商务合作
动脉网APP
可切换为仅中文
AbstractSynthetic biology applications require finely tuned gene expression, often mediated by synthetic transcription factors (sTFs) compatible with the human genome and transcriptional regulation mechanisms. While various DNA-binding and activation domains have been developed for different applications, advanced artificially controllable sTFs with improved regulatory capabilities are required for increasingly sophisticated applications.
摘要合成生物学应用需要微调基因表达,通常由与人类基因组和转录调控机制兼容的合成转录因子(STF)介导。虽然已经为不同的应用开发了各种DNA结合和激活结构域,但对于越来越复杂的应用,需要具有改进的调节能力的先进的人工可控STF。
Here, in mammalian cells and mice, we validate the transactivator function and homo-/heterodimerization activity of the plant-derived phytochrome chaperone proteins, FHY1 and FHL. Our results demonstrate that FHY1/FHL form a photosensing transcriptional regulation complex (PTRC) through interaction with the phytochrome, ΔPhyA, that can toggle between active and inactive states through exposure to red or far-red light, respectively.
在这里,在哺乳动物细胞和小鼠中,我们验证了植物来源的光敏色素伴侣蛋白FHY1和FHL的反式激活因子功能和同/异二聚化活性。我们的结果表明,FHY1/FHL通过与光敏色素ΔPhyA的相互作用形成光敏转录调控复合物(PTRC),该复合物可以分别通过暴露于红色或远红光而在活性和非活性状态之间切换。
Exploiting this capability, we develop a light-switchable platform that allows for orthogonal, modular, and tunable control of gene transcription, and incorporate it into a PTRC-controlled CRISPRa system (PTRCdcas) to modulate endogenous gene expression. We then integrate the PTRC with small molecule- or blue light-inducible regulatory modules to construct a variety of highly tunable systems that allow rapid and reversible control of transcriptional regulation in vitro and in vivo.
利用这种能力,我们开发了一种光开关平台,可以对基因转录进行正交,模块化和可调的控制,并将其整合到PTRC控制的CRISPRa系统(PTRCdcas)中以调节内源基因表达。然后,我们将PTRC与小分子或蓝光诱导的调控模块整合,以构建各种高度可调的系统,从而可以在体外和体内快速可逆地控制转录调控。
Validation and deployment of these plant-derived phytochrome chaperone proteins in a PTRC platform have produced a versatile, powerful tool for advanced research and biomedical engineering applications..
这些植物来源的光敏色素伴侣蛋白在PTRC平台上的验证和部署为先进的研究和生物医学工程应用提供了一个多功能的强大工具。。
IntroductionThe transcription of protein-coding genes is finely orchestrated through the coordinated interplay of transcription factors (TFs), which bind DNA in a sequence-specific manner, and various chromatin-associated factors that modulate chromatin structure, all in conjunction with RNA polymerase II1.
引言蛋白质编码基因的转录是通过转录因子(TFs)的协调相互作用精心策划的,转录因子以序列特异性方式结合DNA,以及调节染色质结构的各种染色质相关因子,所有这些都与RNA聚合酶II1结合。
Most TFs are comprised of a well-defined DNA-binding domain (DBD) and a separate activation domain (AD), also referred to as a transactivator2. To achieve highly sensitive and orthogonal regulation of gene expression in mammals, synthetic transcription factors (sTFs) have been designed through the modular assembly of DBDs and ADs from bacterial, fungal (especially yeast), insect, or viral sources3,4,5.
大多数TF由定义明确的DNA结合结构域(DBD)和单独的激活结构域(AD)组成,也称为反式激活因子2。为了实现哺乳动物基因表达的高度敏感和正交调控,已经通过来自细菌,真菌(特别是酵母),昆虫或病毒来源的DBD和AD的模块化组装来设计合成转录因子(STF)3,4,5。
For example, virion protein 16 (VP16), and its four-repeat variant, VP64, from herpes simplex virus type 15,6 are potent transactivators that function in a wide range of cell types, which has led to their broad adoption in sTFs. In addition, these ADs can be incorporated into chimeric fusions, such as the hybrid tripartite activator VPR4[,7 (consisting of VP64, human NF-κB trans-activating subunit p658, and Epstein-Barr Virus Rta9) and p65-HSF4[,7 (combining human NF-κB trans-activating subunit p65 with the activation domain from human heat-shock factor 110).The development of controllable sTFs that enable precise control of gene expression is currently a major objective in precision medicine research.
例如,来自单纯疱疹病毒15,6型的病毒粒子蛋白16(VP16)及其四重复变体VP64是有效的反式激活因子,其在多种细胞类型中起作用,这导致它们在STF中被广泛采用。此外,这些AD可以掺入嵌合融合体中,例如杂合三方激活剂VPR4[,7(由VP64,人NF-κB反式激活亚基p658和爱泼斯坦-巴尔病毒Rta9组成)和p65-HSF4[,7(将人NF-κB反式激活亚基p65与人热休克因子110的激活结构域结合)。开发能够精确控制基因表达的可控STF目前是精准医学研究的主要目标。
In particular, several small molecule- or blue light-regulated sTFs have been designed by combining ADs with small molecule- or blue light-responsive DBDs that bind or dissociate from promoters containing the specific cognate DNA sequence upon exposure (or withdrawal of) their respective triggers, thereby regulating the transcription of target genes11,12,13,14.
特别是,通过将AD与小分子或蓝光响应性DBD结合,设计了几种小分子或蓝光调节的STF,这些DBD在暴露(或撤回)其各自触发时与含有特定同源DNA序列的启动子结合或解离,从而调节靶基因的转录11,12,13,14。
However, .
但是。
Data availability
数据可用性
All data associated with this study are presented in the paper or the Supplementary Information. All genetic components related to this paper are available with a material transfer agreement and can be requested from H.Y. (hfye@bio.ecnu.edu.cn). Source data are provided with this paper.
与本研究相关的所有数据均在论文或补充信息中提供。与本文相关的所有遗传成分都可以通过材料转移协议获得,可以向H.Y.索取(hfye@bio.ecnu.edu.cn)。本文提供了源数据。
ReferencesCramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).ADS
参考文献Cramer,P。基因转录的组织和调控。自然573,45-54(2019)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Trojanowski, J. et al. Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol. Cell 82, 1878–1893.e1810 (2022).CAS
特洛伊诺夫斯基,J。等人。转录激活通过独立于相分离的多价相互作用而增强。分子细胞821878-1893.e1810(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brent, R. & Ptashne, M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729–736 (1985).CAS
Brent,R。&Ptashne,M。一种具有原核阻遏物DNA特异性的真核转录激活因子。细胞43729-736(1985)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).CAS
Chavez,A。等人。高效Cas9介导的转录编程。自然方法12326-328(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).ADS
Sadowski,I.,Ma,J.,Triezenberg,S。&Ptashne,M。GAL4-VP16是一种异常有效的转录激活因子。自然335563-564(1988)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Beerli, R. R., Segal, D. J., Dreier, B. & Barbas, C. F. 3rd Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl Acad. Sci. USA 95, 14628–14633 (1998).ADS .
Beerli,R.R.,Segal,D.J.,Dreier,B。&Barbas,C.F。第三次随意控制基因表达:通过使用由模块化构建块构建的多指锌指蛋白对erbB-2/HER-2启动子进行特异性调节。程序。国家科学院。科学。美国9514628-14633(1998)。广告。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).ADS
Konermann,S.等人。工程化CRISPR-Cas9复合物的基因组规模转录激活。自然517583-588(2015)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Näär, A. M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828–832 (1999).ADS
Nääär,A.M.等人。复合共激活剂ARC介导染色质定向转录激活。自然398828-832(1999)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Ragoczy, T. & Miller, G. Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J. Virol. 73, 9858–9866 (1999).CAS
Ragoczy,T。&Miller,G。爱泼斯坦-巴尔病毒RTA蛋白在激活不同类别的病毒裂解周期基因中的作用。J、 维罗尔。739858-9866(1999)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marinho, H. S., Real, C., Cyrne, L., Soares, H. & Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2, 535–562 (2014).CAS
Marinho,H.S.,Real,C.,Cyrne,L.,Soares,H。&Antunes,F。过氧化氢感应,信号传导和转录因子调控。氧化还原生物。2535-562(2014)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, L. et al. Engineering genetic devices for in vivo control of therapeutic T cell activity triggered by the dietary molecule resveratrol. Proc. Natl. Acad. Sci. USA 118, e2106612118 (2021).Yin, J. et al. A green tea-triggered genetic control system for treating diabetes in mice and monkeys.
Yang,L.等人。用于体内控制由膳食分子白藜芦醇触发的治疗性T细胞活性的工程遗传装置。程序。纳特尔。阿卡德。科学。美国118,e2106612118(2021)。Yin,J.等人。一种绿茶触发的基因控制系统,用于治疗小鼠和猴子的糖尿病。
Sci. Transl. Med. 11, eaav8826 (2019).Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).CAS .
科学。翻译。医学杂志11,eaav8826(2019)。Wang,X.,Chen,X。&Yang,Y。通过光可切换转基因系统对基因表达的时空控制。《自然方法》9266-269(2012)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Zhu, L., McNamara, H. M. & Toettcher, J. E. Light-switchable transcription factors obtained by direct screening in mammalian cells. Nat. Commun. 14, 3185 (2023).ADS
Zhu,L.,McNamara,H.M。&Toettcher,J.E。通过在哺乳动物细胞中直接筛选获得的光可切换转录因子。国家公社。143185(2023)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Das, A. T., Tenenbaum, L. & Berkhout, B. Tet-on systems for doxycycline-inducible gene expression. Curr. Gene Ther. 16, 156–167 (2016).CAS
Das,A.T.,Tenenbaum,L。&Berkhout,B。Tet-on多西环素诱导型基因表达系统。货币。基因疗法。16156-167(2016)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Spencer, D. M., Wandless, T. J., Schreiber, S. L. & Crabtree, G. R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).ADS
Spencer,D.M.,Wandless,T.J.,Schreiber,S.L。和Crabtree,G.R。用合成配体控制信号转导。科学2621019-1024(1993)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, H. S. et al. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science 378, 1227–1234 (2022).ADS
Li,H.S.等人。利用合成基因电路对治疗性人类细胞功能进行多维控制。科学3781227-1234(2022)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liang, F. S., Ho, W. Q. & Crabtree, G. R. Engineering the ABA plant stress pathway for regulation of induced proximity. Sci. Signal. 4, rs2 (2011).PubMed
Liang,F.S.,Ho,W.Q。&Crabtree,G.R。设计ABA植物应激途径以调节诱导的接近。科学。信号。4,rs2(2011)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hill, Z. B., Martinko, A. J., Nguyen, D. P. & Wells, J. A. Human antibody-based chemically induced dimerizers for cell therapeutic applications. Nat. Chem. Biol. 14, 112–117 (2018).CAS
Hill,Z.B.,Martinko,A.J.,Nguyen,D.P。&Wells,J.A。用于细胞治疗应用的基于人抗体的化学诱导二聚体。自然化学。生物学14112-117(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Foight, G. W. et al. Multi-input chemical control of protein dimerization for programming graded cellular responses. Nat. Biotechnol. 37, 1209–1216 (2019).CAS
Foight,G.W.等人。蛋白质二聚化的多输入化学控制,用于编程分级细胞反应。美国国家生物技术公司。371209-1216(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Glasgow, A. A. et al. Computational design of a modular protein sense-response system. Science 366, 1024–1028 (2019).ADS
Glasgow,A.A.等人。模块化蛋白质感觉反应系统的计算设计。科学3661024-1028(2019)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nihongaki, Y., Otabe, T. & Sato, M. Emerging approaches for spatiotemporal control of targeted genome with inducible CRISPR-Cas9. Anal. Chem. 90, 429–439 (2018).CAS
Nihongaki,Y.,Otabe,T。&Sato,M。用诱导型CRISPR-Cas9对靶基因组进行时空控制的新兴方法。肛门。化学。90429-439(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kaberniuk, A. A., Shemetov, A. A. & Verkhusha, V. V. A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat. Methods 13, 591–597 (2016).CAS
Kaberniuk,A.A.,Shemetov,A.A。和Verkhusha,V.V。一种基于细菌光敏色素的光遗传系统,可通过近红外光控制。自然方法13591-597(2016)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Müller, K. et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41, e77 (2013).ADS
Müller,K。等人。一种红/远红光响应双稳态切换开关,用于控制哺乳动物细胞中的基因表达。核酸研究41,e77(2013)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yadav, V., Mallappa, C., Gangappa, S. N., Bhatia, S. & Chattopadhyay, S. A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light–mediated photomorphogenic growth. Plant Cell 17, 1953–1966 (2005).CAS
Yadav,V.,Mallappa,C.,Gangappa,S.N.,Bhatia,S。&Chattopadhyay,S。拟南芥MYC2中的基本螺旋-环-螺旋转录因子,充当蓝光介导的光形态生长的阻遏物。植物细胞171953-1966(2005)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ni, M., Tepperman, J. M. & Quail, P. H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657–667 (1998).CAS
Ni,M.,Tepperman,J。M。&Quail,P。H。PIF3是正常光诱导信号转导所必需的光敏色素相互作用因子,是一种新型的碱性螺旋-环-螺旋蛋白。细胞95657-667(1998)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bhatt, B., García-Díaz, P. & Foight, G. W. Synthetic transcription factor engineering for cell and gene therapy. Trends Biotechnol. 42, 449–463 (2023).Hiltbrunner, A. et al. FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Plant cell Physiol.
Bhatt,B.,García-Díaz,P。&Foight,G.W。用于细胞和基因治疗的合成转录因子工程。趋势生物技术。42449-463(2023)。Hiltbrunner,A。等人FHY1和FHL共同介导光敏色素A感光体的核积累。植物细胞生理学。
47, 1023–1034 (2006).CAS .
471023-1034(2006)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Kim, J. et al. Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15, 2399–2407 (2003).CAS
Kim,J.等人。光敏色素相互作用因子3在光敏色素介导的光信号转导中的功能表征。植物细胞152399-2407(2003)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kakidani, H. & Ptashne, M. GAL4 activates gene expression in mammalian cells. Cell 52, 161–167 (1988).CAS
Kakidani,H。&Ptashne,M。GAL4激活哺乳动物细胞中的基因表达。细胞52161-167(1988)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Webster, N., Jin, J. R., Green, S., Hollis, M. & Chambon, P. The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator. Cell 52, 169–178 (1988).CAS
Webster,N.,Jin,J.R.,Green,S.,Hollis,M。&Chambon,P。酵母UASG是在GAL4反式激活剂存在下人类HeLa细胞中的转录增强子。细胞52169-178(1988)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).ADS
Gossen,M。等人。四环素在哺乳动物细胞中的转录激活。科学2681766-1769(1995)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xie, M., Ye, H., Hamri, G. C. & Fussenegger, M. Antagonistic control of a dual-input mammalian gene switch by food additives. Nucleic Acids Res. 42, e116 (2014).PubMed
Xie,M.,Ye,H.,Hamri,G.C。和Fussenegger,M。通过食品添加剂对抗性控制双输入哺乳动物基因开关。核酸研究42,e116(2014)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gitzinger, M. et al. The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res. 40, e37 (2012).CAS
食品添加剂香草酸控制哺乳动物细胞和小鼠中的转基因表达。核酸Res.40,e37(2012)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Davis, J. R., Brown, B. L., Page, R. & Sello, J. K. Study of PcaV from Streptomyces coelicolor yields new insights into ligand-responsive MarR family transcription factors. Nucleic Acids Res. 41, 3888–3900 (2013).CAS
Davis,J.R.,Brown,B.L.,Page,R。&Sello,J.K。对来自天蓝色链霉菌的PcaV的研究产生了对配体反应性MarR家族转录因子的新见解。核酸研究413888-3900(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, Q. et al. FHL is required for full phytochrome A signaling and shares overlapping functions with FHY1. Plant J. 43, 356–370 (2005).CAS
Zhou,Q。等人。完整的光敏色素A信号传导需要FHL,并且与FHY1具有重叠功能。植物J.43356–370(2005)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Barak, Y. et al. Matching fusion protein systems for affinity analysis of two interacting families of proteins: the cohesin-dockerin interaction. J. Mol. Recognit. 18, 491–501 (2005).CAS
Barak,Y.等人。匹配融合蛋白系统,用于两个相互作用的蛋白质家族的亲和力分析:粘着蛋白-dockerin相互作用。J、 分子识别。18491-501(2005)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Alerasool, N., Segal, D., Lee, H. & Taipale, M. An efficient KRAB domain for CRISPRi applications in human cells. Nat. Methods 17, 1093–1096 (2020).CAS
Alerasool,N.,Segal,D.,Lee,H。&Taipale,M。一种用于人类细胞中CRISPRi应用的有效KRAB结构域。自然方法171093-1096(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Duanfeng, J. et al. Epigenetically silenced DACT3 promotes tumor growth via affecting Wnt/beta-catenin signaling and supports chidamide plus azacitidine therapy in acute myeloid leukemia. bioRxiv. Available from: https://doi.org/10.1101/2023.01.09.523194 (2023).Chakraborty, S. et al.
Duanfeng,J。等人。表观遗传学沉默的DACT3通过影响Wnt/β-连环蛋白信号传导促进肿瘤生长,并支持chidamide加阿扎胞苷治疗急性髓细胞白血病。生物十四。可从以下地址获得:https://doi.org/10.1101/2023.01.09.523194(2023年)。Chakraborty,S.等人。
A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep. 3, 940–947 (2014).CAS .
用于重编程细胞谱系规范的基于CRISPR/Cas9的系统。干细胞代表3940-947(2014)。CAS。
Google Scholar
谷歌学者
Black, J. B. et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19, 406–414 (2016).CAS
Black,J.B.等人。基于CRISPR/Cas9的转录激活因子对内源性基因座的靶向表观遗传重塑直接将成纤维细胞转化为神经元细胞。细胞干细胞19406-414(2016)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wangensteen, K. J. et al. Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platform. Hepatology 68, 663–676 (2018).CAS
Wangensteen,K.J.等人。利用体内CRISPR激活平台进行肝脏再生和致癌作用的组合遗传学。肝病学68663-676(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liao, H.-K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e1415 (2017).CAS
Liao,H.-K.等人。通过CRISPR/Cas9介导的反式表观遗传调控进行体内靶基因激活。细胞1711495-1507.e1415(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, Y., Currie, S. L. & Rosen, M. K. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J. Biol. Chem. 292, 19110–19120 (2017).CAS
Lin,Y.,Currie,S.L。和Rosen,M.K。内在无序序列能够通过分布的酪氨酸基序调节蛋白质相分离。J、 生物。化学。29219110–19120(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schneider, N. et al. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. Sci. Adv. 7, eabd3568 (2021).ADS
Schneider,N。等人。光诱导转录因子的液-液相分离增加了哺乳动物细胞和小鼠的转录激活。科学。Adv.7,eabd3568(2021)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).PubMed
Stanton,B.Z.,Chory,E.J。和Crabtree,G.R。在生物学和医学中化学诱导的接近。科学359,eaao5902(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kennedy, M. J. et al. Rapid blue-light–mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).CAS
Kennedy,M.J.等人,《快速蓝光介导的活细胞中蛋白质相互作用的诱导》。自然方法7973-975(2010)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl Acad. Sci. 112, 112–117 (2015).ADS
Guntas,G.等人设计了一种改进的光诱导二聚体(iLID),用于控制信号蛋白的定位和活性。程序。国家科学院。科学。112112-117(2015)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).ADS
Kawano,F.,Suzuki,H.,Furuya,A。&Sato,M。设计了一对不同的光开关,用于细胞蛋白质的光遗传学控制。国家公社。66256(2015)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, K. & Cui, B. Optogenetic control of intracellular signaling pathways. Trends Biotechnol. 33, 92–100 (2015).PubMed
Zhang,K。&Cui,B。细胞内信号传导途径的光遗传学控制。趋势生物技术。33,92-100(2015)。PubMed出版社
Google Scholar
谷歌学者
Jung, H. et al. Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions. Nat. Commun. 10, 314 (2019).ADS
Jung,H。等人。Flp重组酶的无创光学激活,用于小鼠大脑深部区域的遗传操作。国家公社。10314(2019)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Praznik, A. et al. Regulation of protein secretion through chemical regulation of endoplasmic reticulum retention signal cleavage. Nat. Commun. 13, 1323 (2022).ADS
Praznik,A。等人。通过内质网保留信号切割的化学调节来调节蛋白质分泌。国家公社。131323(2022)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell 119, 679–691 (2004).CAS
Saito,H.,Kubota,M.,Roberts,R.W.,Chi,Q。&Matsunami,H。RTP家族成员诱导哺乳动物气味受体的功能表达。细胞119679-691(2004)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, Y. et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat. Biotechnol. 40, 262–272 (2022).CAS
Zhou,Y.等人。一种用于哺乳动物的小型且高度敏感的红色/远红色光遗传开关。美国国家生物技术公司。40262-272(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Weinberg, B. H. et al. High-performance chemical- and light-inducible recombinases in mammalian cells and mice. Nat. Commun. 10, 4845 (2019).ADS
Weinberg,B.H.等人。哺乳动物细胞和小鼠中的高效化学和光诱导重组酶。国家公社。104845(2019)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was financially supported by grants from the National Natural Science Foundation of China (NSFC: no. 32250010, no. 32261160373), the National Key R&D Program of China, Synthetic Biology Research (no. 2019YFA0904500), the Science and Technology Commission of Shanghai Municipality (no.
下载参考文献致谢这项工作得到了国家自然科学基金(NSFC:32250010,32261160373),国家重点研发计划,合成生物学研究(no.2019YFA0904500),上海市科学技术委员会(no.2019YFA0904500)的资助。
23HC1410100 and 22N31900300), the Fundamental Research Funds for the Central Universities, and the Open Research Project of Shanghai Key Laboratory of Diabetes Mellitus (SHKLD-KF-2201) to H.Y. This work was also partially supported by the National Natural Science Foundation of China (no. 32301217) to J.Y.
23HC1410100和22N31900300),中央大学的基础研究基金,以及上海糖尿病重点实验室(SHKLD-KF-2201)对H.Y的开放研究项目。这项工作也得到了国家自然科学基金(no.32301217)对J.Y.的部分支持。
and the Young Scientists Fund of the National Natural Science Foundation of China (no. 32300458), the Science and Technology Commission of Shanghai Municipality (no. 23YF1410700), and China Postdoctoral Science Foundation (no. 2022M721163 and no. BX20230128) to Y.Z. We also thank the support from the CAS Youth Interdisciplinary Team and the ECNU Multifunctional Platform for Innovation (011) for supporting the mice experiments and the Instruments Sharing Platform of the School of Life Sciences, ECNU.Author informationAuthor notesThese authors contributed equally: Deqiang Kong, Yang Zhou, Yu Wei.Authors and AffiliationsShanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, ChinaDeqiang Kong, Yang Zhou, Yu Wei, Xinyi Wang, Qin Huang, Xianyun Gao, Hang Wan, Mengyao Liu, Liping Kang, Guiling Yu, Jianli Yin, Ningzi Guan & Haifeng YeWuhu Hospital, Health Science Center, East China Normal University, Mid.
以及国家自然科学基金青年科学家基金(编号32300458),上海市科学技术委员会(编号23YF1410700)和中国博士后科学基金(编号2022M721163和编号BX20230128)对Y.Z的支持。我们还感谢中国科学院青年跨学科团队和华东师范大学多功能创新平台(011)对华东师范大学生命科学学院小鼠实验和仪器共享平台的支持。作者信息作者注意到这些作者做出了同样的贡献:孔德强,杨舟,余伟。作者和附属机构上海基因组编辑与细胞治疗前沿科学中心,生物医学合成生物学研究中心,华东师范大学生物医学科学研究所和生命科学学院上海调控生物学重点实验室,东川路500号,上海200241,中国孔德强,杨舟,于伟,王欣怡,秦煌,高先云,杭万,刘梦瑶,康立平,余桂玲,尹建利,宁梓关和海丰叶芜湖医院,华东师范大学健康科学中心,中部。
PubMed Google ScholarYang ZhouView author publicationsYou can also search for this author in
PubMed Google ScholarYang ZhouView作者出版物您也可以在
PubMed Google ScholarYu WeiView author publicationsYou can also search for this author in
PubMed Google ScholarYu WeiView作者出版物您也可以在
PubMed Google ScholarXinyi WangView author publicationsYou can also search for this author in
PubMed Google ScholarXinyi WangView作者出版物您也可以在
PubMed Google ScholarQin HuangView author publicationsYou can also search for this author in
PubMed Google ScholarQin HuangView作者出版物您也可以在
PubMed Google ScholarXianyun GaoView author publicationsYou can also search for this author in
PubMed Google ScholarXianyun GaoView作者出版物您也可以在
PubMed Google ScholarHang WanView author publicationsYou can also search for this author in
PubMed Google ScholarHang WanView作者出版物您也可以在
PubMed Google ScholarMengyao LiuView author publicationsYou can also search for this author in
PubMed Google Scholarmangyao LiuView作者出版物您也可以在
PubMed Google ScholarLiping KangView author publicationsYou can also search for this author in
PubMed Google ScholarLiping KangView作者出版物您也可以在
PubMed Google ScholarGuiling YuView author publicationsYou can also search for this author in
PubMed Google ScholarGuiling YuView作者出版物您也可以在
PubMed Google ScholarJianli YinView author publicationsYou can also search for this author in
PubMed谷歌学者Jianli YinView作者出版物您也可以在
PubMed Google ScholarNingzi GuanView author publicationsYou can also search for this author in
PubMed Google ScholarNingzi GuanView作者出版物您也可以在
PubMed Google ScholarHaifeng YeView author publicationsYou can also search for this author in
PubMed谷歌学者Haifeng YeView作者出版物您也可以在
PubMed Google ScholarContributionsH.Y. conceived the project. H.Y., G.N., D.K., Y.Z., and Y.W. designed the experiments, analyzed the results, and wrote the manuscript. D.K., Y.Z., Y.W., X.W., Q.H., X.G., H.W., M.L., L.K., G.Y., and L.J. performed the experimental work. D.K., Y.Z., Y.W., and G.N.
PubMed谷歌学术贡献。Y、 构思了这个项目。H、 Y.,G.N.,D.K.,Y.Z。和Y.W.设计了实验,分析了结果,并撰写了手稿。D、 K.,Y.Z.,Y.W.,X.W.,Q.H.,X.G.,H.W.,M.L.,L.K.,G.Y。和L.J.进行了实验工作。D.K.,Y.Z.,Y.W。和G.N。
designed, analyzed, and interpreted the experiments. All authors edited and approved the manuscript.Corresponding authorsCorrespondence to.
设计,分析和解释实验。所有作者都编辑并批准了手稿。通讯作者通讯。
Ningzi Guan or Haifeng Ye.Ethics declarations
宁子关或海丰业。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummarySupplementary Data 1Supplementary Data 2Supplementary Data 3Description of Additional Supplementary FilesPeer Review FileSource dataSource DataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息报告摘要补充数据1补充数据2补充数据3其他补充文件的描述同行评审文件源数据源数据权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleKong, D., Zhou, Y., Wei, Y. et al. Exploring plant-derived phytochrome chaperone proteins for light-switchable transcriptional regulation in mammals.
转载和许可本文引用本文Kong,D.,Zhou,Y.,Wei,Y。等人探索植物来源的光敏色素伴侣蛋白在哺乳动物中的光转换转录调控。
Nat Commun 15, 4894 (2024). https://doi.org/10.1038/s41467-024-49254-5Download citationReceived: 04 January 2024Accepted: 30 May 2024Published: 08 June 2024DOI: https://doi.org/10.1038/s41467-024-49254-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》154894(2024)。https://doi.org/10.1038/s41467-024-49254-5Download引文收到日期:2024年1月4日接受日期:2024年5月30日发布日期:2024年6月8日OI:https://doi.org/10.1038/s41467-024-49254-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。