EN
登录

唐卡斯特和巴塞特劳教学医院将在放射学中部署人工智能

Doncaster and Bassetlaw Teaching Hospitals to deploy AI in radiology

UKAuthority 等信源发布 2024-06-07 14:56

可切换为仅中文


Image source: istock.com/PeoplesImages

图片来源:istock.com/PeoplesImages

Doncaster and Bassetlaw Teaching Hospitals (DBTH) Trust has entered a strategic partnership with provider of AI healthcare solutions Annalise.ai.

Doncaster和Bassetlaw教学医院(DBTH)信托基金已与AI healthcare solutions Annalise.AI的提供商建立战略合作伙伴关系。

The collaboration is focused on improving the efficiency of radiology services via the deployment of AI-enabled decision support solutions for chest X-ray and non-contrast CT brain scans.

该合作的重点是通过部署用于胸部X射线和非对比CT脑部扫描的人工智能决策支持解决方案来提高放射学服务的效率。

The solutions are aimed at assisting clinicians at DBTH by flagging, highlighting, and prioritising cases based on different urgency levels. Configurable worklist priority categories, including ‘critical,’ ‘high,’ ‘low,’ ‘unremarkable,’ or ‘no abnormality detected,’ will support the clinicians in triaging cases. .

这些解决方案旨在通过根据不同的紧急程度标记,突出显示和优先处理病例来帮助DBTH的临床医生。可配置的工作列表优先级类别,包括“关键”、“高”、“低”、“不明显”或“未检测到异常”,将支持临床医生对病例进行分类。。

Sara Elliott, head of medical imaging at DBHT, said: “The integration of Annalise.ai’s solutions is expected to streamline turnaround times for critical cases by assigning priority groups. Potentially and depending on the results of the pilot abnormal imaging will be sent to teleradiology for analysis, while normal cases will be reviewed in-house, resulting in significant cost savings.”  .

DBHT医学成像主管萨拉·埃利奥特(SaraElliott)表示:“Annalise.ai解决方案的整合有望通过分配优先组来简化危重病例的周转时间。根据试点结果,异常成像可能会被发送到远程放射学进行分析,而正常病例将在内部进行审查,从而节省大量成本。”。