN2的MicroRNA依赖性抑制通过调节内吞作用来协调ERK活化和多能状态转变。程序。国家科学院。科学。美国11720625–20635(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heng, J. et al. Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biol. 18, e3000696 (2020).Article

Heng,J。等人。Rab5c介导的内吞运输通过Notch和AKT信号传导调节造血干细胞和祖细胞的发育。《公共科学图书馆·生物学》。18,e3000696(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morales-Hernandez, A. et al. GPRASP proteins are critical negative regulators of hematopoietic stem cell transplantation. Blood 135, 1111–1123 (2020).PubMed

Morales-Hernandez,A。等人GPRASP蛋白是造血干细胞移植的关键负调节剂。血液1351111-1123(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, V. et al. The metabolic landscape of thymic T cell development in vivo and in vitro. Front. Immunol. 12, 716661 (2021).Article

Sun,V。等人。体内和体外胸腺T细胞发育的代谢景观。正面。免疫。12716661(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article

Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Leonard, A. et al. Low-dose busulfan reduces human CD34+ cell doses required for engraftment in c-kit mutant immunodeficient mice. Mol. Ther. Methods Clin. Dev. 15, 430–437 (2019).Article

Leonard,A。等人。低剂量白消安可降低c-kit突变免疫缺陷小鼠植入所需的人CD34+细胞剂量。摩尔热。方法临床。Dev.15430–437(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hess, N. J. et al. Different human immune lineage compositions are generated in non-conditioned NBSGW mice depending on HSPC source. Front. Immunol. 11, 573406 (2020).Article

Hess,N.J.等人。根据HSPC来源,在非条件NBSGW小鼠中产生不同的人类免疫谱系组成。正面。免疫。11573406(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).Article

Raudvere,U。等人g:Profiler:用于功能富集分析和基因列表转换的web服务器(2019年更新)。核酸研究47,W191-W198(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ulgen, E., Ozisik, O. & Sezerman, O. U. pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front. Genet. 10, 858 (2019).Article

Ulgen,E.,Ozisik,O。和Sezerman,O。U。pathfindR:一个R包,用于通过活动子网全面识别组学数据中的丰富途径。正面。基因。10858(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Binns, D. et al. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25, 3045–3046 (2009).Article

Binns,D。等人。QuickGO:一种基于网络的基因本体搜索工具。生物信息学253045-3046(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mansell, E. et al. Mitochondrial potentiation ameliorates age-related heterogeneity in hematopoietic stem cell function. Cell Stem Cell 28, 241–256.e6 (2021).Article

线粒体增强改善了造血干细胞功能中与年龄相关的异质性。细胞干细胞28241–256.e6(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jami-Alahmadi, Y., Pandey, V., Mayank, A. K. & Wohlschlegel, J. A. A robust method for packing high resolution C18 RP-nano-HPLC columns. J. Vis. Exp. https://doi.org/10.3791/62380 (2021).Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.

Jami Alahmadi,Y.,Pandey,V.,Mayank,A.K。&Wohlschlegel,J.A。一种包装高分辨率C18 RP纳米HPLC柱的稳健方法。J、 可见。实验。https://doi.org/10.3791/62380(2021年)。Cox,J。&Mann,M。MaxQuant能够实现高肽识别率,个性化的p.p.b.范围质量准确度和蛋白质组范围内的蛋白质定量。

Nat. Biotechnol. 26, 1367–1372 (2008).Article .

美国国家生物技术公司。261367-1372(2008)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nat. Methods 10, 730–736 (2013).Article

Mellacheruvu,D。等人,《CRAPome:亲和纯化的污染物储存库-质谱数据》。《自然方法》10730-736(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).Article

Barretina,J。等人,《癌细胞系百科全书》能够对抗癌药物敏感性进行预测建模。自然483603-607(2012)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank the staff at the BSCRC flow cytometry and microscopy cores, the Jonsson Comprehensive Cancer Center Flow Cytometry Shared Resource, and the Technology Center for Genomics & Bioinformatics sequencing cores (supported by P30CA016042 from NCI) at UCLA; the Next Generation Sequencing Core Facility at the Salk Institute for Biological Studies; the CryoCell team at Cedars-Sinai for their help with CB collection; and S. Rafii for providing the E4EC cell line.

下载参考文献致谢我们感谢加州大学洛杉矶分校BSCRC流式细胞术和显微镜核心,Jonsson综合癌症中心流式细胞术共享资源以及基因组学和生物信息学测序核心技术中心(由NCI的P30CA016042支持)的工作人员;索尔克生物研究所的下一代测序核心设施;Cedars Sinai的CryoCell团队帮助收集CB;和S.Rafii提供E4EC细胞系。

Schematics depicting experimental outlines in Figs. 3a and 4e and Extended Data Figs. 2c, 4a, 11c and 12a,d,h,l were created with BioRender (https://www.biorender.com). This work was supported by 5R01DK100959, 1R01HL162408, 1RO1DK125097 and 1R01DK121557 (to H.K.A.M); the Swiss National Science Foundation (P2ZHP3_178113), European Molecular Biology Organization (ALTF 433-2019) (to J.A.-G.); BSCRC post-doctoral fellowships (to J.A.-G., I.F.

图3a和4e中描绘实验轮廓的示意图以及扩展数据图2c,4a,11c和12a,d,h,l是用BioRender创建的(https://www.biorender.com)。这项工作得到了5R01DK100959、1R01HL162408、1RO1DK125097和1R01DK121557(致H.K.A.M)的支持;瑞士国家科学基金会(P2ZHP3\U 178113),欧洲分子生物学组织(ALTF 433-2019)(致J.A.-G.);BSCRC博士后奖学金(授予J.A.-G.,I.F。

and V.C.); Jonsson Comprehensive Cancer Center fellowship (to J.A.-G.); Sir Henry Dale Fellowship (jointly funded by Wellcome and the Royal Society, 221978/Z/20/Z, to V.C.), T32 HL-086345-13 Developmental Haematology fellowship (to I.F.); funds from the Board of Governors Regenerative Medicine Institute at Cedars-Sinai Medical Center (to H.S.G); NIH GM153408 (to J.W); NIH P30AI152501 (to the UCLA CFAR Humanized Mouse and Gene Therapy Core); and the UCLA AIDS Institute, the James B.

和V.C.);琼森综合癌症中心奖学金(致J.A.-G.);亨利·戴尔爵士奖学金(由惠康和皇家学会联合资助,221978/Z/20/Z,授予V.C.),T32 HL-086345-13发育血液学奖学金(授予I.F.);雪松西奈医学中心理事会再生医学研究所(H.S.G)的资金;NIH GM153408(致J.W);NIH P30AI152501(至加州大学洛杉矶分校CFAR人源化小鼠和基因治疗核心);和加州大学洛杉矶分校艾滋病研究所,詹姆斯B。

Pendleton Charitable Trust, and the McCarthy Family Foundation. This research was made possible by a grant to GMC from the California Institute of Regenerative Medicine (GC1R-06673-B [CRP]). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of CIRM or any other agency of t.

彭德尔顿慈善信托基金会和麦卡锡家族基金会。这项研究是由加州再生医学研究所(GC1R-06673-B[CRP])向GMC提供的资助实现的。本出版物的内容仅由作者负责,不一定代表CIRM或t的任何其他机构的官方观点。

PubMed Google ScholarYasaman Jami-AlahmadiView author publicationsYou can also search for this author in

PubMed Google ScholarYasaman Jami AlahmadiView作者出版物您也可以在

PubMed Google ScholarVincenzo CalvaneseView author publicationsYou can also search for this author in

PubMed Google ScholarVincenzo CalvaneseView作者出版物您也可以在

PubMed Google ScholarMaya KardouhView author publicationsYou can also search for this author in

PubMed Google ScholarMaya KardouhView作者出版物您也可以在

PubMed Google ScholarIman FaresView author publicationsYou can also search for this author in

PubMed Google ScholarIman FaresView作者出版物您也可以在

PubMed Google ScholarHaley JohnsonView author publicationsYou can also search for this author in

PubMed Google ScholarHaley JohnsonView作者出版物您也可以在

PubMed Google ScholarValerie RezekView author publicationsYou can also search for this author in

PubMed Google ScholarValerie RezekView作者出版物您也可以在

PubMed Google ScholarFeiyang MaView author publicationsYou can also search for this author in

PubMed谷歌学者Feiyang MaView作者出版物您也可以在

PubMed Google ScholarMattias MagnussonView author publicationsYou can also search for this author in

PubMed Google ScholarMattias MagnussonView作者出版物您也可以在

PubMed Google ScholarYanling WangView author publicationsYou can also search for this author in

PubMed Google ScholarYanling WangView作者出版物您也可以在

PubMed Google ScholarJuliana E. ShinView author publicationsYou can also search for this author in

PubMed Google ScholarJuliana E.ShinView作者出版物您也可以在

PubMed Google ScholarKarina J. NanceView author publicationsYou can also search for this author in

PubMed Google ScholarKarina J.NanceView作者出版物您也可以在

PubMed Google ScholarHelen S. GoodridgeView author publicationsYou can also search for this author in

PubMed谷歌学者Helen S.GoodridgeView作者出版物您也可以在

PubMed Google ScholarSimone LiebscherView author publicationsYou can also search for this author in

PubMed Google ScholarSimone LiebscherView作者出版物您也可以在

PubMed Google ScholarKatja Schenke-LaylandView author publicationsYou can also search for this author in

PubMed Google ScholarKatja Schenke LaylandView作者出版物您也可以在

PubMed Google ScholarGay M. CrooksView author publicationsYou can also search for this author in

PubMed Google ScholarGay M.CrooksView作者出版物您也可以在

PubMed Google ScholarJames A. WohlschlegelView author publicationsYou can also search for this author in

PubMed谷歌学者James A.WohlschlegelView作者出版物您也可以在

PubMed Google ScholarHanna K. A. MikkolaView author publicationsYou can also search for this author in

PubMed Google ScholarHanna K.A.MikkolaView作者出版物您也可以在

PubMed Google ScholarContributionsJ.A.-G. and H.K.A.M. designed experiments and interpreted data. J.A.-G. performed and/or supervised all experiments and related data analyses. Y.J.-A. performed MS and phospho MS assays and processed the raw data. J.A.W. assisted with design and data interpretation of MS experiments.

PubMed谷歌学术贡献。A、 -G.和H.K.A.M.设计了实验并解释了数据。J、 A.-G.执行和/或监督所有实验和相关数据分析。Y、 J.-A.进行了MS和磷酸化MS分析,并处理了原始数据。J、 A.W.协助MS实验的设计和数据解释。

V.C. and M.M. generated MYCT1 KD and OE vectors. V.C. was responsible for the RNA-seq analysis of the human embryonic, fetal and post-natal haematopoietic tissues, which was overseen by G.M.C. and H.K.A.M. V.C. also assisted with data interpretation and contextualization. I.F. performed IP for MS. M.K.

五、 C.和M.M.产生了MYCT1 KD和OE载体。五、 C.负责人类胚胎,胎儿和产后造血组织的RNA-seq分析,由G.M.C.和H.K.A.M.V.C.监督,还协助数据解释和背景分析。一、 F.为M.K.女士执行IP。

and H.J. assisted in wet laboratory experiments. V.R. and Y.W. contributed to the transplantation experiments in NSG and NBSGW mice. F.M. assisted with the bioinformatics analysis of scRNA-seq data. J.E.S., K.J.N. and H.S.G. coordinated CB collection and procurement, and Y.W. performed CB purifications.

和H.J.协助湿实验室实验。五、 R.和Y.W.为NSG和NBSGW小鼠的移植实验做出了贡献。F、 M.协助scRNA-seq数据的生物信息学分析。J、 E.S.,K.J.N.和H.S.G.协调CB收集和采购,Y.W.进行CB纯化。

S.L. and K.S.-L. coordinated the collection and procurement of human developmental tissues. J.A.-G. and H.K.A.M wrote the manuscript, which all of the authors read and approved.Corresponding authorsCorrespondence to.

S、 L.和K.S.-L.协调人类发育组织的收集和采购。J、 A.-G.和H.K.A.M撰写了手稿,所有作者都阅读并批准了手稿。通讯作者通讯。

Júlia Aguadé-Gorgorió or Hanna K. A. Mikkola.Ethics declarations

Júlia Aguadé-Gorgorióor Hanna K.A.Mikkola。道德宣言

Competing interests

相互竞争的利益

The authors declare the following competing interests: H.K.A.M is a scientific advisory board member for Notch therapeutics and a consultant for MaroBio. H.K.A.M. and J.A.-G. have submitted a provisional patent application based on the work presented here (“Methods and compositions for haematopoietic stem cell enhancement”; PCT patent application submitted; institution: UCLA; inventors: H.K.A.M.

作者声明了以下相互竞争的利益:H.K.A.M是Notch therapeutics的科学顾问委员会成员和MaroBio的顾问。H.K.A.M.和J.A.-G.根据此处介绍的工作提交了临时专利申请(“造血干细胞增强的方法和组成”;提交的PCT专利申请;机构:加州大学洛杉矶分校;发明人:H.K.A.M。

and J.A.-G.), covering increasing expression and/or activity of MYCT1 and controlling endocytosis in cultured HSCs to improve transplantability and/or provide better in vitro models for pluripotent stem cell-derived haematopoiesis. All other authors declare no competing interests..

和J.A.-G.),涵盖增加MYCT1的表达和/或活性以及控制培养的HSC中的内吞作用,以提高移植性和/或为多能干细胞衍生的造血提供更好的体外模型。所有其他作者声明没有利益冲突。。

Peer review

同行评审

Peer review information

同行评审信息

Nature thanks David Kent and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

《自然》杂志感谢大卫·肯特和另一位匿名审稿人为这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 Silencing of MYCT1 expression in cultured human HSPCs.a MYCT1 expression in human sorted hematopoietic populations from the DMAP dataset29,31.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据图和表扩展数据图1培养的人HSPC中MYCT1表达的沉默。来自DMAP数据集的人类分选造血群体中的MYCT1表达29,31。

b Myct1 expression in mouse hematopoietic populations from Bloodspot31. c-g Relative expression of MYCT1 and other HSC regulatory genes in sorted FL or CB HSPCs that were isolated freshly and after culture in different conditions. c Microarray analysis of CD34+CD38−CD90+FL HSPCs co-cultured with OP9 stroma supplemented with cytokines as indicated9.

b Myct1在来自Bloodspot31的小鼠造血群体中的表达。在新鲜分离和在不同条件下培养后分离的分选的FL或CB HSPC中MYCT1和其他HSC调节基因的c-g相对表达。c如所示,与补充有细胞因子的OP9基质共培养的CD34+CD38-CD90+FL HSPC的微阵列分析9。

Mean±s.e.m. of all available microarray probes for MYCT1 (2), MECOM (5), and RUNX1 (10) from n = 3 (uncultured and week 2) or n = 2 (week 5) independent experiments. d RNAseq analysis of CD34+CD38−CD90+CD45RA-CD49f+ CB LT-HSPC cultured without stroma as indicated28. e RT-qPCR of CD34+CD38−CD90+ CB HSPCs co-cultured with E4EC13 as indicated.

来自n=3(未培养和第2周)或n=2(第5周)独立实验的MYCT1(2),MECOM(5)和RUNX1(10)的所有可用微阵列探针的平均值±标准差。d如所示,在没有基质的情况下培养的CD34+CD38-CD90+CD45RA-CD49f+CB LT-HSPC的RNAseq分析28。如所示,与E4EC13共培养的CD34+CD38-CD90+CB HSPC的RT-qPCR。

n = 2 experiments, mean and individual data points. f,g Gene expression (RNAseq) and UCSC genome browser tracks of MYCT1 and MECOM genomic regions showing RNA seq and Chip-seq of histone marks in CD34+CD38−CD90+ FL HSPCs isolated freshly or co-cultured with OP9 stroma as indicated10. Gene expression is from n = 3 (uncultured) or n = 2 (week 4) experiments, mean with individual data points.Source DataExtended Data Fig.

n=2个实验,平均值和单个数据点。f、 g基因表达(RNAseq)和UCSC基因组浏览器跟踪MYCT1和MECOM基因组区域,显示新鲜分离或与OP9基质共培养的CD34+CD38-CD90+FL HSPC中组蛋白标记的RNA-seq和Chip-seq。基因表达来自n=3(未培养)或n=2(第4周)实验,平均值为单个数据点。源数据扩展数据图。

2 Validation of MYCT1 knockdown and its effects in cord blood HSPCs.a,b Validating MYCT1 knockdown. a Relative MYCT1 expression by RT-qPCR in control or MYCT1 knockdown (KD) sorted CB HSPCs (CD34+CD38−CD90+) 72 h post-transduction. Mean±s.e.m, two-tailed paired t-test, n = 3 (KD1) or mean, n = 2 (KD2) independent experiments.

2验证MYCT1敲低及其在脐带血HSPC中的作用。a,b验证MYCT1敲低。转导后72小时,通过RT-qPCR在对照或MYCT1敲低(KD)分选的CB HSPC(CD34+CD38-CD90+)中相对MYCT1表达。平均值±s.e.m,双尾配对t检验,n=3(KD1)或平均值,n=2(KD2)独立实验。

b W.

b W。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleAguadé-Gorgorió, J., Jami-Alahmadi, Y., Calvanese, V. et al. MYCT1 controls environmental sensing in human haematopoietic stem cells.

转载和许可本文引用本文Aguadé-Gorgorió,J.,Jami Alahmadi,Y.,Calvanese,V。等人。MYCT1控制人类造血干细胞中的环境感应。

Nature (2024). https://doi.org/10.1038/s41586-024-07478-xDownload citationReceived: 30 May 2023Accepted: 26 April 2024Published: 05 June 2024DOI: https://doi.org/10.1038/s41586-024-07478-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《自然》(2024)。https://doi.org/10.1038/s41586-024-07478-xDownload引文接收日期:2023年5月30日接收日期:2024年4月26日发布日期:2024年6月5日OI:https://doi.org/10.1038/s41586-024-07478-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。