商务合作
动脉网APP
可切换为仅中文
AbstractThe tricarboxylic acid cycle, nutrient oxidation, histone acetylation and synthesis of lipids, glycans and haem all require the cofactor coenzyme A (CoA). Although the sources and regulation of the acyl groups carried by CoA for these processes are heavily studied, a key underlying question is less often considered: how is production of CoA itself controlled? Here, we discuss the many cellular roles of CoA and the regulatory mechanisms that govern its biosynthesis from cysteine, ATP and the essential nutrient pantothenate (vitamin B5), or from salvaged precursors in mammals.
摘要三羧酸循环,营养氧化,组蛋白乙酰化以及脂质,聚糖和血红素的合成都需要辅因子辅酶A(CoA)。尽管对CoA在这些过程中携带的酰基的来源和调节进行了大量研究,但很少考虑一个关键的潜在问题:如何控制CoA本身的生产?在这里,我们讨论了辅酶A的许多细胞作用以及控制其从半胱氨酸,ATP和必需营养素泛酸盐(维生素B5)或哺乳动物中回收的前体生物合成的调节机制。
Metabolite feedback and signalling mechanisms involving acetyl-CoA, other acyl-CoAs, acyl-carnitines, MYC, p53, PPARα, PINK1 and insulin- and growth factor-stimulated PI3K–AKT signalling regulate the vitamin B5 transporter SLC5A6/SMVT and CoA biosynthesis enzymes PANK1, PANK2, PANK3, PANK4 and COASY.
涉及乙酰辅酶A,其他酰基辅酶A,酰基肉碱,MYC,p53,PPARα,PINK1以及胰岛素和生长因子刺激的PI3K-AKT信号传导的代谢物反馈和信号传导机制调节维生素B5转运蛋白SLC5A6/SMVT和CoA生物合成酶PANK1,PANK2,PANK3,PANK4和COASY。
We also discuss methods for measuring CoA-related metabolites, compounds that target CoA biosynthesis and diseases caused by mutations in pathway enzymes including types of cataracts, cardiomyopathy and neurodegeneration (PKAN and COPAN)..
我们还讨论了测量CoA相关代谢物,靶向CoA生物合成的化合物以及由途径酶突变引起的疾病(包括白内障,心肌病和神经退行性疾病(PKAN和COPAN))的方法。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 12 digital issues and online access to articles111,21 € per yearonly 9,27 € per issueLearn moreBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54本其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天浏览所有时间获取更多订阅本期刊每年接收12期数字期刊和在线访问文章111,21欧元每期仅9,27欧元学习更多购买本文在Springer Links上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐期间计算的当地税费。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Functions of CoA.Fig. 2: The de novo CoA biosynthesis pathway.Fig. 3: CoA degradation and salvage pathways.Fig. 4: Metabolite-based regulation of CoA biosynthesis.Fig. 5: Signalling-mediated regulation of CoA biosynthesis.
图1:CoA的功能。图2:从头CoA生物合成途径。图3:CoA降解和挽救途径。图4:CoA生物合成的基于代谢物的调节。图5:信号传导介导的CoA生物合成调节。
ReferencesRobishaw, J. D. & Neely, J. R. Coenzyme A metabolism. Am. J. Physiol. 248, E1–E9 (1985).CAS
参考文献Robishaw,J.D。&Neely,J.R。辅酶A代谢。Am.J.Physiol。248,E1-E9(1985)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Trefely, S. et al. Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. Mol. Cell 82, 447–462 (2022).Article
Trefely,S。等人。定量亚细胞酰基辅酶A分析揭示了不同的核代谢和异亮氨酸依赖性组蛋白丙酰化。分子细胞82447-462(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pietrocola, F., Galluzzi, L., Pedro, J. M. B. -S., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).Article
Pietrocola,F.,Galluzzi,L.,Pedro,J.M.B.-S.,Madeo,F。&Kroemer,G。乙酰辅酶A:中枢代谢物和第二信使。细胞代谢。21805-821(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Trefely, S., Lovell, C. D., Snyder, N. W. & Wellen, K. E. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol. Metab. https://doi.org/10.1016/j.molmet.2020.01.005 (2020).Guertin, D. A. & Wellen, K. E. Acetyl-CoA metabolism in cancer. Nat. Rev. Cancer 23, 156–172 (2023).Article .
Trefely,S.,Lovell,C.D.,Snyder,N.W。和Wellen,K.E。区室化酰基辅酶A代谢和染色质调节中的作用。分子代谢。https://doi.org/10.1016/j.molmet.2020.01.005(2020年)。Guertin,D.A。和Wellen,K.E。乙酰辅酶A在癌症中的代谢。《国家癌症评论》23156-172(2023)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wanders, R. J. A., Baes, M., Ribeiro, D., Ferdinandusse, S. & Waterham, H. R. The physiological functions of human peroxisomes. Physiol. Rev. 103, 957–1024 (2023).Article
Wanders,R.J.A.,Baes,M.,Ribeiro,D.,Ferdinandusse,S。&Waterham,H.R。人类过氧化物酶体的生理功能。生理学。版本103957–1024(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Paiva, P. et al. Animal fatty acid synthase: a chemical nanofactory. Chem. Rev. 121, 9502–9553 (2021).Article
Paiva,P。等。动物脂肪酸合酶:一种化学纳米工厂。化学。修订版1219502–9553(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nowinski, S. M., Vranken, J. G. V., Dove, K. K. & Rutter, J. Impact of mitochondrial fatty acid synthesis on mitochondrial biogenesis. Curr. Biol. 28, R1212–R1219 (2018).Article
Nowinski,S.M.,Vranken,J.G.V.,Dove,K.K。&Rutter,J。线粒体脂肪酸合成对线粒体生物发生的影响。货币。生物学28,R1212-R1219(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Juarez, D. & Fruman, D. A. Targeting the mevalonate pathway in cancer. Trends Cancer 7, 525–540 (2021).Article
Juarez,D。和Fruman,D。A。针对癌症中的甲羟戊酸途径。趋势癌症7525-540(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Paneque, A., Fortus, H., Zheng, J., Werlen, G. & Jacinto, E. The hexosamine biosynthesis pathway: regulation and function. Genes 14, 933 (2023).Article
Paneque,A.,Fortus,H.,Zheng,J.,Werlen,G。&Jacinto,E。己糖胺生物合成途径:调节和功能。基因14933(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yien, Y. Y. & Perfetto, M. Regulation of heme synthesis by mitochondrial homeostasis proteins. Front. Cell Dev. Biol. 10, 895521 (2022).Article
Yien,Y。Y。和Perfetto,M。线粒体稳态蛋白对血红素合成的调节。正面。细胞开发生物学。10895521(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Z. A. & Cole, P. A. The chemical biology of reversible lysine post-translational modifications. Cell Chem. Biol. 27, 953–969 (2020).Article
Wang,Z.A。和Cole,P.A。可逆赖氨酸翻译后修饰的化学生物学。细胞化学。生物学27953-969(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Resh, M. D. Fatty acylation of proteins: the long and the short of it. Prog. Lipid Res. 63, 120–131 (2016).Article
Resh,M.D。蛋白质的脂肪酰化:它的长短。Prog。脂质研究63120-131(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gamage, S. T., Manage, S. A. H., Chu, T. T. & Meier, J. L. Cytidine acetylation across the tree of life. Acc. Chem. Res. 57, 338–348 (2024).Article
Gamage,S.T.,Manage,S.A.H.,Chu,T.T。&Meier,J.L。生命树上的胞苷乙酰化。根据化学。第57338-348号决议(2024年)。文章
Google Scholar
谷歌学者
Beld, J., Sonnenschein, E. C., Vickery, C. R., Noel, J. P. & Burkart, M. D. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat. Prod. Rep. 31, 61–108 (2014).Article
Beld,J.,Sonnenschein,E.C.,Vickery,C.R.,Noel,J.P。&Burkart,M.D。磷酸泛烯基转移酶:对生命至关重要的翻译后修饰的催化作用。《国家生产报告》31,61–108(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, N., Liu, Y., Li, Y. & Wang, C. Chemical proteomic profiling of protein 4′‐phosphopantetheinylation in mammalian cells. Angew. Chem. Int. Ed. Engl. 132, 16203–16209 (2020).Article
Chen,N.,Liu,Y.,Li,Y。&Wang,C。哺乳动物细胞中蛋白质4'-磷酸泛素化的化学蛋白质组学分析。安吉。化学。国际英语。13216203-16209(2020)。文章
Google Scholar
谷歌学者
Tsybovsky, Y., Sereda, V., Golczak, M., Krupenko, N. I. & Krupenko, S. A. Structure of putative tumor suppressor ALDH1L1. Commun. Biol. 5, 3 (2022).Article
Tsybovsky,Y.,Sereda,V.,Golczak,M.,Krupenko,N.I。&Krupenko,S.A。推定的肿瘤抑制因子ALDH1L1的结构。Commun公司。生物学5,3(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Drozak, J., Veiga‐da‐Cunha, M., Kadziolka, B. & Schaftingen, E. V. Vertebrate Acyl CoA synthetase family member 4 (ACSF4‐U26) is a β‐alanine‐activating enzyme homologous to bacterial non‐ribosomal peptide synthetase. FEBS J. 281, 1585–1597 (2014).Article
Drozak,J.,Veiga-da-Cunha,M.,Kadziolka,B。&Schaftingen,E.V。脊椎动物酰基辅酶a合成酶家族成员4(ACSF4-U26)是一种与细菌非核糖体肽合成酶同源的β-丙氨酸激活酶。FEBS J.2811585–1597(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tossounian, M. -A. et al. Profiling the site of protein CoAlation and coenzyme A stabilization interactions. Antioxidants 11, 1362 (2022).Article
Tossounian,M.-A.等人。分析蛋白质聚结和辅酶A稳定相互作用的位点。抗氧化剂111362(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tsuchiya, Y. et al. Covalent Aurora A regulation by the metabolic integrator coenzyme A. Redox Biology https://doi.org/10.1016/j.redox.2019.101318 (2019).Lim, D. C. et al. Redox priming promotes Aurora A activation during mitosis. Sci. Signal. 13, eabb6707 (2020).Article
Tsuchiya,Y.等人。代谢整合子辅酶A对共价极光A的调节。氧化还原生物学https://doi.org/10.1016/j.redox.2019.101318(2019年)。Lim,D.C.等人。氧化还原引发促进有丝分裂期间Aurora A的激活。科学。信号。13,eabb6707(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baković, J. et al. A key metabolic integrator, coenzyme A, modulates the activity of peroxiredoxin 5 via covalent modification. Mol. Cell. Biochem. 461, 91–102 (2019).Article
Baković,J。等人。关键的代谢整合子辅酶A通过共价修饰调节过氧化物酶5的活性。摩尔电池。生物化学。461,91-102(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, B. Y. K. et al. Regulation of metastasis suppressor NME1 by a key metabolic cofactor coenzyme A. Redox Biol. 44, 101978 (2021).Article
Yu,B.Y.K.等人。关键代谢辅因子辅酶a.氧化还原生物醇对转移抑制因子NME1的调节。44101978(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gout, I. Coenzyme A, protein CoAlation and redox regulation in mammalian cells. Biochem Soc. Trans. 46, 721–728 (2018).Article
痛风,I。辅酶A,哺乳动物细胞中的蛋白质结合和氧化还原调节。生物化学学会。46721-728(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gowda, G. A. N., Abell, L. & Tian, R. Extending the scope of 1H NMR spectroscopy for the analysis of cellular coenzyme A and acetyl coenzyme A. Anal. Chem. 91, 2464–2471 (2019).Article
Gowda,G.A.N.,Abell,L。&Tian,R。扩展了1H NMR光谱分析细胞辅酶A和乙酰辅酶A的范围。肛门。化学。912464-2471(2019)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Atomi, H., Tomita, H., Ishibashi, T., Yokooji, Y. & Imanaka, T. CoA biosynthesis in archaea. Biochem Soc. Trans. 41, 427–431 (2013).Article
Atomi,H.,Tomita,H.,Ishibashi,T.,Yokooji,Y。&Imanaka,T。古细菌中CoA的生物合成。生物化学学会。41427-431(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Leonardi, R. & Jackowski, S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus https://doi.org/10.1128/ecosalplus.3.6.3.4 (2007).Stein, E. D. & Diamond, J. M. Do dietary levels of pantothenic acid regulate its intestinal uptake in mice? J. Nutr. 119, 1973–1983 (1989).Article .
Leonardi,R。和Jackowski,S。泛酸和辅酶A的生物合成。EcoSal Plushttps://doi.org/10.1128/ecosalplus.3.6.3.4(2007年)。Stein,E.D.&Diamond,J.M。饮食中泛酸水平是否调节小鼠的肠道摄取?J、 营养。1191973-1983(1989)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Naquet, P., Kerr, E. W., Vickers, S. D. & Leonardi, R. Regulation of coenzyme A levels by degradation: the ‘ins and outs.’ Prog. Lipid Res. https://doi.org/10.1016/j.plipres.2020.101028. (2020).Prasad, P. D. et al. Molecular and functional characterization of the intestinal Na+-dependent multivitamin transporter.
Naquet,P.,Kerr,E.W.,Vickers,S.D。和Leonardi,R。降解对辅酶A水平的调节:“内部和外部”程序。脂质研究。https://doi.org/10.1016/j.plipres.2020.101028.(2020年)。Prasad,P.D.等人。肠道Na+依赖性多种维生素转运蛋白的分子和功能表征。
Arch. Biochem. Biophys. 366, 95–106 (1999).Article .
拱门。生物化学。生物物理。366,95-106(1999)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Quick, M. & Shi, L. The sodium/multivitamin transporter: a multipotent system with therapeutic implications. Vitam. Horm. 98, 63–100 (2015).Article
Quick,M。&Shi,L。钠/多种维生素转运蛋白:具有治疗意义的多能系统。维塔姆。霍姆。98,63-100(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sabui, S. et al. Biotin and pantothenic acid oversupplementation to conditional SLC5A6 KO mice prevents the development of intestinal mucosal abnormalities and growth defects. Am. J. Physiol. 315, C73–C79 (2018).Article
Sabui,S。等人。对条件性SLC5A6 KO小鼠过量补充生物素和泛酸可防止肠粘膜异常和生长缺陷的发展。Am.J.Physiol。315,C73–C79(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Pourcel, L. et al. Transient vitamin B5 starving improves mammalian cell homeostasis and protein production. Metab. Eng. 60, 77–86 (2020).Article
Pourcel,L。等人。瞬时维生素B5饥饿可改善哺乳动物细胞稳态和蛋白质产生。代谢。工程60,77–86(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272 (2017).Article
Cantor,J.R.等人。生理介质重新连接细胞代谢,并揭示尿酸是UMP合酶的内源性抑制剂。细胞169258-272(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Reibel, D. K., Wyse, B. W., Berkich, D. A., Palko, W. M. & Neely, J. R. Effects of diabetes and fasting on pantothenic acid metabolism in rats. Am. J. Physiol. 240, E597–E601 (1981).CAS
Reibel,D.K.,Wyse,B.W.,Berkich,D.A.,Palko,W.M。&Neely,J.R。糖尿病和禁食对大鼠泛酸代谢的影响。Am.J.Physiol。240,E597–E601(1981)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Reibel, D. K., Wyse, B. W., Berkich, D. A. & Neely, J. R. Coenzyme A metabolism in pantothenic acid-deficient rats. J. Nutr. 112, 1144–1150 (1982).Article
Reibel,D.K.,Wyse,B.W.,Berkich,D.A。&Neely,J.R。泛酸缺乏大鼠的辅酶A代谢。J、 营养。1121144-1150(1982)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jackowski, S. & Rock, C. O. Regulation of coenzyme A biosynthesis. J. Bacteriol. 148, 926–932 (1981).Article
Jackowski,S。&Rock,C.O。辅酶A生物合成的调节。J、 细菌。148926-932(1981)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rock, C. O., Calder, R. B., Karim, M. A. & Jackowski, S. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J. Biol. Chem. 275, 1377–1383 (2000).Article
Rock,C.O.,Calder,R.B.,Karim,M.A。&Jackowski,S。泛酸激酶调节辅酶A.J.Biol的细胞内浓度。化学。2751377-1383(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yao, J., Subramanian, C., Rock, C. O. & Jackowski, S. Human pantothenate kinase 4 is a pseudo‐pantothenate kinase. Protein Sci. 28, 1031–1047 (2019).Article
Yao,J.,Subramanian,C.,Rock,C.O。&Jackowski,S。人泛酸激酶4是一种假泛酸激酶。蛋白质科学。281031-1047(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Y. -M. et al. Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis. Chem. Biol. 14, 291–302 (2007).Article
张,Y.-M.等人。泛酸激酶的化学敲除揭示了负责肝辅酶A稳态的代谢和遗传程序。化学。生物学14291-302(2007)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, B. et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat. Genet. 28, 345–349 (2001).Article
Zhou,B。等人。一种新的泛酸激酶基因(PANK2)在Hallervorden-Spatz综合征中存在缺陷。纳特·吉内特。28345-349(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rock, C. O., Karim, M. A., Zhang, Y. -M. & Jackowski, S. The murine pantothenate kinase (Pank1) gene encodes two differentially regulated pantothenate kinase isozymes. Gene 291, 35–43 (2002).Article
Rock,C.O.,Karim,M.A.,Zhang,Y.-M。和Jackowski,S。鼠泛酸激酶(Pank1)基因编码两种差异调节的泛酸激酶同工酶。基因291,35-43(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y. -M., Rock, C. O. & Jackowski, S. Feedback regulation of murine pantothenate kinase 3 by coenzyme A and coenzyme A thioesters. J. Biol. Chem. 280, 32594–32601 (2005).Article
Zhang,Y.-M.,Rock,C.O。&Jackowski,S。辅酶A和辅酶A硫酯对鼠泛酸激酶3的反馈调节。J、 生物。化学。28032594–32601(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hong, B. S. et al. Crystal structures of human pantothenate kinases. Insights into allosteric regulation and mutations linked to a neurodegeneration disorder. J. Biol. Chem. 282, 27984–27993 (2007).Article
Hong,B.S.等人。人泛酸激酶的晶体结构。对变构调节和与神经退行性疾病相关的突变的见解。J、 生物。化学。28227984–27993(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kotzbauer, P. T., Truax, A. C., Trojanowski, J. Q. & Lee, V. M. -Y. Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2. J. Neurosci. 25, 689–698 (2005).Article .
Kotzbauer,P.T.,Truax,A.C.,Trojanowski,J.Q.&Lee,V.M.-Y.改变了神经退行性疾病中神经元线粒体辅酶A的合成,脑铁的积累是由突变泛酸激酶2的异常加工,稳定性和催化活性引起的。J、 神经科学。25689-698(2005)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Daugherty, M. et al. Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J. Biol. Chem. 277, 21431–21439 (2002).Article
Daugherty,M.等人。通过比较基因组学完全重建人辅酶A生物合成途径。J、 生物。化学。27721431-21439(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mostert, K. J. et al. The coenzyme A level modulator hopantenate (HoPan) inhibits phosphopantotenoylcysteine synthetase activity. ACS Chem. Biol. 16, 2401–2414 (2021).Article
Mostert,K.J.等人。辅酶A水平调节剂Hopanentate(HoPan)抑制磷酸泛素酰半胱氨酸合成酶活性。ACS化学。生物学162401-2414(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Manoj, N., Strauss, E., Begley, T. P. & Ealick, S. E. Structure of human phosphopantothenoylcysteine synthetase at 2.3 Å resolution. Structure 11, 927–936 (2003).Article
Manoj,N.,Strauss,E.,Begley,T.P.&Ealick,S.E。人类磷酸泛素半胱氨酸合成酶的结构,分辨率为2.3Å。结构11927-936(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Iuso, A. et al. Mutations in PPCS, encoding phosphopantothenoylcysteine synthetase, cause autosomal-recessive dilated cardiomyopathy. Am. J. Hum. Genet. 102, 1018–1030 (2018).Article
Iuso,A。等人,编码磷酸泛素半胱氨酸合成酶的PPC突变会导致常染色体隐性扩张型心肌病。上午J。嗯。Genet。1021018-1030(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Strauss, E., Zhai, H., Brand, L. A., McLafferty, F. W. & Begley, T. P. Mechanistic studies on phosphopantothenoylcysteine decarboxylase: Trapping of an enethiolate intermediate with a mechanism-based inactivating agent. Biochemistry 43, 15520–15533 (2004).Article
Strauss,E.,Zhai,H.,Brand,L.A.,McLafferty,F.W。&Begley,T.P。磷酸泛素半胱氨酸脱羧酶的机理研究:用基于机理的灭活剂捕获烯硫醇盐中间体。生物化学4315520-15533(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Manoj, N. & Ealick, S. E. Unusual space-group pseudosymmetry in crystals of human phosphopantothenoylcysteine decarboxylase. Acta Crystallogr. D Biol. Crystallogr. https://doi.org/10.1107/s0907444903016214 (2023).Bravo‐Alonso, I. et al. Pathogenic variants of the coenzyme A biosynthesis‐associated enzyme phosphopantothenoylcysteine decarboxylase cause autosomal‐recessive dilated cardiomyopathy.
Manoj,N。&Ealick,S.E。人类磷酸泛素半胱氨酸脱羧酶晶体中不寻常的空间群假对称性。晶体学报。D生物晶体学。https://doi.org/10.1107/s0907444903016214(2023年)。Bravo-Alonso,I。等人。辅酶A生物合成相关酶磷酸泛素半胱氨酸脱羧酶的致病变体引起常染色体隐性扩张型心肌病。
J. Inherit. Metab. Dis. 46, 261–272 (2023).Article .
J、 继承.Metab。Dis。46261-272(2023)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Aghajanian, S. & Worrall, D. M. Identification and characterization of the gene encoding the human phosphopantetheine adenylyltransferase and dephospho-CoA kinase bifunctional enzyme (CoA synthase). Biochem. J. 365, 13–18 (2002).Article
Aghajanian,S.&Worrall,D.M.鉴定和表征编码人磷酸泛素腺苷酸转移酶和去磷酸辅酶A激酶双功能酶(CoA合酶)的基因。生物化学。J、 365,13-18(2002)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dusi, S. et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 94, 11–22 (2014).Article
Dusi,S.等人的外显子组序列揭示了CoA合酶突变是导致脑铁蓄积的神经退行性变的原因。上午J。嗯。Genet。94,11-22(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xue, L. et al. Probing coenzyme A homeostasis with semisynthetic biosensors. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01172-7 (2022).Dibble, C. C. et al. PI3K drives the de novo synthesis of coenzyme A from vitamin B5. Nature https://doi.org/10.1038/s41586-022-04984-8 (2022).Huang, L.
Xue,L.等人。用半合成生物传感器探测辅酶A稳态。自然化学。生物。https://doi.org/10.1038/s41589-022-01172-7(2022年)。Dibble,C.C。等人,PI3K驱动维生素B5从头合成辅酶A。自然https://doi.org/10.1038/s41586-022-04984-8(2022年)。黄,L。
et al. A family of metal-dependent phosphatases implicated in metabolite damage-control. Nat. Chem. Biol. 12, 621–627 (2016).Article .
等。涉及代谢物损伤控制的金属依赖性磷酸酶家族。自然化学。生物学12621-627(2016)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leonardi, R. et al. Modulation of pantothenate kinase 3 activity by small molecules that interact with the substrate/allosteric regulatory domain. Chem. Biol. 17, 892–902 (2010).Article
Leonardi,R.等人。通过与底物/变构调节域相互作用的小分子调节泛酸激酶3的活性。化学。生物学17892-902(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, X. et al. Pantothenate kinase 4 governs lens epithelial fibrosis by negatively regulating pyruvate kinase M2-related glycolysis. Aging Dis. 14, 1834–1852 (2023).Article
Li,X。等人泛酸激酶4通过负调节丙酮酸激酶M2相关的糖酵解来控制晶状体上皮纤维化。老化Dis。141834-1852(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leonardi, R., Rehg, J. E., Rock, C. O. & Jackowski, S. Pantothenate kinase 1 is required to support the metabolic transition from the fed to the fasted state. PLoS ONE 5, e11107 (2010).Article
Leonardi,R.,Rehg,J.E.,Rock,C.O。&Jackowski,S。泛酸激酶1需要支持从进食状态到禁食状态的代谢转变。PLoS ONE 5,e11107(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, M. et al. A novel mutation of PANK4 causes autosomal dominant congenital posterior cataract. Hum. Mutat. 40, 380–391 (2019).Article
Sun,M。等人。PANK4的一种新突变导致常染色体显性先天性后发性白内障。嗯。变异。40380-391(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kuo, Y. -M. et al. Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum. Mol. Genet. 14, 49–57 (2005).Article
Kuo,Y.-M.等人。小鼠泛酸激酶2(Pank2)缺乏会导致视网膜变性和无精子症。嗯,摩尔·吉内特。14,49-57(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Garcia, M., Leonardi, R., Zhang, Y. -M., Rehg, J. E. & Jackowski, S. Germline deletion of pantothenate kinases 1 and 2 reveals the key roles for CoA in postnatal metabolism. PLoS ONE 7, e40871 (2012).Article
Garcia,M.,Leonardi,R.,Zhang,Y.-M.,Rehg,J.E。&Jackowski,S。泛酸激酶1和2的种系缺失揭示了CoA在产后代谢中的关键作用。PLoS ONE 7,e40871(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jeong, S. Y. et al. 4′‐Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN. EMBO Mol. Med. 11, e10489 (2019).Article
Jeong,S.Y.等人的4'-Phosphopantetheine纠正了PKAN哺乳动物模型中的CoA,铁和多巴胺代谢缺陷。EMBO Mol.Med.11,e10489(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
DiMeo, I. et al. Neuronal Ablation of CoA synthase causes motor deficits, iron dyshomeostasis, and mitochondrial dysfunctions in a CoPAN mouse model. Int. J. Mol. Sci. 21, 9707 (2020).Article
DiMeo,I。等人。CoA合酶的神经元消融导致CoPAN小鼠模型中的运动缺陷,铁稳态和线粒体功能障碍。Int.J.Mol.Sci。219707(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Mignani, L., Gnutti, B., Zizioli, D. & Finazzi, D. Coenzyme a biochemistry: from neurodevelopment to neurodegeneration. Brain Sci. 11, 1031 (2021).Article
Mignani,L.,Gnutti,B.,Zizioli,D。和Finazzi,D。辅酶a生物化学:从神经发育到神经变性。脑科学。11031(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hayflick, S. J., Jeong, S. Y. & Sibon, O. C. M. PKAN pathogenesis and treatment. Mol. Genet. Metab. 137, 283–291 (2022).Article
Hayflick,S.J.,Jeong,S.Y。和Sibon,O.C.M。PKAN发病机制和治疗。分子遗传学。代谢。137283-291(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Munshi, M. I., Yao, S. J. & Mamoun, C. B. Redesigning therapies for pantothenate kinase-associated neurodegeneration. J. Biol. Chem. https://doi.org/10.1016/j.jbc.2022.101577 (2022).Vickers, S. D. et al. NUDT7 regulates total hepatic CoA levels and the composition of the intestinal bile acid pool in male mice fed a Western diet.
Munshi,M.I.,Yao,S.J。和Mamoun,C.B。重新设计泛酸激酶相关神经变性的疗法。J、 生物。化学。https://doi.org/10.1016/j.jbc.2022.101577(2022年)。Vickers,S.D.等人NUDT7调节喂食西方饮食的雄性小鼠的总肝CoA水平和肠胆汁酸池的组成。
J. Biol. Chem. 299, 102745 (2023).Article .
J.生物学。化学。299, 102745 (2023).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shumar, S. A. et al. Nudt19 is a renal CoA diphosphohydrolase with biochemical and regulatory properties that are distinct from the hepatic Nudt7 isoform. J. Biol. Chem. 293, 4134–4148 (2018).Article
Shumar,S.A。等人Nudt19是一种肾CoA二磷酸水解酶,具有不同于肝Nudt7亚型的生化和调节特性。J、 生物。化学。2934134-4148(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kerr, E. W., Shumar, S. A. & Leonardi, R. Nudt8 is a novel CoA diphosphohydrolase that resides in the mitochondria. FEBS Lett. 593, 1133–1143 (2019).Article
Kerr,E.W.,Shumar,S.A。&Leonardi,R.Nudt8是一种新型的CoA二磷酸水解酶,存在于线粒体中。5931133-1143(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gasmi, L. & McLennan, A. G. The mouse Nudt7 gene encodes a peroxisomal nudix hydrolase specific for coenzyme A and its derivatives. Biochem. J. 357, 33–38 (2001).Article
Gasmi,L。&McLennan,A.G。小鼠Nudt7基因编码对辅酶A及其衍生物具有特异性的过氧化物酶体nudix水解酶。生物化学。J、 357,33-38(2001)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bond, L. M. et al. Fitm2 is required for ER homeostasis and normal function of murine liver. J. Biol. Chem. 299, 103022 (2023).Article
Bond,L.M.等人,Fitm2是内质网稳态和小鼠肝脏正常功能所必需的。J、 生物。化学。299103022(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hunt, M. C., Tillander, V. & Alexson, S. E. H. Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes. Biochimie 98, 45–55 (2014).Article
Hunt,M.C.,Tillander,V。和Alexson,S.E.H。过氧化物酶体脂质代谢的调节:酰基辅酶A和辅酶A代谢酶的作用。生物化学98,45-55(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Srinivasan, B. et al. Extracellular 4′-phosphopantetheine is a source for intracellular coenzyme A synthesis. Nat. Chem. Biol. 11, 784–792 (2015).Article
Srinivasan,B。等人。细胞外4'-磷酸泛素是细胞内辅酶a合成的来源。自然化学。生物学杂志11784-792(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bartucci, R., Salvati, A., Olinga, P. & Boersma, Y. L. Vanin 1: its physiological function and role in diseases. Int. J. Mol. Sci. 20, 3891 (2019).Article
Bartucci,R.,Salvati,A.,Olinga,P。&Boersma,Y.L。Vanin 1:其生理功能和在疾病中的作用。Int.J.Mol.Sci。203891(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Giessner, C. et al. Vnn1 pantetheinase limits the Warburg effect and sarcoma growth by rescuing mitochondrial activity. Life Sci. Alliance 1, e201800073 (2018).Article
Giessner,C。等人,Vnn1泛素酶通过挽救线粒体活性来限制Warburg效应和肉瘤生长。生命科学。联盟1,e201800073(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Millet, V. et al. Harnessing the Vnn1 pantetheinase pathway boosts short chain fatty acids production and mucosal protection in colitis. Gut 72, 1115–1128 (2023).Article
Millet,V。等人利用Vnn1泛酸酶途径促进结肠炎中短链脂肪酸的产生和粘膜保护。肠道721115-1128(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shurubor, Y. I. et al. Determination of coenzyme A and acetyl-coenzyme A in biological samples using HPLC with UV detection. Molecules 22, 1388 (2017).Article
Shurubor,Y.I.等人。使用HPLC和UV检测法测定生物样品中的辅酶A和乙酰辅酶A。分子221388(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, Y. et al. Coenzyme A precursors flow from mother to zygote and from microbiome to host. Mol. Cell https://doi.org/10.1016/j.molcel.2022.05.006 (2022).Jackowski, S. Proposed therapies for pantothenate-kinase-associated neurodegeneration. J. Exp. Neurosci. 13, 1179069519851118 (2019).Article .
Yu,Y。等人。辅酶A前体从母亲流向受精卵,从微生物群流向宿主。摩尔电池https://doi.org/10.1016/j.molcel.2022.05.006(2022年)。Jackowski,S.提出了泛酸激酶相关神经变性的治疗方法。J、 实验神经科学。131179069519851118(2019)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Williamson, J. R. & Corkey, B. E. Assay of citric acid cycle intermediates and related compounds—update with tissue metabolite levels and intracellular distribution. Methods Enzymol. 55, 200–222 (1979).Article
Williamson,J.R。&Corkey,B.E。柠檬酸循环中间体和相关化合物的测定随着组织代谢物水平和细胞内分布的更新而更新。方法酶法。55200-222(1979)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Idell-Wenger, J. A., Grotyohann, L. W. & Neely, J. R. Coenzyme A and carnitine distribution in normal and ischemic hearts. J. Biol. Chem. 253, 4310–4318 (1978).Article
Idell-Wenger,J.A.,Grotyohann,L.W。&Neely,J.R。辅酶A和肉碱在正常和缺血心脏中的分布。J、 生物。化学。2534310-4318(1978)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Broekhoven, A. V., Peeters, M. -C., Debeer, L. J. & Mannaerts, G. P. Subcellular distribution of coenzyme A: evidence for a separate coenzyme a pool in peroxisomes. Biochem. Biophys. Res. Commun. 100, 305–312 (1981).Article
Broekhoven,A.V.,Peeters,M.-C.,Debeer,L.J。&Mannaerts,G.P。辅酶A的亚细胞分布:过氧化物酶体中单独辅酶A库的证据。生物化学。生物物理。公共资源。100305-312(1981)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Horie, S., Isobe, M. & Suga, T. Changes in CoA pools in hepatic peroxisomes of the rat, under various conditions. J. Biochem. 99, 1345–1352 (1986).Article
Horie,S.,Isobe,M。&Suga,T。在各种条件下,大鼠肝过氧化物酶体中CoA库的变化。J、 生物化学。991345-1352(1986)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337 (2016).Article
Chen,W.W.,Freinkman,E.,Wang,T.,Birsoy,K。&Sabatini,D.M。基质代谢物的绝对定量揭示了线粒体代谢的动力学。细胞1661324-1337(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alfonso-Pecchio, A., Garcia, M., Leonardi, R. & Jackowski, S. Compartmentalization of mammalian pantothenate kinases. PLoS ONE 7, e49509 (2012).Article
Alfonso-Pecchio,A.,Garcia,M.,Leonardi,R。&Jackowski,S。哺乳动物泛酸激酶的区室化。PLoS ONE 7,e49509(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramaswamy, G., Karim, M. A., Murti, K. G. & Jackowski, S. PPARalpha controls the intracellular coenzyme A concentration via regulation of PANK1alpha gene expression. J. Lipid Res. 45, 17–31 (2004).Article
Ramaswamy,G.,Karim,M.A.,Murti,K.G。&Jackowski,S.PPARalpha通过调节PANK1alpha基因表达来控制细胞内辅酶A的浓度。J、 脂质研究45,17-31(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hörtnagel, K., Prokisch, H. & Meitinger, T. An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria. Hum. Mol. Genet. 12, 321–327 (2003).Article
Hörtnagel,K.,Prokisch,H。&Meitinger,T。hPANK2的同工型,缺乏泛酸激酶相关的神经变性,定位于线粒体。Hum。Mol。Genet。12321-327(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Johnson, M. A. et al. Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase‐associated neurodegeneration. Ann. N. Y. Acad. Sci. 1012, 282–298 (2004).Article
Johnson,M.A.等人。人PANK2的线粒体定位和泛酸激酶相关神经变性中继发性铁积累的假设。安·N·Y·阿卡德。科学。1012282-298(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y. -M., Rock, C. O. & Jackowski, S. Biochemical properties of human pantothenate kinase 2 isoforms and mutations linked to pantothenate kinase-associated neurodegeneration. J. Biol. Chem. 281, 107–114 (2006).Article
Zhang,Y.-M.,Rock,C.O。&Jackowski,S。人泛酸激酶2同种型的生化特性和与泛酸激酶相关的神经变性相关的突变。J、 生物。化学。281107-114(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Leonardi, R., Zhang, Y. -M., Lykidis, A., Rock, C. O. & Jackowski, S. Localization and regulation of mouse pantothenate kinase 2. FEBS Lett. 581, 4639–4644 (2007).Article
Leonardi,R.,Zhang,Y.-M.,Lykidis,A.,Rock,C.O。&Jackowski,S。小鼠泛酸激酶2的定位和调节。FEBS Lett公司。5814639-4644(2007)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brunetti, D. et al. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum. Mol. Genet. 21, 5294–5305 (2012).Article
Brunetti,D。等人。泛酸激酶相关的神经变性:Pank2基因敲除小鼠模型中线粒体膜电位改变和呼吸缺陷。嗯,摩尔·吉内特。215294-5305(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Werning, M. et al. PKAN neurodegeneration and residual PANK2 activities in patient erythrocytes. Ann. Clin. Transl. Neurol. 7, 1340–1351 (2020).Article
Werning,M。等人。患者红细胞中的PKAN神经变性和残留PANK2活性。安。克林。翻译。神经病学。71340-1351(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhyvoloup, A. et al. Subcellular localization and regulation of coenzyme A synthase. J. Biol. Chem. 278, 50316–50321 (2003).Article
Zhyvoloup,A。等人。辅酶A合酶的亚细胞定位和调节。J、 生物。化学。27850316–50321(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Skrede, S. & Halvorsen, O. Mitochondrial pantetheinephosphate adenylyltransferase and dephospho‐CoA kinase. Eur. J. Biochem. 131, 57–63 (1983).Article
Skrede,S。&Halvorsen,O。线粒体泛素磷酸腺苷转移酶和去磷酸辅酶A激酶。Eur.J.生物化学。131,57-63(1983)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tahiliani, A. G. & Neely, J. R. Mitochondrial synthesis of coenzyme a is on the external surface. J. Mol. Cell. Cardiol. 19, 1161–1167 (1987).Article
Tahiliani,A.G。&Neely,J.R。线粒体合成辅酶A在外表面。J、 摩尔电池。心脏病。191161-1167(1987)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Skrede, S. & Halvorsen, O. Mitochondrial biosynthesis of coenzyme A. Biochem. Biophys. Res. Commun. 91, 1536–1542 (1979).Article
Skrede,S。&Halvorsen,O。辅酶A的线粒体生物合成。Biochem。生物物理。公共资源。911536-1542(1979)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rhee, H. -W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).Article
Rhee,H.-W.等人。通过空间限制性酶标记对活细胞中线粒体进行蛋白质组学定位。《科学》3391328–1331(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fiermonte, G., Paradies, E., Todisco, S., Marobbio, C. M. T. & Palmieri, F. A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3′5′-diphosphate in human mitochondria. J. Biol. Chem. 284, 18152–18159 (2009).Article
Fiermonte,G.,Paradies,E.,Todisco,S.,Marobbio,C.M.T。&Palmieri,F。溶质载体家族25(SLC25A42)的新成员是人类线粒体中辅酶A和腺苷3'5'-二磷酸的转运蛋白。J.Biol。化学。28418152-18159(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Prohl, C. et al. The yeast mitochondrial carrier Leu5p and its human homologue Graves’ disease protein are required for accumulation of coenzyme A in the matrix. Mol. Cell. Biol. 21, 1089–1097 (2001).Article
酵母线粒体载体Leu5p及其人类同源格雷夫斯病蛋白是辅酶A在基质分子细胞中积累所必需的。生物学211089-1097(2001)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vozza, A. et al. Biochemical characterization of a new mitochondrial transporter of dephosphocoenzyme A in Drosophila melanogaster. Biochim. Biophys. Acta Bioenerg. 1858, 137–146 (2017).Article
Vozza,A。等人。黑腹果蝇中去磷酸辅酶A的新线粒体转运蛋白的生化表征。生物化学。生物物理。《生物能源学报》1858137-146(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Agrimi, G., Russo, A., Scarcia, P. & Palmieri, F. The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochem. J. 443, 241–247 (2012).Article
Agrimi,G.,Russo,A.,Scarcia,P。&Palmieri,F。人类基因SLC25A17编码辅酶A,FAD和NAD+的过氧化物酶体转运蛋白。生物化学。J、 443241-247(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
VanVeldhoven, P. P. et al. Slc25a17 gene trapped mice: PMP34 plays a role in the peroxisomal degradation of phytanic and pristanic acid. Front. Cell Dev. Biol. 8, 144 (2020).Article
VanVeldhoven,P。P。等人。Slc25a17基因捕获小鼠:PMP34在植烷酸和植烷酸的过氧化物酶体降解中起作用。正面。细胞开发生物学。8144(2020)。文章
Google Scholar
谷歌学者
Abiko, Y., Ashida, S. -I. & Shimizu, M. Purification and properties of d-pantothenate kinase from rat liver. Biochim. Biophys. Acta 268, 364–372 (1972).Article
Abiko,Y.,Ashida,S.-I。和Shimizu,M。大鼠肝脏d-泛酸激酶的纯化和性质。生物化学。生物物理。Acta 268364–372(1972)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Karasawa, T., Yoshida, K., Furukawa, K. & Hosoki, K. Feedback inhibition of pantothenate kinase by coenzyme A and possible role of the enzyme for the regulation of cellular coenzyme A level. J. Biochem. 71, 1065–1067 (1972).Article
Karasawa,T.,Yoshida,K.,Furukawa,K。&Hosoki,K。辅酶A对泛酸激酶的反馈抑制以及该酶在调节细胞辅酶A水平中的可能作用。J、 生物化学。711065-1067(1972)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shimizu, S., Kubo, K., Morioka, H., Tani, Y. & Ogata, K. Some aspects of the enzyme activities involved in coenzyme A biosynthesis in various microorganisms. Agric. Biol. Chem. 38, 1015–1021 (1974).Article
Shimizu,S.,Kubo,K.,Morioka,H.,Tani,Y。&Ogata,K。各种微生物中辅酶A生物合成所涉及的酶活性的一些方面。农业。生物化学。381015-1021(1974)。文章
CAS
中科院
Google Scholar
谷歌学者
Robishaw, J. D., Berkich, D. & Neely, J. R. Rate-limiting step and control of coenzyme A synthesis in cardiac muscle. J. Biol. Chem. 257, 10967–10972 (1982).Article
Robishaw,J.D.,Berkich,D。&Neely,J.R。心肌中辅酶A合成的限速步骤和控制。J、 生物。化学。25710967–10972(1982)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Voltti, H., Savolainen, M. J., Jauhonen, V. P. & Hassinen, I. E. Clofibrate-induced increase in coenzyme A concentration in rat tissues. Biochem. J. 182, 95–102 (1979).Article
Voltti,H.,Savolainen,M.J.,Jauhonen,V.P。&Hassinen,即氯贝特诱导的大鼠组织中辅酶A浓度的增加。生物化学。J、 182,95-102(1979)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Smith, C. M. The effect of metabolic state on incorporation of [14C]pantothenate into CoA in rat liver and heart. J. Nutr. 5, 863–873 (1978).Article
Smith,C.M。代谢状态对大鼠肝脏和心脏中[14C]泛酸掺入CoA的影响。J、 营养。5863-873(1978)。文章
Google Scholar
谷歌学者
Smith, C. M. & Savage, C. R. Regulation of coenzyme A biosynthesis by glucagon and glucocorticoid in adult rat liver parenchymal cells. Biochem. J. 188, 175–184 (1980).Article
Smith,C.M。&Savage,C.R。成年大鼠肝实质细胞中胰高血糖素和糖皮质激素对辅酶A生物合成的调节。生物化学。J、 188175-184(1980)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rock, C. O., Park, H. -W. & Jackowski, S. Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli. J. Bacteriol. 185, 3410–3415 (2003).Article
Rock,C.O.,Park,H.-W.&Jackowski,S。泛酸激酶(CoaA)反馈调节在控制大肠杆菌辅酶A水平中的作用。J、 细菌。1853410-3415(2003)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fisher, M. N., Robishaw, J. D. & Neely, J. R. The properties and regulation of pantothenate kinase from rat heart. J. Biol. Chem. 260, 15745–15751 (1985).Article
Fisher,M.N.,Robishaw,J.D。&Neely,J.R。大鼠心脏泛酸激酶的性质和调节。J、 生物。化学。26015745-15751(1985)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vallari, D. S., Jackowski, S. & Rock, C. O. Regulation of pantothenate kinase by coenzyme A and its thioesters. J. Biol. Chem. 262, 2468–2471 (1987).Article
Vallari,D.S.,Jackowski,S。和Rock,C.O。辅酶A及其硫酯对泛酸激酶的调节。J、 生物。化学。2622468-2471(1987)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Halvorsen, O. & Skrede, S. Regulation of the biosynthesis of CoA at the level of pantothenate kinase. Eur. J. Biochem. 124, 211–215 (1982).Article
Halvorsen,O。&Skrede,S。在泛酸激酶水平上调节CoA的生物合成。Eur.J.生物化学。124211-215(1982)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Subramanian, C. et al. Allosteric regulation of mammalian pantothenate kinase. J. Biol. Chem. 291, 22302–22314 (2016).Article
Subramanian,C。等人。哺乳动物泛酸激酶的变构调节。J、 生物。化学。29122302-22314(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leonardi, R., Rock, C. O., Jackowski, S. & Zhang, Y. -M. Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine. Proc. Natl Acad. Sci. USA 104, 1494–1499 (2007).Article
Leonardi,R.,Rock,C.O.,Jackowski,S。&Zhang,Y.-M。棕榈酰肉碱激活人线粒体泛酸激酶2。程序。国家科学院。科学。美国1041494-1499(2007)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Robishaw, J. D. & Neely, J. R. Pantothenate kinase and control of CoA synthesis in heart. Am. J. Physiol. 246, H532–H541 (1984).CAS
Robishaw,J.D。&Neely,J.R。泛酸激酶和心脏中CoA合成的控制。Am.J.Physiol。246,H532–H541(1984)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Levy, M. J. et al. A systems chemoproteomic analysis of Acyl-CoA/protein interaction networks. Cell Chem. Biol. 27, 322–333 (2020).Article
Levy,M.J.等人。酰基辅酶A/蛋白质相互作用网络的系统化学蛋白质组学分析。细胞化学。生物学27322-333(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dansie, L. E. et al. Physiological roles of the pantothenate kinases. Biochem. Soc. Trans. 42, 1033–1036 (2014).Article
Dansie,L.E.等人。泛酸激酶的生理作用。生物化学。社会事务。421033-1036(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tubbs, P. & Garland, P. Variations in tissue contents of coenzyme A thio esters and possible metabolic implications. Biochem. J. 93, 550–557 (1964).Article
Tubbs,P。&Garland,P。辅酶A硫酯组织含量的变化及其可能的代谢意义。生物化学。J、 93550-557(1964)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Williamson, J. R., Herczeg, B., Coles, H. & Danish, R. Studies on the ketogenic effect of glucagon in intact rat liver. Biochem Biophys. Res Commun. 24, 437–442 (1966).Article
Williamson,J.R.,Herczeg,B.,Coles,H。&Danish,R。胰高血糖素在完整大鼠肝脏中生酮作用的研究。生物化学生物物理。Res Commun公司。24437-442(1966)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Reibel, D. K., Wyse, B. W., Berkich, D. A. & Neely, J. R. Regulation of coenzyme A synthesis in heart muscle: effects of diabetes and fasting. Am. J. Physiol. 240, H606–H611 (1981).CAS
Reibel,D.K.,Wyse,B.W.,Berkich,D.A。和Neely,J.R。调节心肌中辅酶A的合成:糖尿病和禁食的影响。Am.J.Physiol。240,H606–H611(1981)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Smith, C. M., Cano, M. L. & Potyraj, J. The relationship between metabolic state and total CoA content of rat liver and heart. J. Nutr. 108, 854–862 (1978).Article
Smith,C.M.,Cano,M.L。和Potyraj,J。代谢状态与大鼠肝脏和心脏总CoA含量之间的关系。J、 营养。108854-862(1978)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lund, H., Stakkestad, J. A. & Skrede, S. Effects of thyroid state and fasting on the concentrations of CoA and malonyl-CoA in rat liver. Biochim. Biophys. Acta 876, 685–687 (1986).Article
Lund,H.,Stakkestad,J.A。&Skrede,S。甲状腺状态和禁食对大鼠肝脏中辅酶A和丙二酰辅酶A浓度的影响。生物化学。生物物理。Acta 876685–687(1986)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Beinlich, C. J., Robishaw, J. D. & Neely, J. R. Metabolism of pantothenic acid in hearts of diabetic rats. J. Mol. Cell. Cardiol. 21, 641–649 (1989).Article
Beinlich,C.J.,Robishaw,J.D。和Neely,J.R。泛酸在糖尿病大鼠心脏中的代谢。J、 摩尔电池。心脏病。21641-649(1989)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kreuzaler, P. et al. Vitamin B5 supports MYC oncogenic metabolism and tumor progression in breast cancer. Nat. Metab. https://doi.org/10.1038/s42255-023-00915-7 (2023).Humpton, T. J. & Vousden, K. H. Regulation of cellular metabolism and hypoxia by p53. Cold Spring Harb. Perspect. Med.
Kreuzaler,P。等人。维生素B5支持乳腺癌中MYC致癌代谢和肿瘤进展。自然代谢。https://doi.org/10.1038/s42255-023-00915-7(2023年)。Humpton,T.J。&Vousden,K.H。p53对细胞代谢和缺氧的调节。冷泉兔。透视图。医学。
6, a026146 (2016).Article .
6,a026146(2016)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, S. -J. et al. p53-Dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene. Cell Cycle 12, 753–761 (2013).Article
Wang,S.-J.等人。通过泛酸激酶-1基因的转录激活对代谢功能的p53依赖性调节。细胞周期12753-761(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).Article
Jiang,L。等人。Ferroptosis作为肿瘤抑制过程中p53介导的活性。《自然》520,57-62(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, L. et al. P53/PANK1/miR‐107 signalling pathway spans the gap between metabolic reprogramming and insulin resistance induced by high‐fat diet. J. Cell. Mol. Med. 24, 3611–3624 (2020).Article
Yang,L。等人,P53/PANK1/miR-107信号通路跨越了代谢重编程和高脂饮食诱导的胰岛素抵抗之间的差距。J、 细胞。《分子医学》243611-3624(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leu, J. I. -J., Murphy, M. E. & George, D. L. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1821277116 (2019).Article
Leu,J.I.-J.,Murphy,M.E.&George,D.L。表达以非洲为中心的p53 S47变体的细胞中铁浓化受损的机制基础。程序。国家科学院。科学。美国https://doi.org/10.1073/pnas.1821277116(2019年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chang, G. S. et al. A comprehensive and high-resolution genome-wide response of p53 to stress. Cell Rep. 8, 514–527 (2014).Article
Chang,G.S.等人。p53对压力的全面和高分辨率全基因组反应。Cell Rep.8514–527(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Böhlig, L., Friedrich, M. & Engeland, K. p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins. Nucleic Acids Res. 39, 440–453 (2011).Article
Böhlig,L.,Friedrich,M。&Engeland,K。p53激活PANK1/miRNA-107基因,导致CDK6和p130细胞周期蛋白的下调。核酸研究39440-453(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Savolainen, M. J., Jauhonen, V. P. & Hassinen, I. E. Effects of clofibrate on ethanol-induced modifications in liver and adipose tissue metabolism: role of hepatic redox state and hormonal mechanisms. Biochem. Pharmacol. 26, 425–431 (1977).Article
Savolainen,M.J.,Jauhonen,V.P。和Hassinen,即氯贝特对乙醇诱导的肝脏和脂肪组织代谢修饰的影响:肝脏氧化还原状态和激素机制的作用。生物化学。药理学。26425-431(1977)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Halvorsen, O. Effects of hypolipidemic drugs on hepatic CoA. Biochem. Pharmacol. 32, 1126–1128 (1983).Article
Halvorsen,O。降血脂药物对肝CoA的影响。生物化学。药理学。321126-1128(1983)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Skrede, S. & Halvorsen, O. Increased biosynthesis of CoA in the liver of rats treated with clofibrate. Eur. J. Biochem. 98, 223–229 (1979).Article
Skrede,S。&Halvorsen,O。增加了用氯贝特治疗的大鼠肝脏中CoA的生物合成。Eur.J.生物化学。98223-229(1979)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Miyazawa, S., Sakurai, T., Imura, M. & Hashimoto, T. Effects of ethyl p-chlorophenoxyisobutyrate on carbohydrate and fatty acid metabolism in rat liver. J. Biochem. 78, 1171–1176 (1975).Article
Miyazawa,S.,Sakurai,T.,Imura,M。&Hashimoto,T。对氯苯氧基异丁酸乙酯对大鼠肝脏碳水化合物和脂肪酸代谢的影响。J、 生物化学。781171-1176(1975)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Polster, B. J., Yoon, M. Y. & Hayflick, S. J. Characterization of the human PANK2 promoter. Gene 465, 53–60 (2010).Article
Polster,B.J.,Yoon,M.Y。和Hayflick,S.J。人类PANK2启动子的表征。基因465,53-60(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, Y. et al. Pantothenate kinase 2 interacts with PINK1 to regulate mitochondrial quality control via acetyl-CoA metabolism. Nat. Commun. 13, 2412 (2022).Article
Huang,Y。等人泛酸激酶2与PINK1相互作用,通过乙酰辅酶A代谢调节线粒体质量控制。国家公社。132412(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hoxhaj, G. & Manning, B. D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2019).Article
Hoxhaj,G。&Manning,B.D。在致癌信号传导和癌症代谢的界面处的PI3K-AKT网络。《自然评论》癌症20,74-88(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lambrechts, R. A. et al. CoA‐dependent activation of mitochondrial acyl carrier protein links four neurodegenerative diseases. EMBO Mol. Med. 11, e10488 (2019).Article
Lambrechts,R.A。等人。线粒体酰基载体蛋白的CoA依赖性激活与四种神经退行性疾病有关。EMBO Mol.Med.11,e10488(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leonardi, R., Rock, C. O. & Jackowski, S. Pank1 deletion in leptin-deficient mice reduces hyperglycaemia and hyperinsulinaemia and modifies global metabolism without affecting insulin resistance. Diabetologia 57, 1466–1475 (2014).Article
Leonardi,R.,Rock,C.O。&Jackowski,S。Pank1在瘦素缺陷小鼠中的缺失可降低高血糖和高胰岛素血症,并在不影响胰岛素抵抗的情况下改变整体代谢。糖尿病学571466-1475(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Breus, O., Panasyuk, G., Gout, I. T., Filonenko, V. & Nemazanyy, I. CoA synthase is in complex with p85alphaPI3K and affects PI3K signaling pathway. Biochem Biophys. Res. Commun. 385, 581–585 (2009).Article
Breus,O.,Panasyuk,G.,Gout,I.T.,Filonenko,V。&Nemazanyy,I.CoA合酶与p85alphaPI3K复合并影响PI3K信号通路。生物化学生物物理。公共资源。385581-585(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ferrandon, S. et al. CoA synthase (COASY) mediates radiation resistance via PI3K signaling in rectal cancer. Cancer Res. 80, 334–346 (2020).Article
Ferrandon,S。等人,CoA合酶(COASY)通过直肠癌中的PI3K信号传导介导辐射抗性。癌症研究80334-346(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nemazanyy, I. et al. Specific interaction between S6K1 and CoA synthase: a potential link between the mTOR/S6K pathway, CoA biosynthesis and energy metabolism. FEBS Lett. 578, 357–362 (2004).Article
Nemazanyy,I。等人。S6K1和CoA合酶之间的特异性相互作用:mTOR/S6K途径,CoA生物合成和能量代谢之间的潜在联系。FEBS Lett公司。578357-362(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Arif, A., Jia, J., Willard, B., Li, X. & Fox, P. L. Multisite phosphorylation of S6K1 directs a kinase phospho-code that determines substrate selection. Mol. Cell 73, 446–457 (2019).Article
Arif,A.,Jia,J.,Willard,B.,Li,X。&Fox,P.L。S6K1的多位点磷酸化指导决定底物选择的激酶磷酸化代码。分子细胞73446-457(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Breus, O., Panasyuk, G., Gout, I. T., Filonenko, V. & Nemazanyy, I. CoA synthase is phosphorylated on tyrosines in mammalian cells, interacts with and is dephosphorylated by Shp2PTP. Mol. Cell. Biochem. 335, 195–202 (2010).Article
Breus,O.,Panasyuk,G.,Gout,I.T.,Filonenko,V。&Nemazanyy,I。CoA合酶在哺乳动物细胞中的酪氨酸上被磷酸化,与Shp2PTP相互作用并被Shp2PTP去磷酸化。摩尔电池。生物化学。335195-202(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gudkova, D. et al. EDC4 interacts with and regulates the dephospho-CoA kinase activity of CoA synthase. FEBS Lett. 586, 3590–3595 (2012).Article
Gudkova,D。等人,EDC4与CoA合酶的去磷酸CoA激酶活性相互作用并调节其活性。FEBS Lett公司。5863590-3595(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Baković, J. et al. Regulation of the CoA biosynthetic complex assembly in mammalian cells. Int. J. Mol. Sci. 22, 1131 (2021).Article
Baković,J。等人。哺乳动物细胞中CoA生物合成复合物组装的调节。Int.J.Mol.Sci。221131(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bishop, T. R. et al. Acetyl-CoA biosynthesis drives resistance to histone acetyltransferase inhibition. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01320-7 (2023).Crawford, M. C. et al. Comparative analysis of drug-like EP300/CREBBP acetyltransferase inhibitors. ACS Chem. Biol.
Bishop,T.R。等人。乙酰辅酶A生物合成驱动对组蛋白乙酰转移酶抑制的抗性。自然化学。生物。https://doi.org/10.1038/s41589-023-01320-7(2023年)。Crawford,M.C.等人。药物样EP300/CREBBP乙酰转移酶抑制剂的比较分析。ACS化学。生物。
https://doi.org/10.1101/2023.05.15.540887 (2023).Vella, V. et al. Kinome‐wide synthetic lethal screen identifies PANK4 as a modulator of temozolomide resistance in Glioblastoma. Adv. Sci. https://doi.org/10.1002/advs.202306027 (2024).Thakur, N. et al. Rational design of novel therapies for pantothenate kinase–associated neurodegeneration.
https://doi.org/10.1101/2023.05.15.540887(2023年)。Vella,V。等人。全基因组合成致死筛选将PANK4鉴定为胶质母细胞瘤中替莫唑胺耐药性的调节剂。高级科学。https://doi.org/10.1002/advs.202306027(2024年)。Thakur,N.等人。泛酸激酶相关神经变性新疗法的合理设计。
Mov. Disord. 36, 2005–2016 (2021).Article .
莫夫。混乱。362005年至2016年(2021年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sharma, L. K. et al. A therapeutic approach to pantothenate kinase associated neurodegeneration. Nat. Commun. 9, 4399 (2018).Article
Sharma,L.K.等人。泛酸激酶相关神经变性的治疗方法。国家公社。94399(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Subramanian, C., Yao, J., Frank, M. W., Rock, C. O. & Jackowski, S. A pantothenate kinase-deficient mouse model reveals a gene expression program associated with brain coenzyme A reduction. Biochim. Biophys. Acta Mol. Basis Dis. https://doi.org/10.1016/j.bbadis.2020.165663. (2020).van Dijk, T.
Subramanian,C.,Yao,J.,Frank,M.W.,Rock,C.O。&Jackowski,S。泛酸激酶缺陷小鼠模型揭示了与脑辅酶A减少相关的基因表达程序。生物化学。生物物理。分子基础学报。https://doi.org/10.1016/j.bbadis.2020.165663.(2020年),范迪克,T。
et al. Biallelic loss of function variants in COASY cause prenatal onset pontocerebellar hypoplasia, microcephaly, and arthrogryposis. Eur. J. Hum. Genet. 26, 1752–1758 (2018).Article .
COASY中的双等位基因功能丧失变异会导致产前发作的桥小脑发育不全,小头畸形和关节软化。Eur.J.Hum.Genet。261752-1758(2018)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mian, S. A. et al. Vitamin B5 and succinyl-CoA improve ineffective erythropoiesis in SF3B1-mutated myelodysplasia. Sci. Transl. Med. 15, eabn5135 (2023).Article
Mian,S.A。等人。维生素B5和琥珀酰辅酶A可改善SF3B1突变型骨髓增生异常的无效红细胞生成。科学。翻译。医学杂志15,eabn5135(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zheng, Y. et al. COASY variant as a new genetic cause of riboflavin-responsive lipid storage myopathy. Cell Discov. 10, 25 (2024).Article
Zheng,Y。等人。COASY变体是核黄素反应性脂质贮积性肌病的新遗传原因。细胞Discov。10,25(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tsuchiya, Y., Pham, U. & Gout, I. Methods for measuring CoA and CoA derivatives in biological samples. Biochem Soc. Trans. 42, 1107–1111 (2014).Article
Tsuchiya,Y.,Pham,U。和Gout,I。测量生物样品中CoA和CoA衍生物的方法。生物化学学会。421107-1111(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Frank, M. W., Subramanian, C., Rock, C. O. & Jackowski, S. Quantification of coenzyme A in cells and tissues. J. Vis. Exp. https://doi.org/10.3791/60182 (2019).Goosen, R. & Strauss, E. Simultaneous quantification of coenzyme A and its salvage pathway intermediates in in vitro and whole cell-sourced samples.
Frank,M.W.,Subramanian,C.,Rock,C.O。和Jackowski,S。细胞和组织中辅酶A的定量。J、 可见。实验。https://doi.org/10.3791/60182(2019年)。Goosen,R。&Strauss,E。在体外和全细胞来源的样品中同时定量辅酶A及其补救途径中间体。
RSC Adv. 7, 19717–19724 (2017).Article .
RSC Adv.719717–19724(2017)。文章。
CAS
中科院
Google Scholar
谷歌学者
Basu, S. S., Mesaros, C., Gelhaus, S. L. & Blair, I. A. Stable isotope labeling by essential nutrients in cell culture for preparation of labeled coenzyme A and its thioesters. Anal. Chem. 83, 1363–1369 (2011).Article
Basu,S.S.,Mesaros,C.,Gelhaus,S.L。和Blair,I.A。通过细胞培养中的必需营养素进行稳定同位素标记,以制备标记的辅酶A及其硫酯。肛门。化学。831363-1369(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Snyder, N. W., Basu, S. S., Zhou, Z., Worth, A. J. & Blair, I. A. Stable isotope dilution liquid chromatography/mass spectrometry analysis of cellular and tissue medium- and long-chain acyl-coenzyme A thioesters. Rapid Commun. Mass Spectrom. 28, 1840–1848 (2014).Article
Snyder,N.W.,Basu,S.S.,Zhou,Z.,Worth,A.J。&Blair,I.A。细胞和组织中长链酰基辅酶A硫酯的稳定同位素稀释液相色谱/质谱分析。快速通讯。质谱。281840-1848(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuan, M. et al. Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC–MS/MS. Nat. Protoc. 14, 313–330 (2019).Article
Yuan,M。等人。通过LC–MS/MS分析的中心碳代谢和相关途径的离体和体内稳定同位素标记。Nat。Protoc。14313-330(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Magnes, C., Sinner, F. M., Regittnig, W. & Pieber, T. R. LC/MS/MS method for quantitative determination of long-chain fatty acyl-CoAs. Anal. Chem. 77, 2889–2894 (2005).Article
Magnes,C.,Sinner,F.M.,Regittnig,W。&Pieber,T.R。用于定量测定长链脂肪酰基辅酶A的LC/MS/MS方法。肛门。化学。772889-2894(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jones, A. E. et al. A single LC–MS/MS analysis to quantify CoA biosynthetic intermediates and short-chain acyl CoAs. Metabolites 11, 468 (2021).Article
Jones,A.E.等人进行了单次LC-MS/MS分析,以定量辅酶A生物合成中间体和短链酰基辅酶A。代谢物11468(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Williamson, J. R. & Corkey, B. E. Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. Methods Enzymol. 13, 434–513 (1969).Article
Williamson,J.R.&Corkey,B.E.通过荧光酶法测定柠檬酸循环中间体和相关化合物。方法酶法。13434-513(1969)。文章
CAS
中科院
Google Scholar
谷歌学者
Sharma, L. K. et al. A high-throughput screen reveals new small-molecule activators and inhibitors of pantothenate kinases. J. Med. Chem. 58, 1563–1568 (2015).Article
Sharma,L.K.等人。高通量筛选揭示了新的泛酸激酶小分子激活剂和抑制剂。J、 医学化学。581563-1568(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moolman, W. J. A., Villiers, Mde & Strauss, E. Recent advances in targeting coenzyme A biosynthesis and utilization for antimicrobial drug development. Biochem. Soc. Trans. 42, 1080–1086 (2014).Article
Moolman,W.J.A.,Villiers,Mde&Strauss,E。靶向辅酶A生物合成和抗菌药物开发利用的最新进展。生物化学。社会事务。421080–1086(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schalkwijk, J. et al. Antimalarial pantothenamide metabolites target acetyl–coenzyme A biosynthesis in Plasmodium falciparum. Sci. Transl. Med. 11, eaas9917 (2019).Article
Schalkwijk,J。等人。抗疟泛酸酰胺代谢物靶向恶性疟原虫中的乙酰辅酶A生物合成。科学。翻译。医学杂志11,eaas9917(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gihaz, S. et al. High-resolution crystal structure and chemical screening reveal pantothenate kinase as a new target for antifungal development. Structure 30, 1494–1507 (2022).Article
高分辨率晶体结构和化学筛选揭示泛酸激酶是抗真菌开发的新靶点。结构301494-1507(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Subramanian, C. et al. Pantothenate kinase activation restores brain coenzyme A in a mouse model of pantothenate kinase associated neurodegeneration. J. Pharmacol. Exp. Ther. https://doi.org/10.1124/jpet.123.001919 (2023).Download referencesAcknowledgementsThis work was supported by the following grants: V Foundation V Scholar Grant V2019-009 (to C.C.D.), NIH/NCI F31-CA254169 (to S.A.B.) and NIH/NIGMS R35-GM149229 (to P.A.
Subramanian,C。等人。泛酸激酶激活可在泛酸激酶相关神经变性的小鼠模型中恢复脑辅酶A。J、 药理学。实验温度。https://doi.org/10.1124/jpet.123.001919(2023年)。下载参考文献致谢这项工作得到了以下赠款的支持:V基金会V学者赠款V2019-009(授予C.C.D.),NIH/NCI F31-CA254169(授予S.A.B.)和NIH/NIGMS R35-GM149229(授予P.A。
Cole in support of S.E.D.-C.). We thank K.E. Wellen and N.W. Snyder for the helpful discussion of their data, our peer reviewers for their expert feedback, and our primary editor for his guidance and patience. We express our appreciation and respect for Charles O. Rock, a pioneer in the fields of CoA and lipid metabolism who passed away in 2023.Author informationAuthors and AffiliationsDepartment of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USASamuel A.
科尔支持S.E.D.-C.)。我们感谢K.E.Wellen和N.W.Snyder对他们的数据进行了有益的讨论,感谢我们的同行评论者的专家反馈,感谢我们的主要编辑的指导和耐心。我们对Charles O.Rock表示赞赏和敬意,他是辅酶a和脂质代谢领域的先驱,于2023年去世。作者信息作者和附属机构美国马萨诸塞州波士顿哈佛医学院贝斯以色列女执事医学中心病理学系Samuel a。
Barritt & Christian C. DibbleDepartment of Medicine, Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USASarah E. DuBois-CoyneAuthorsSamuel A. BarrittView author publicationsYou can also search for this author in.
Barritt&Christian C.DibbleDepartment of Medicine,Department of Biological Chemistry and Molecular Pharmacology,Brigham and Women's Hospital,Harvard Medical School,Boston,MA,USA Sarah E.DuBois CoyneAuthorsSamuel A.BarrittView author Publications您也可以在中搜索这位作者。
PubMed Google ScholarSarah E. DuBois-CoyneView author publicationsYou can also search for this author in
PubMed Google ScholarSarah E.DuBois CoyneView作者出版物您也可以在
PubMed Google ScholarChristian C. DibbleView author publicationsYou can also search for this author in
PubMed Google ScholarChristian C.DibbleView作者出版物您也可以在
PubMed Google ScholarContributionsConceptualization: S.A.B. and C.C.D. Writing, figure construction and editing: S.A.B., S.E.D.-C. and C.C.D.Corresponding authorCorrespondence to
PubMed谷歌学术贡献概念:S.A.B.和C.C.D.写作,图形构建和编辑:S.A.B.,S.E.D.-C.和C.C.D.对应作者
Christian C. Dibble.Ethics declarations
克里斯蒂安·C·迪布尔。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Metabolism thanks Charles Rock and Ivan Gout for their contribution to the peer review of this work. Primary Handling Editor: Alfredo Gimenez-Cassina, in collaboration with the Nature Metabolism team.
《自然代谢》感谢查尔斯·洛克(CharlesRock)和伊凡·痛风(IvanGout)为这项工作的同行评审所做的贡献。主要处理编辑:阿尔弗雷多·吉梅内斯·卡西纳(AlfredoGimenezCassina),与《自然代谢》团队合作。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleBarritt, S.A., DuBois-Coyne, S.E.
Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Barritt,S.A.,DuBois Coyne,S.E。
& Dibble, C.C. Coenzyme A biosynthesis: mechanisms of regulation, function and disease..
&Dibble,C.C.辅酶A生物合成:调节,功能和疾病的机制。。
Nat Metab (2024). https://doi.org/10.1038/s42255-024-01059-yDownload citationReceived: 19 March 2023Accepted: 30 April 2024Published: 13 June 2024DOI: https://doi.org/10.1038/s42255-024-01059-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Metab(2024年)。https://doi.org/10.1038/s42255-024-01059-yDownload引文接收日期:2023年3月19日接收日期:2024年4月30日发布日期:2024年6月13日OI:https://doi.org/10.1038/s42255-024-01059-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
BiochemistryGrowth factor signallingMetabolismMetabolomics
生物化学生长因子信号代谢代谢组学