EN
登录

细胞机制中调控RNA的分子见解

Molecular insights into regulatory RNAs in the cellular machinery

Nature 等信源发布 2024-06-14 10:51

可切换为仅中文


AbstractIt is apparent that various functional units within the cellular machinery are derived from RNAs. The evolution of sequencing techniques has resulted in significant insights into approaches for transcriptome studies. Organisms utilize RNA to govern cellular systems, and a heterogeneous class of RNAs is involved in regulatory functions.

摘要很明显,细胞机制中的各种功能单元都来自RNA。测序技术的发展为转录组研究方法提供了重要的见解。生物体利用RNA来控制细胞系统,并且一类异质的RNA参与调节功能。

In particular, regulatory RNAs are increasingly recognized to participate in intricately functioning machinery across almost all levels of biological systems. These systems include those mediating chromatin arrangement, transcription, suborganelle stabilization, and posttranscriptional modifications.

特别是,越来越多的人认识到调控RNA参与了几乎所有生物系统水平的复杂功能机制。这些系统包括介导染色质排列,转录,亚有机体稳定和转录后修饰的系统。

Any class of RNA exhibiting regulatory activity can be termed a class of regulatory RNA and is typically represented by noncoding RNAs, which constitute a substantial portion of the genome. These RNAs function based on the principle of structural changes through cis and/or trans regulation to facilitate mutual RNA‒RNA, RNA‒DNA, and RNA‒protein interactions.

表现出调节活性的任何一类RNA都可以称为一类调节RNA,通常由非编码RNA表示,它们构成基因组的很大一部分。这些RNA基于顺式和/或反式调节的结构变化原理起作用,以促进相互的RNA-RNA,RNA-DNA和RNA-蛋白质相互作用。

It has not been clearly elucidated whether regulatory RNAs identified through deep sequencing actually function in the anticipated mechanisms. This review addresses the dominant properties of regulatory RNAs at various layers of the cellular machinery and covers regulatory activities, structural dynamics, modifications, associated molecules, and further challenges related to therapeutics and deep learning..

尚未明确阐明通过深度测序鉴定的调控RNA是否在预期的机制中起作用。这篇综述讨论了调节RNA在细胞机制各层的主要特性,涵盖了调节活性,结构动力学,修饰,相关分子以及与治疗和深度学习相关的进一步挑战。。

IntroductionRegulatory RNAs exhibit highly dynamic properties due to their multidimensional structures and their ability to interact with RNA, DNA, and proteins. These RNAs are involved in regulated events, such as transcription, translation, molecular localization and stability, and enzymatic degradation cascades, on many levels1,2,3,4.

引言调控RNA由于其多维结构及其与RNA,DNA和蛋白质相互作用的能力而表现出高度动态的特性。这些RNA在许多水平上参与调控事件,如转录,翻译,分子定位和稳定性以及酶降解级联反应1,2,3,4。

A broad spectrum of RNAs that have regulatory functions are collectively recognized as regulatory RNAs. Historically, many tiers of noncoding RNAs (ncRNAs) have been identified that have diverse characteristics. These ncRNAs account for approximately 98% of the total transcriptome, and while some ncRNAs exhibit protein-coding ability5, the majority of ncRNAs are expected to function as regulatory RNAs6,7.

具有调节功能的广谱RNA被统称为调节RNA。历史上,已经鉴定出许多具有不同特征的非编码RNA(ncRNA)层。这些ncRNA约占总转录组的98%,虽然一些ncRNA表现出蛋白质编码能力5,但大多数ncRNA有望作为调节RNA发挥作用6,7。

Regulatory RNAs can be classified into different groups based on their size, structure, localization, and function, as indicated by the discovery of long noncoding RNAs (lncRNAs), enhancer RNAs (eRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small Cajal body-specific RNAs (scaRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), and circular RNAs (circRNAs)7,8.

调控RNA可以根据其大小,结构,定位和功能分为不同的组,如长非编码RNA(lncRNA),增强子RNA(eRNA),microRNA(miRNA),PIWI相互作用RNA(piRNA),小Cajal体特异性RNA(scaRNA),小核仁RNA(snoRNA),小核RNA(snRNA)和环状RNA(circRNA)7,8的发现所示。

The enormous functional involvement of regulatory RNAs—despite their low expression level and low sequence conservation—is undeniable, and they apparently play important roles in cellular phenomena through these functions9. Research on RNAs and their biogenesis has described both shared and distinctive features among the numerous types of regulatory RNAs.

尽管调节RNA的表达水平低,序列保守性低,但其巨大的功能参与是不可否认的,它们显然通过这些功能在细胞现象中发挥重要作用9。对RNA及其生物发生的研究已经描述了许多类型的调节RNA之间的共同和独特特征。

Numerous regulatory RNAs undergo mRNA-like RNA processing steps, such as 5′ m7G cap addition, polyadenylation, and splicing, which are observed even in long RNAs. The pattern of overlapping transcripts in the genome indicates the inclusion or exclusion of exons and introns in the sequences of regulato.

许多调节RNA经历类似mRNA的RNA加工步骤,例如5'm7G帽添加,聚腺苷酸化和剪接,即使在长RNA中也可以观察到。基因组中重叠转录本的模式表明regulato序列中包含或排除了外显子和内含子。

ReferencesBizuayehu, T. T. et al. Long-read single-molecule RNA structure sequencing using nanopore. Nucleic Acids Res. 50, e120 (2022).CAS

参考文献Bizuayehu,T.T。等人使用纳米孔进行长读单分子RNA结构测序。核酸研究50,e120(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guh, C. Y., Hsieh, Y. H. & Chu, H. P. Functions and properties of nuclear lncRNAs-from systematically mapping the interactomes of lncRNAs. J. Biomed. Sci. 27, 44 (2020).CAS

Guh,C.Y.,Hsieh,Y.H。&Chu,H.P。通过系统地绘制lncRNA的相互作用组来研究核lncRNA的功能和特性。J、 生物医学。科学。27,44(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jones, C. P. & Ferre-D’Amare, A. R. RNA quaternary structure and global symmetry. Trends Biochem. Sci. 40, 211–220 (2015).CAS

Jones,C.P。&Ferre-D'Amare,A.R。RNA四级结构和全局对称性。趋势生物化学。科学。40211-220(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, K. et al. LncRNA SNHG6 promotes glycolysis reprogramming in hepatocellular carcinoma by stabilizing the BOP1 protein. Anim. Cells Syst. 26, 369–379 (2022).CAS

Chen,K。等人。LncRNA SNHG6通过稳定BOP1蛋白促进肝细胞癌中糖酵解重编程。动画。细胞系统。26369-379(2022)。中科院

Google Scholar

谷歌学者

Wright, B. W., Yi, Z., Weissman, J. S. & Chen, J. The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol. 32, 243–258 (2022).CAS

Wright,B.W.,Yi,Z.,Weissman,J.S。&Chen,J。黑暗蛋白质组:非规范开放阅读框的翻译。趋势细胞生物学。32243-258(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, Z., Zhou, J. K., Peng, Y., He, W. & Huang, C. The role of long noncoding RNAs in hepatocellular carcinoma. Mol. Cancer 19, 77 (2020).CAS

Huang,Z.,Zhou,J.K.,Peng,Y.,He,W。&Huang,C。长非编码RNA在肝细胞癌中的作用。分子癌症19,77(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kaikkonen, M. U., Lam, M. T. & Glass, C. K. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res. 90, 430–440 (2011).CAS

Kaikkonen,M.U.,Lam,M.T。&Glass,C.K。非编码RNA作为基因表达和表观遗传学的调节剂。心血管。第90430-440号决议(2011年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wei, L. et al. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol. Cancer 18, 147 (2019).PubMed

Wei,L。等。微小RNA和长非编码RNA在肝细胞癌耐药性中的新兴作用。摩尔癌症18147(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morris, K. V. & Mattick, J. S. The rise of regulatory RNA. Nat. Rev. Genet. 15, 423–437 (2014).CAS

Morris,K.V.&Mattick,J.S.《调节性RNA的兴起》,Nat。Rev。Genet。15423-437(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ransohoff, J. D., Wei, Y. & Khavari, P. A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 19, 143–157 (2018).CAS

Ransohoff,J.D.,Wei,Y。&Khavari,P.A。长基因间非编码RNA的功能和独特特征。Nat。Rev。Mol。Cell Biol。19143-157(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, S., Lim, K. H., Kim, S. H. & Joo, J. Y. Molecular landscape of long noncoding RNAs in brain disorders. Mol. Psychiatry 26, 1060–1074 (2021).CAS

Yang,S.,Lim,K.H.,Kim,S.H。&Joo,J.Y。大脑疾病中长非编码RNA的分子景观。摩尔精神病学261060-1074(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).CAS

Mattick,J.S.等人。长非编码RNA:定义,功能,挑战和建议。Nat。Rev。Mol。Cell Biol。24430-447(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).CAS

Statello,L.,Guo,C.J.,Chen,L.L。&Huarte,M。长非编码RNA的基因调控及其生物学功能。Nat。Rev。Mol。Cell Biol。22,96-118(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lim, K. H., Yang, S., Kim, S. H., Chun, S. & Joo, J. Y. Discoveries for long non-coding RNA dynamics in traumatic brain injury. Biology 9, https://doi.org/10.3390/biology9120458 (2020).Kim, S. H., Lim, K. H., Yang, S. & Joo, J. Y. Long non-coding RNAs in brain tumors: roles and potential as therapeutic targets.

Lim,K.H.,Yang,S.,Kim,S.H.,Chun,S。&Joo,J.Y。创伤性脑损伤中长时间非编码RNA动力学的发现。生物学9,https://doi.org/10.3390/biology9120458(2020年)。Kim,S.H.,Lim,K.H.,Yang,S。&Joo,J.Y。脑肿瘤中的长非编码RNA:作为治疗靶标的作用和潜力。

J. Hematol. Oncol. 14, 77 (2021).CAS .

J、赫马托尔。肿瘤。14、77(2021)。案例。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sartorelli, V. & Lauberth, S. M. Enhancer RNAs are an important regulatory layer of the epigenome. Nat. Struct. Mol. Biol. 27, 521–528 (2020).CAS

Sartorelli,V。&Lauberth,S.M。增强子RNA是表观基因组的重要调控层。自然结构。分子生物学。27521-528(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, Z. & Li, W. Enhancer RNA: what we know and what we can achieve. Cell Prolif. 55, e13202 (2022).CAS

Han,Z。&Li,W。增强子RNA:我们知道什么,我们可以实现什么。细胞增殖。55,e13202(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shang, R., Lee, S., Senavirathne, G. & Lai, E. C. microRNAs in action: biogenesis, function and regulation. Nat. Rev. Genet. 24, 816–833 (2023).CAS

Shang,R.,Lee,S.,Senavirathne,G。&Lai,E.C。microRNA的作用:生物发生,功能和调控。Genet自然Rev。24816-833(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Khanbabaei, H. et al. Non-coding RNAs and epithelial mesenchymal transition in cancer: molecular mechanisms and clinical implications. J. Exp. Clin. Cancer Res. 41, 278 (2022).CAS

Khanbabaei,H。等人。癌症中的非编码RNA和上皮-间质转化:分子机制和临床意义。J、 实验临床。癌症研究41278(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 9, 402 (2018).

O'Brien,J.,Hayder,H.,Zayed,Y。&Peng,C。microRNA生物发生,作用机制和循环概述。前内分泌。9402(2018)。

Google Scholar

谷歌学者

Ng, K. W. et al. Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol. Cancer 15, 5 (2016).PubMed

Ng,K.W.等人。Piwi相互作用RNA在癌症中的作用:新兴功能和临床应用。Mol.Cancer 15,5(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cao, T. et al. Biology and clinical relevance of noncoding sno/scaRNAs. Trends Cardiovasc. Med. 28, 81–90 (2018).CAS

Cao,T。等人。非编码sno/scaRNAs的生物学和临床相关性。趋势心血管。医学28,81-90(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, Z. H., Du, Y. P., Wen, J. T., Lu, B. F. & Zhao, Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov. 8, 259 (2022).CAS

Huang,Z.H.,Du,Y.P.,Wen,J.T.,Lu,B.F。&Zhao,Y.snoRNAs:生物学过程中的功能和机制,以及在肿瘤病理生理学中的作用。细胞死亡发现。8259(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

He, A. T., Liu, J., Li, F. & Yang, B. B. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal. Transduct. Target Ther. 6, 185 (2021).CAS

He,A.T.,Liu,J.,Li,F。&Yang,B.B。靶向环状RNA作为治疗方法:当前的策略和挑战。信号。Transduct公司。目标Ther。6185(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).CAS

Kristensen,L.S.等人。环状RNA的生物发生,生物学和表征。Genet自然Rev。20675-691(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sun, Y. M. & Chen, Y. Q. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J. Hematol. Oncol. 13, 109 (2020).PubMed

Sun,Y.M.&Chen,Y.Q。解密非编码RNA的原理和创新技术:从发现和功能预测到临床应用。J、 血液学。Oncol公司。13109(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hou, T. Y. & Kraus, W. L. Spirits in the material world: enhancer RNAs in transcriptional regulation. Trends Biochem. Sci. 46, 138–153 (2021).CAS

Hou,T.Y。&Kraus,W.L。物质世界中的烈酒:转录调控中的增强子RNA。趋势生物化学。科学。46138-153(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, Q. et al. Enhancer RNAs: mechanisms in transcriptional regulation and functions in diseases. Cell Commun. Signal 21, 191 (2023).CAS

Li,Q。等人。增强子RNA:转录调控机制和疾病功能。细胞通讯。信号21191(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, J., Batcha, A. M., Gruning, B. & Mansmann, U. R. An NGS workflow blueprint for DNA sequencing data and its application in individualized molecular oncology. Cancer Inf. 14, 87–107 (2015).CAS

Li,J.,Batcha,A.M.,Gruning,B。&Mansmann,U.R。DNA测序数据的NGS工作流程蓝图及其在个体化分子肿瘤学中的应用。癌症信息14,87-107(2015)。中科院

Google Scholar

谷歌学者

Hess, J. F. et al. Library preparation for next generation sequencing: a review of automation strategies. Biotechnol. Adv. 41, 107537 (2020).CAS

Hess,J.F.等人,《下一代测序的文库准备:自动化策略综述》。生物技术。Adv.41107537(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mumbach, M. R. et al. HiChIRP reveals RNA-associated chromosome conformation. Nat. Methods 16, 489–492 (2019).CAS

Mumbach,M.R.等人HiChIRP揭示了RNA相关的染色体构象。自然方法16489-492(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jung, N. & Kim, T. K. Advances in higher-order chromatin architecture: the move towards 4D genome. BMB Rep. 54, 233–245 (2021).CAS

Jung,N。&Kim,T.K。高级染色质结构的进展:向4D基因组的转变。BMB Rep.54233–245(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bell, J. C. et al. Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. Elife 7, https://doi.org/10.7554/eLife.27024 (2018).Bonetti, A. et al. RADICL-seq identifies general and cell type-specific principles of genome-wide RNA-chromatin interactions. Nat.

染色质相关RNA测序(ChAR-seq)将全基因组RNA映射到DNA接触。Elife 7,https://doi.org/10.7554/eLife.27024(2018年)。Bonetti,A。等人RADICL-seq确定了全基因组RNA染色质相互作用的一般和细胞类型特异性原理。纳特。

Commun. 11, 1018 (2020).CAS .

普通的。111018(2020)。案例。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Horlacher, M. et al. Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning. Genome Biol. 24, 180 (2023).CAS

Horlacher,M.等人,《计算机模拟CLIP-seq:通过序列到信号学习预测蛋白质-RNA相互作用》。基因组生物学。24180(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jensen, K. B. & Darnell, R. B. CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol. Biol. 488, 85–98 (2008).CAS

Jensen,K.B。&Darnell,R.B。CLIP:RNA结合蛋白体内RNA靶标的交联和免疫沉淀。方法分子生物学。488,85-98(2008)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Spitzer, J. et al. PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Methods Enzymol. 539, 113–161 (2014).CAS

Spitzer,J。等人。PAR-CLIP(可光活化的核糖核苷增强的交联和免疫沉淀):RNA结合蛋白结合位点的转录组范围鉴定的逐步方案。方法酶法。539113-161(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Garzia, A., Meyer, C., Morozov, P., Sajek, M. & Tuschl, T. Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins. Methods 118-119, 24–40 (2017).CAS

Garzia,A.,Meyer,C.,Morozov,P.,Sajek,M。&Tuschl,T。PAR-CLIP的优化,用于转录组范围内鉴定RNA结合蛋白的结合位点。方法118-119,24-40(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).PubMed

Konig,J。等人,iCLIP揭示了hnRNP颗粒在单个核苷酸分辨率下剪接的功能。自然结构。分子生物学。17909-915(2010)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huppertz, I. et al. iCLIP: protein-RNA interactions at nucleotide resolution. Methods 65, 274–287 (2014).CAS

Huppertz,I。等人。iCLIP:核苷酸分辨率下的蛋白质-RNA相互作用。方法65274-287(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cai, Z. et al. RIC-seq for global in situ profiling of RNA-RNA spatial interactions. Nature 582, 432–437 (2020).CAS

Cai,Z。等人。RIC-seq用于RNA-RNA空间相互作用的全局原位分析。自然582432-437(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Margasyuk, S. et al. RNA in situ conformation sequencing reveals novel long-range RNA structures with impact on splicing. RNA 29, 1423–1436 (2023).CAS

Margasyuk,S。等人。RNA原位构象测序揭示了对剪接有影响的新型远程RNA结构。RNA 291423-1436(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nguyen, T. C. et al. Mapping RNA-RNA interactome and RNA structure in vivo by MARIO. Nat. Commun. 7, 12023 (2016).CAS

Nguyen,T.C.等人。MARIO.Nat.Commun绘制体内RNA-RNA相互作用组和RNA结构。712023(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).CAS

Zubradt,M。等人。DMS MaPseq用于体内全基因组或靶向RNA结构探测。自然方法14,75-82(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jin, Q., Zhang, L., Hu, S., Wei, G. & Wang, Z. Probing in vivo RNA structure with optimized DMS-MaPseq in rice. Front. Plant Sci. 13, 869267 (2022).PubMed

Jin,Q.,Zhang,L.,Hu,S.,Wei,G。&Wang,Z。用优化的DMS MaPseq在水稻中探测体内RNA结构。正面。植物科学。13869267(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morandi, E. et al. Genome-scale deconvolution of RNA structure ensembles. Nat. Methods 18, 249–252 (2021).CAS

Morandi,E。等人。RNA结构集合的基因组规模解卷积。自然方法18249-252(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sanz, L. A. & Chedin, F. High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat. Protoc. 14, 1734–1755 (2019).CAS

Sanz,L.A。&Chedin,F。通过基于S9.6的DNA-RNA免疫沉淀和高通量测序进行高分辨率,链特异性R环作图。自然协议。141734-1755(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Halasz, L. et al. RNA-DNA hybrid (R-loop) immunoprecipitation mapping: an analytical workflow to evaluate inherent biases. Genome Res. 27, 1063–1073 (2017).CAS

Halasz,L。等人。RNA-DNA杂交(R环)免疫沉淀作图:评估固有偏差的分析工作流程。基因组研究271063-1073(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wahba, L., Costantino, L., Tan, F. J., Zimmer, A. & Koshland, D. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev. 30, 1327–1338 (2016).CAS

Wahba,L.,Costantino,L.,Tan,F.J.,Zimmer,A。&Koshland,D。S1 DRIP-seq将高表达和polyA片段鉴定为R环形成的主要贡献者。Genes Dev.301327–1338(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sanz, L. A. et al. Prevalent, dynamic, and conserved r-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016).CAS

Sanz,L.A。等人。流行的,动态的和保守的r环结构与哺乳动物中特定的表观基因组特征相关。分子细胞63167-178(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dumelie, J. G. & Jaffrey, S. R. Defining the location of promoter-associated R-loops at near-nucleotide resolution using bisDRIP-seq. Elife 6, https://doi.org/10.7554/eLife.28306 (2017).Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research.

Dumelie,J.G。&Jaffrey,S.R。使用bisDRIP-seq在近核苷酸分辨率下定义启动子相关R环的位置。Elife 6,https://doi.org/10.7554/eLife.28306(2017年)。Williams,C.G.,Lee,H.J.,Asatsuma,T.,Vento-Tormo,R。&Haque,A。生物医学研究空间转录组学简介。

Genome Med. 14, 68 (2022).CAS .

基因组医学14,68(2022)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).CAS

Marx,V。年度方法:空间解析转录组学。自然方法18,9-14(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Riba, A. et al. Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning. Nat. Commun. 13, 2865 (2022).CAS

Riba,A.等人,《RNA速度和深度学习揭示的细胞周期基因调控动力学》。国家公社。132865(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).CAS

Kozomara,A.,Birgoanu,M。和Griffiths-Jones,S。miRBase:从microRNA序列到功能。核酸研究47,D155-D162(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, L. et al. NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res. 49, D165–D171 (2021).CAS

Zhao,L。等人。NONCODEV6:一个更新的数据库,专门用于动物和植物中的长非编码RNA注释。核酸研究49,D165-D171(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kariuki, D. et al. Review of databases for experimentally validated human microRNA-mRNA interactions. Database 2023, https://doi.org/10.1093/database/baad014 (2023).Kalvari, I. et al. Non-coding RNA analysis using the rfam database. Curr. Protoc. Bioinform. 62, e51 (2018).

Kariuki,D。等人。对实验验证的人类microRNA-mRNA相互作用数据库的回顾。数据库2023,https://doi.org/10.1093/database/baad014(2023年)。Kalvari,I。等人。使用rfam数据库进行非编码RNA分析。货币。普罗托克。生物信息。62,e51(2018)。

Google Scholar

谷歌学者

Amaral, P. P., Clark, M. B., Gascoigne, D. K., Dinger, M. E. & Mattick, J. S. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 39, D146–151, (2011).CAS

Amaral,P.P.,Clark,M.B.,Gascoigne,D.K.,Dinger,M.E.&Mattick,J.S.lncRNAdb:长非编码RNA的参考数据库。核酸研究39,D146-151,(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lagarde, J. et al. High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing. Nat. Genet. 49, 1731–1740 (2017).CAS

Lagarde,J.等人。通过捕获长读测序对全长长非编码RNA进行高通量注释。纳特·吉内特。491731-1740(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).CAS

Ganser,L.R.,Kelly,M.L.,Herschlag,D。和Al-Hashimi,H.M。结构动力学在RNA细胞功能中的作用。Nat。Rev。Mol。Cell Biol。20474-489(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vicens, Q. & Kieft, J. S. Thoughts on how to think (and talk) about RNA structure. Proc. Natl Acad. Sci. USA 119, e2112677119 (2022).CAS

Vicens,Q.&Kieft,J.S。关于如何思考(和谈论)RNA结构的想法。程序。国家科学院。科学。美国119,e2112677119(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, W. et al. Research on RNA secondary structure predicting via bidirectional recurrent neural network. BMC Bioinform. 22, 431 (2021).

Lu,W。等。通过双向递归神经网络预测RNA二级结构的研究。BMC Bioinform。22431(2021)。

Google Scholar

谷歌学者

Zhao, Q. et al. Review of machine learning methods for RNA secondary structure prediction. PLoS Comput. Biol. 17, e1009291 (2021).CAS

赵,Q。等。RNA二级结构预测的机器学习方法综述。PLoS计算机。生物学17,e1009291(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, X. W., Liu, C. X., Chen, L. L. & Zhang, Q. C. RNA structure probing uncovers RNA structure-dependent biological functions. Nat. Chem. Biol. 17, 755–766 (2021).CAS

Wang,X.W.,Liu,C.X.,Chen,L.L。&Zhang,Q.C。RNA结构探测揭示了RNA结构依赖性生物学功能。自然化学。生物学17755-766(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kedde, M. et al. A pumilio-induced RNA structure switch in p27-3’ UTR controls miR-221 and miR-222 accessibility. Nat. Cell Biol. 12, 1014–1020 (2010).CAS

Kedde,M。等人。p27-3'UTR中pumilio诱导的RNA结构转换控制miR-221和miR-222的可及性。自然细胞生物学。121014-1020(2010)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Imperatore, J. A., Then, M. L., McDougal, K. B. & Mihailescu, M. R. Characterization of a G-quadruplex structure in pre-miRNA-1229 and in its Alzheimer’s disease-associated variant rs2291418: implications for miRNA-1229 maturation. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21030767 (2020).Richard, P.

Imperatore,J.A.,Then,M.L.,McDougal,K.B。&Mihailescu,M.R。前miRNA-1229及其阿尔茨海默病相关变体rs2291418中G-四链体结构的表征:对miRNA-1229成熟的影响。Int.J.Mol.Sci。21岁,https://doi.org/10.3390/ijms21030767(2020年)。理查德,P。

et al. A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs. EMBO J. 22, 4283–4293 (2003).CAS .

一个共同的序列基序决定了盒H/ACA scaRNA的Cajal体特异性定位。EMBO J.224283–4293(2003)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cerneckis, J., Cui, Q., He, C., Yi, C. & Shi, Y. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharm. Sci. 43, 522–535 (2022).CAS

Cerneckis,J.,Cui,Q.,He,C.,Yi,C。&Shi,Y。解码假尿苷:治疗发展的新兴目标。趋势药物科学。43522-535(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dethoff, E. A., Chugh, J., Mustoe, A. M. & Al-Hashimi, H. M. Functional complexity and regulation through RNA dynamics. Nature 482, 322–330 (2012).CAS

Dethoff,E.A.,Chugh,J.,Mustoe,A.M。和Al-Hashimi,H.M。通过RNA动力学的功能复杂性和调节。自然482322-330(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chaulk, S. G. et al. Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis. RNA Biol. 8, 1105–1114 (2011).CAS

Chaulk,S.G.等人。pri-miRNA三级结构在miR-17~92 miRNA生物发生中的作用。RNA生物学。81105-1114(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chakraborty, S., Mehtab, S., Patwardhan, A. & Krishnan, Y. Pri-miR-17-92a transcript folds into a tertiary structure and autoregulates its processing. RNA 18, 1014–1028 (2012).CAS

Chakraborty,S.,Mehtab,S.,Patwardhan,A。&Krishnan,Y。Pri-miR-17-92a转录本折叠成三级结构并自动调节其加工。RNA 181014-1028(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gan, H. H. & Gunsalus, K. C. The role of tertiary structure in MicroRNA target recognition. Methods Mol. Biol. 1970, 43–64 (2019).CAS

Gan,H.H。&Gunsalus,K.C。三级结构在MicroRNA靶标识别中的作用。方法分子生物学。1970年,43-64(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Uroda, T. et al. Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway. Mol. Cell 75, 982–995.e989 (2019).CAS

Uroda,T。等人。lncRNA MEG3中保守的假结对于刺激p53途径至关重要。分子细胞75982-995.e989(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fan, S. et al. lncRNA CISAL inhibits BRCA1 transcription by forming a tertiary structure at its promoter. iScience 23, 100835 (2020).CAS

Fan,S。等人。lncRNA-CISAL通过在其启动子处形成三级结构来抑制BRCA1转录。iScience 23100835(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bernat, V. & Disney, M. D. RNA structures as mediators of neurological diseases and as drug targets. Neuron 87, 28–46 (2015).CAS

Bernat,V。&Disney,M.D。RNA结构作为神经疾病的介质和药物靶标。神经元87,28-46(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rybak-Wolf, A. & Plass, M. RNA dynamics in Alzheimer’s disease. Molecules 26, https://doi.org/10.3390/molecules26175113 (2021).Liu, W., Higashikuni, Y. & Sata, M. Linking RNA dynamics to heart disease: the lncRNA/miRNA/mRNA axis in myocardial ischemia-reperfusion injury. Hypertens. Res.

Rybak Wolf,A。&Plass,M。阿尔茨海默病中的RNA动力学。分子26,https://doi.org/10.3390/molecules26175113(2021年)。Liu,W.,Higashikuni,Y。&Sata,M。将RNA动力学与心脏病联系起来:心肌缺血再灌注损伤中的lncRNA/miRNA/mRNA轴。高血压。研究。

45, 1067–1069 (2022).CAS .

451067-1069(2022)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Carlevaro-Fita, J. & Johnson, R. Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol. Cell 73, 869–883 (2019).CAS

Carlevaro Fita,J。&Johnson,R。全球定位系统:通过亚细胞定位理解长的非编码RNA。分子细胞73869-883(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mas-Ponte, D. et al. LncATLAS database for subcellular localization of long noncoding RNAs. RNA 23, 1080–1087 (2017).CAS

Mas Ponte,D。等人。用于长非编码RNA亚细胞定位的LncATLAS数据库。RNA 231080-1087(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tong, C. & Yin, Y. Localization of RNAs in the nucleus: cis- and trans-regulation. RNA Biol. 18, 2073–2086 (2021).CAS

Tong,C。&Yin,Y。RNA在细胞核中的定位:顺式和反式调节。RNA生物学。182073-2086(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deng, S., Feng, Y. & Pauklin, S. 3D chromatin architecture and transcription regulation in cancer. J. Hematol. Oncol. 15, 49 (2022).CAS

Deng,S.,Feng,Y。&Pauklin,S。癌症中的3D染色质结构和转录调控。J、 血液学。Oncol公司。15,49(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Limouse, C. et al. Global mapping of RNA-chromatin contacts reveals a proximity-dominated connectivity model for ncRNA-gene interactions. Nat. Commun. 14, 6073 (2023).CAS

Limouse,C。等人。RNA染色质接触的全局作图揭示了ncRNA-基因相互作用的邻近主导连接模型。国家公社。146073(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, X. et al. GRID-seq reveals the global RNA-chromatin interactome. Nat. Biotechnol. 35, 940–950 (2017).PubMed

Li,X。等人GRID-seq揭示了全球RNA染色质相互作用组。美国国家生物技术公司。35940-950(2017)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).CAS

Wang,K.C.等人。长的非编码RNA维持活性染色质以协调同源异型基因表达。自然472120-124(2011)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Singh, A. P. et al. A coordinated function of lncRNA HOTTIP and miRNA-196b underpinning leukemogenesis by targeting FAS signaling. Oncogene 41, 718–731 (2022).CAS

Singh,A.P.等人。通过靶向FAS信号传导,lncRNA HOTTIP和miRNA-196b支持白血病发生的协调功能。癌基因41718-731(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).CAS

Gupta,R.A。等人。长链非编码RNA HOTAIR重编程染色质状态以促进癌症转移。Nature 4641071–1076(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mozdarani, H., Ezzatizadeh, V. & Rahbar Parvaneh, R. The emerging role of the long non-coding RNA HOTAIR in breast cancer development and treatment. J. Transl. Med. 18, 152 (2020).CAS

Mozdarani,H.,Ezzatizadeh,V。和Rahbar Parvaneh,R。长非编码RNA HOTAIR在乳腺癌发展和治疗中的新兴作用。J、 翻译。医学杂志18152(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Portoso, M. et al. PRC2 is dispensable for HOTAIR-mediated transcriptional repression. EMBO J. 36, 981–994 (2017).CAS

Portoso,M。等人,PRC2对于HOTAIR介导的转录抑制是必不可少的。EMBO J.36981–994(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, C. K. et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354, 468–472 (2016).CAS

Chen,C.K.等人Xist将X染色体募集到核层,以实现染色体范围的沉默。科学354468-472(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brockdorff, N., Bowness, J. S. & Wei, G. Progress toward understanding chromosome silencing by Xist RNA. Genes Dev. 34, 733–744 (2020).CAS

Brockdorff,N.,Bowness,J.S。&Wei,G。通过Xist RNA理解染色体沉默的进展。Genes Dev.34733-744(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dossin, F. & Heard, E. The molecular and nuclear dynamics of X-chromosome inactivation. Cold Spring Harb. Perspect. Biol. 14, https://doi.org/10.1101/cshperspect.a040196 (2022).Engreitz, J. M., Ollikainen, N. & Guttman, M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression.

Dossin,F。&Heard,E。X染色体失活的分子和核动力学。冷泉兔。透视图。生物学14,https://doi.org/10.1101/cshperspect.a040196(2022年)。Engreitz,J.M.,Ollikainen,N。&Guttman,M。Long非编码RNA:控制核结构和基因表达的空间放大器。

Nat. Rev. Mol. Cell Biol. 17, 756–770 (2016).CAS .

Nat。Rev。Mol。Cell Biol。1756-770(2016)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Sarkar, M. K. et al. An Xist-activating antisense RNA required for X-chromosome inactivation. Nat. Commun. 6, 8564 (2015).CAS

Sarkar,M.K.等人。X染色体失活所需的Xist激活反义RNA。国家公社。68564(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gjaltema, R. A. F. et al. Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Mol. Cell 82, 190–208 e117 (2022).CAS

Gjaltema,R.A.F.等人。远端和近端顺式调控元件在Xist基因座上感知X染色体剂量和发育状态。分子细胞82190–208 e117(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sun, S. et al. Jpx RNA activates Xist by evicting CTCF. Cell 153, 1537–1551 (2013).CAS

Sun,S。等人,Jpx RNA通过驱逐CTCF激活Xist。细胞1531537-1551(2013)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, F. et al. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 16, 52 (2015).PubMed

Yang,F。等人。lncRNA Firre通过结合CTCF将无活性的X染色体锚定在核仁上,并维持H3K27me3甲基化。基因组生物学。16,52(2015)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kotzin, J. J. et al. The long non-coding RNA morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537, 239–243 (2016).CAS

Kotzin,J。J。等人。长的非编码RNA morrbid调节Bim和短寿命的骨髓细胞寿命。自然537239-243(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Petermann, E., Lan, L. & Zou, L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat. Rev. Mol. Cell Biol. 23, 521–540 (2022).CAS

Petermann,E.,Lan,L。&Zou,L。来源,R环和RNA-DNA杂种的分辨率和生理相关性。Nat。Rev。Mol。Cell Biol。23521-540(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Skourti-Stathaki, K. & Proudfoot, N. J. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 28, 1384–1396 (2014).CAS

Skourti-Stathaki,K。&Proudfoot,N.J。一把双刃剑:R环威胁基因组完整性和强大的基因表达调控因子。Genes Dev.281384–1396(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boque-Sastre, R. et al. Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc. Natl Acad. Sci. USA 112, 5785–5790 (2015).CAS

Boque Sastre,R。等人。头对头反义转录和R环形成促进转录激活。程序。国家科学院。科学。美国1125785-5790(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gong, D. et al. Long noncoding RNA Lnc530 localizes on R-loops and regulates R-loop formation and genomic stability in mouse embryonic stem cells. Stem Cell Rep. 18, 952–968 (2023).CAS

Gong,D。等人。长非编码RNA Lnc530定位于R环上,并调节小鼠胚胎干细胞中R环的形成和基因组稳定性。干细胞代表18952-968(2023)。中科院

Google Scholar

谷歌学者

Arab, K. et al. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat. Genet. 51, 217–223 (2019).CAS

Arab,K。等人,GADD45A结合R环并将TET1募集到CpG岛启动子。纳特·吉内特。51217-223(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).CAS

Shlyueva,D.,Stampfel,G。&Stark,A。转录增强子:从特性到全基因组预测。Genet自然Rev。15272-286(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2020).CAS

Andersson,R。&Sandelin,A。调节元件增强子和启动子活性的决定因素。Genet自然Rev。21,71-87(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Joo, J. Y., Schaukowitch, K., Farbiak, L., Kilaru, G. & Kim, T. K. Stimulus-specific combinatorial functionality of neuronal c-fos enhancers. Nat. Neurosci. 19, 75–83 (2016).CAS

Joo,J.Y.,Schaukowitch,K.,Farbiak,L.,Kilaru,G。&Kim,T.K。神经元c-fos增强子的刺激特异性组合功能。自然神经科学。19,75-83(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mikhaylichenko, O. et al. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev. 32, 42–57 (2018).CAS

Mikhaylichenko,O。等人。增强子或启动子活性的程度由eRNA转录的水平和方向性反映。基因发展32,42-57(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).CAS

Kim,T.K.等人。神经元活性调节增强子的广泛转录。《自然》465182-187(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schaukowitch, K. et al. Enhancer RNA facilitates NELF release from immediate early genes. Mol. Cell 56, 29–42 (2014).CAS

Schaukowitch,K。等人。增强子RNA促进NELF从即刻早期基因释放。分子细胞56,29-42(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsai, P. F. et al. A muscle-specific enhancer RNA mediates cohesin recruitment and regulates transcription in trans. Mol. Cell 71, 129–141.e128 (2018).CAS

Tsai,P.F。等人。肌肉特异性增强子RNA介导粘着蛋白募集并调节反式转录。分子细胞71129-141.e128(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gorbovytska, V. et al. Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. Nat. Commun. 13, 2429 (2022).CAS

Gorbovytska,V。等人。增强子RNA通过利用与NELF的多价相互作用来刺激Pol II暂停释放。国家公社。132429(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liang, L. et al. Complementary Alu sequences mediate enhancer-promoter selectivity. Nature 619, 868–875 (2023).CAS

Liang,L。等人。互补Alu序列介导增强子-启动子选择性。自然619868-875(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pott, S. & Lieb, J. D. What are super-enhancers? Nat. Genet. 47, 8–12 (2015).CAS

Pott,S.&Lieb,J.D。什么是超级增强剂?纳特·吉内特。47,8-12(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).CAS

Hnisz,D。等人。控制细胞特性和疾病的超级增强子。细胞155934-947(2013)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, H. & Liang, H. A high-resolution map of human enhancer RNA loci characterizes super-enhancer activities in cancer. Cancer Cell 38, 701–715.e705 (2020).CAS

Chen,H。&Liang,H。人类增强子RNA基因座的高分辨率图谱表征了癌症中的超增强子活性。癌细胞38701-715.e705(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fujinaga, K., Huang, F. & Peterlin, B. M. P-TEFb: the master regulator of transcription elongation. Mol. Cell 83, 393–403 (2023).CAS

Fujinaga,K.,Huang,F。&Peterlin,B.M。P-TEFb:转录延伸的主要调节因子。分子细胞83393-403(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Flynn, R. A. et al. 7SK-BAF axis controls pervasive transcription at enhancers. Nat. Struct. Mol. Biol. 23, 231–238 (2016).CAS

Flynn,R.A。等人7SK-BAF轴控制增强子的普遍转录。自然结构。分子生物学。23231-238(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Egloff, S. et al. The 7SK snRNP associates with the little elongation complex to promote snRNA gene expression. EMBO J. 36, 934–948 (2017).CAS

Egloff,S。等人。7SK snRNP与小延伸复合物结合以促进snRNA基因表达。EMBO J.36934–948(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roberts, T. C. The microRNA biology of the mammalian nucleus. Mol. Ther. Nucleic Acids 3, e188 (2014).CAS

Roberts,T.C。哺乳动物细胞核的microRNA生物学。摩尔热。核酸3,e188(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, J. Y., Kim, W. & Lee, K.-H. The role of microRNAs in the molecular link between circadian rhythm and autism spectrum disorder. Anim. Cells Syst. 27, 38–52 (2023).

Kim,J.Y.,Kim,W.&Lee,K.-H。microRNA在昼夜节律和自闭症谱系障碍之间的分子联系中的作用。动画。细胞系统。27,38-52(2023)。

Google Scholar

谷歌学者

Leucci, E. et al. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci. Rep. 3, 2535 (2013).PubMed

Leucci,E。等人。microRNA-9靶向长的非编码RNA MALAT1以在细胞核中降解。科学。第32535页(2013年)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).CAS

Hansen,T.B.等人,《涉及Ago2介导的环状反义RNA切割的miRNA依赖性基因沉默》,EMBO J.304414–4422(2011)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Laitinen, P. et al. Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia. PLoS One 17, e0265948 (2022).CAS

Laitinen,P。等人。核microRNA-466c调节Vegfa表达以应对缺氧。《公共科学图书馆·综合》17,e0265948(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, S. et al. The long non-coding RNA KLF3-AS1/miR-10a-3p/ZBTB20 axis improves the degenerative changes in human nucleus pulposus cells. Cell Tissue Res. 393, 97–109 (2023).CAS

Chen,S。等人。长的非编码RNA KLF3-AS1/miR-10a-3p/ZBTB20轴改善了人髓核细胞的退行性变化。细胞组织研究393,97-109(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dinami, R. et al. MiR-182-3p targets TRF2 and impairs tumor growth of triple-negative breast cancer. EMBO Mol. Med. 15, e16033 (2023).CAS

Dinami,R。等人MiR-182-3p靶向TRF2并损害三阴性乳腺癌的肿瘤生长。EMBO分子医学杂志15,e16033(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hill, M. & Tran, N. Global miRNA to miRNA Interactions: Impacts for miR-21. Trends Cell Biol. 31, 3–5 (2021).CAS

Hill,M。&Tran,N。全球miRNA与miRNA的相互作用:对miR-21的影响。趋势细胞生物学。31,3-5(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhu, S. et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18, 350–359 (2008).CAS

Zhu,S。等人。MicroRNA-21靶向侵袭和转移中的肿瘤抑制基因。Cell Res.18350–359(2008)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kartha, R. V. & Subramanian, S. Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front. Genet. 5, 8 (2014).PubMed

Kartha,R.V。&Subramanian,S。竞争性内源RNA(ceRNA):基因调控复杂性的新参与者。正面。基因。5,8(2014)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, S., Gong, Y., Yin, Y., Xing, H. & Zhang, N. The multiple function of long noncoding RNAs in osteosarcoma progression, drug resistance and prognosis. Biomed. Pharmacother. 127, 110141 (2020).CAS

Xu,S.,Gong,Y.,Yin,Y.,Xing,H。&Zhang,N。长非编码RNA在骨肉瘤进展,耐药性和预后中的多重功能。生物医学。药剂师。127110141(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jang, W., Im, M., Roh, J., Kang, J. & Kim, W. Hippo-YAP/TAZ pathway regulation: the crucial roles of lncRNAs in cancer. Anim. Cells Syst. 27, 309–320 (2023).CAS

Jang,W.,Im,M.,Roh,J.,Kang,J。&Kim,W。Hippo-YAP/TAZ途径调控:lncRNA在癌症中的关键作用。动画。细胞系统。27309-320(2023)。中科院

Google Scholar

谷歌学者

Schmidt, K. et al. Targeting the oncogenic long non-coding RNA SLNCR1 by blocking its sequence-specific binding to the androgen receptor. Cell Rep. 30, 541–554.e545 (2020).CAS

Schmidt,K.等人通过阻断其与雄激素受体的序列特异性结合来靶向致癌长非编码RNA SLNCR1。Cell Rep.30541–554.e545(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Castellanos-Rubio, A. et al. Cytoplasmic form of Carlr lncRNA facilitates inflammatory gene expression upon NF-kappaB activation. J. Immunol. 199, 581–588 (2017).CAS

Castellanos-Rubio,A。等人。细胞质形式的CALR lncRNA促进NF-κB活化后的炎症基因表达。J、 免疫。199581-588(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Qin, M. et al. lncRNA PRR34-AS1 promotes HCC development via modulating Wnt/beta-catenin pathway by absorbing miR-296-5p and upregulating E2F2 and SOX12. Mol. Ther. Nucleic Acids 25, 37–52 (2021).PubMed

Qin,M。等人。lncRNA PRR34-AS1通过吸收miR-296-5p和上调E2F2和SOX12来调节Wnt/β-连环蛋白途径,从而促进HCC的发展。摩尔热。核酸25,37-52(2021)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, Z. et al. Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proc. Natl Acad. Sci. USA 112, E6293–E6300 (2015).CAS

Wang,Z。等人。含有端粒重复序列的RNA(TERRA)构成细胞外炎性外泌体的核蛋白成分。程序。国家科学院。科学。美国112,E6293–E6300(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).CAS

Jaenisch,R。&Bird,A。基因表达的表观遗传调控:基因组如何整合内在和环境信号。纳特·吉内特。33245-254(2003)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Baxter, E., Windloch, K., Gannon, F. & Lee, J. S. Epigenetic regulation in cancer progression. Cell Biosci. 4, 45 (2014).PubMed

Baxter,E.,Windloch,K.,Gannon,F。&Lee,J.S。癌症进展中的表观遗传调控。细胞生物科学。4,45(2014)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, L., Lu, Q. & Chang, C. Epigenetics in health and disease. Adv. Exp. Med. Biol. 1253, 3–55 (2020).CAS

Zhang,L.,Lu,Q。&Chang,C。健康和疾病中的表观遗传学。高级实验医学生物学。1253,3-55(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Helm, M. & Motorin, Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet. 18, 275–291 (2017).CAS

Helm,M。&Motorin,Y。检测表位转录组中的RNA修饰:预测和验证。Genet自然Rev。18275-291(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).CAS

Roundtree,I.A.,Evans,M.E.,Pan,T。&He,C。基因表达调控中的动态RNA修饰。细胞1691187-1200(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 20, 303–322 (2020).CAS

Barbieri,I。&Kouzarides,T。RNA修饰在癌症中的作用。《国家癌症评论》2033-322(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Matsumura, Y., Wei, F. Y. & Sakai, J. Epitranscriptomics in metabolic disease. Nat. Metab. 5, 370–384 (2023).CAS

Matsumura,Y.,Wei,F.Y。&Sakai,J。代谢疾病中的表位转录组学。自然代谢。5370-384(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shi, H., Wei, J. & He, C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell 74, 640–650 (2019).CAS

Shi,H.,Wei,J。&He,C。Where,when,how:RNA甲基化作者,读者和橡皮擦的上下文相关功能。分子细胞74640-650(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ru, W. et al. Insight into m(6)A methylation from occurrence to functions. Open Biol. 10, 200091 (2020).CAS

Ru,W。等人对m(6)A甲基化从发生到功能的洞察。打开Biol。10200091(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, J. H. et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol. Cell 81, 3368–3385.e3369 (2021).CAS

Lee,J。H。等人。增强子RNA m6A甲基化促进转录冷凝物形成和基因激活。分子细胞813368–3385.e3369(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pendleton, K. E. et al. The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835.e814 (2017).CAS

Pendleton,K.E。等人。U6 snRNA m(6)A甲基转移酶METTL16调节SAM合成酶内含子的保留。细胞169824-835.e814(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Tran, N. et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47, 7719–7733 (2019).PubMed

van Tran,N。等人。人18S rRNA m6A甲基转移酶METTL5被TRMT112稳定。核酸研究477719-7733(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ma, H. et al. N(6-)Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15, 88–94 (2019).CAS

Ma,H。等人,N(6-)甲基腺苷甲基转移酶ZCCHC4介导核糖体RNA甲基化。自然化学。生物学杂志15,88-94(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Alarcon, C. R. et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).CAS

Alarcon,C.R。等人,HNRNPA2B1是m(6)a依赖性核RNA加工事件的介质。细胞1621299-1308(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alarcon, C. R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S. F. N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485 (2015).CAS

Alarcon,C.R.,Lee,H.,Goodarzi,H.,Halberg,N。&Tavazoie,S.F。N6-甲基腺苷标记用于加工的主要microRNA。自然519482-485(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, C. et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20, 2262–2276 (2017).CAS

Zhou,C。等人。m6A circRNA的全基因组图谱鉴定了与mRNA不同的广泛和细胞类型特异性甲基化模式。Cell Rep.202262–2276(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, Y. et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 27, 626–641 (2017).CAS

Yang,Y。等人。由N(6)-甲基腺苷驱动的环状RNA的广泛翻译。Cell Res.27626–641(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Y. G. et al. N6-Methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109.e109 (2019).CAS

Chen,Y.G.等人,N6-甲基腺苷修饰控制环状RNA免疫。分子细胞76,96-109.e109(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).CAS

Liu,N。等人。N(6)-甲基腺苷依赖性RNA结构开关调节RNA-蛋白质相互作用。自然518560-564(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, D. et al. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res. 46, 3906–3920 (2018).CAS

Yang,D。等人。lincRNA 1281的N6-甲基腺苷修饰对于mESC分化潜能至关重要。核酸研究463906-3920(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, M. et al. Abnormality of m6A mRNA methylation is involved in Alzheimer’s disease. Front. Neurosci. 14, 98 (2020).PubMed

Han,M。等人。m6A mRNA甲基化异常与阿尔茨海默病有关。正面。神经科学。14,98(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, L. et al. N(6)-Methyladenosine: a potential breakthrough for human cancer. Mol. Ther. Nucleic Acids 19, 804–813 (2020).CAS

Liu,L。等人。N(6)-甲基腺苷:人类癌症的潜在突破。摩尔热。核酸19804-813(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Paramasivam, A., Vijayashree Priyadharsini, J. & Raghunandhakumar, S. N6-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases. Hypertens. Res. 43, 153–154 (2020).CAS

Paramasivam,A.,Vijayashree Priyadharsini,J。&Raghunandhakumar,S。N6腺苷甲基化(m6A):高血压和心血管疾病中有希望的新分子靶标。高血压。第43153-154号决议(2020年)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fang, D. et al. m6A modification-mediated lncRNA TP53TG1 inhibits gastric cancer progression by regulating CIP2A stability. Cancer Sci. 113, 4135–4150 (2022).CAS

Fang,D。等人。m6A修饰介导的lncRNA TP53TG1通过调节CIP2A稳定性来抑制胃癌进展。癌症科学。1134135-4150(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, X. et al. LncRNA FENDRR with m6A RNA methylation regulates hypoxia-induced pulmonary artery endothelial cell pyroptosis by mediating DRP1 DNA methylation. Mol. Med. 28, 126 (2022).CAS

具有m6A RNA甲基化的LncRNA-FENDRR通过介导DRP1 DNA甲基化来调节缺氧诱导的肺动脉内皮细胞pyroptosis。分子医学28126(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xue, C., Zhao, Y. & Li, L. Advances in RNA cytosine-5 methylation: detection, regulatory mechanisms, biological functions and links to cancer. Biomark. Res. 8, 43 (2020).PubMed

Xue,C.,Zhao,Y。&Li,L。RNA胞嘧啶-5甲基化的进展:检测,调节机制,生物学功能和与癌症的联系。生物标志物第8、43号决议(2020年)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cui, L. et al. RNA modifications: importance in immune cell biology and related diseases. Signal Transduct. Target Ther. 7, 334 (2022).CAS

Cui,L。等人。RNA修饰:在免疫细胞生物学和相关疾病中的重要性。信号传输管。目标Ther。7334(2022年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Y. S., Yang, W. L., Zhao, Y. L. & Yang, Y. G. Dynamic transcriptomic m(5) C and its regulatory role in RNA processing. Wiley Interdiscip. Rev. RNA 12, e1639 (2021).CAS

Chen,Y.S.,Yang,W.L.,Zhao,Y.L。和Yang,Y.G。动态转录组m(5)C及其在RNA加工中的调节作用。Wiley Interdiscip公司。RNA版本12,e1639(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y. et al. 5-methylcytosine (m(5)C) RNA modification controls the innate immune response to virus infection by regulating type I interferons. Proc. Natl Acad. Sci. USA 119, e2123338119 (2022).CAS

Zhang,Y。等人。5-甲基胞嘧啶(m(5)C)RNA修饰通过调节I型干扰素来控制对病毒感染的先天免疫应答。程序。国家科学院。科学。美国119,e2123338119(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, X. et al. RNA modifications in aging-associated cardiovascular diseases. Aging 14, 8110–8136 (2022).PubMed

Yang,X。等人。衰老相关心血管疾病中的RNA修饰。年龄148110-8136(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bohnsack, K. E., Hobartner, C. & Bohnsack, M. T. Eukaryotic 5-methylcytosine (m(5)C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes 10, https://doi.org/10.3390/genes10020102 (2019).Song, H. et al. Biological roles of RNA m(5)C modification and its implications in cancer immunotherapy.

Bohnsack,K.E.,Hobartner,C。&Bohnsack,M.T。真核生物5-甲基胞嘧啶(M(5)C)RNA甲基转移酶:机制,细胞功能和与疾病的联系。基因10,https://doi.org/10.3390/genes10020102(2019年)。Song,H。等。RNA m(5)C修饰的生物学作用及其在癌症免疫治疗中的意义。

Biomark. Res. 10, 15 (2022).PubMed .

《生物标志物研究》第10、15期(2022)。PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, Z. et al. Aberrant NSUN2-mediated m(5)C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene 39, 6906–6919 (2020).CAS

Sun,Z。等人。异常的NSUN2介导的H19 lncRNA的m(5)C修饰与肝细胞癌的分化不良有关。癌基因396906-6919(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fang, L. et al. m5C-methylated lncRNA NR_033928 promotes gastric cancer proliferation by stabilizing GLS mRNA to promote glutamine metabolism reprogramming. Cell Death Dis. 14, 520 (2023).CAS

Fang,L。等人,m5C甲基化的lncRNA NR\U 033928通过稳定GLS mRNA促进谷氨酰胺代谢重编程来促进胃癌增殖。细胞死亡Dis。14520(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Elliott, B. A. et al. Modification of messenger RNA by 2’-O-methylation regulates gene expression in vivo. Nat. Commun. 10, 3401 (2019).PubMed

Elliott,B.A。等人。通过2'-O-甲基化修饰信使RNA调节体内基因表达。国家公社。103401(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Erales, J. et al. Evidence for rRNA 2’-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc. Natl Acad. Sci. USA 114, 12934–12939 (2017).CAS

Erales,J。等人。rRNA 2'-O-甲基化可塑性的证据:控制人类核糖体的内在翻译能力。程序。国家科学院。科学。美国11412934–12939(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Ingen, E. et al. C/D box snoRNA SNORD113-6 guides 2’-O-methylation and protects against site-specific fragmentation of tRNA(Leu)(TAA) in vascular remodeling. Mol. Ther. Nucleic Acids 30, 162–172 (2022).PubMed

van Ingen,E。等人,C/D盒snoRNA SNORD113-6指导2'-O-甲基化,并在血管重塑中防止tRNA(Leu)(TAA)的位点特异性片段化。摩尔热。核酸30162-172(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, H. et al. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2’-O-methylation via NOP58 recruitment in colorectal cancer. Mol. Cancer 19, 95 (2020).PubMed

Wu,H。等人。长非编码RNA ZFAS1通过NOP58募集在结直肠癌中促进小核仁RNA介导的2'-O-甲基化。分子癌症19,95(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mao, L. H. et al. LncRNA-LALR1 upregulates small nucleolar RNA SNORD72 to promote growth and invasion of hepatocellular carcinoma. Aging 12, 4527–4546 (2020).CAS

Mao,L.H。等人。LncRNA-LALR1上调小核仁RNA SNORD72以促进肝细胞癌的生长和侵袭。年龄124527-4546(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zinshteyn, B. & Nishikura, K. Adenosine-to-inosine RNA editing. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 202–209 (2009).CAS

Zinshteyn,B。&Nishikura,K。腺苷到肌苷RNA编辑。Wiley Interdiscip公司。版本系统。《生物医学》1202-209(2009)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gatsiou, A., Vlachogiannis, N., Lunella, F. F., Sachse, M. & Stellos, K. Adenosine-to-inosine RNA editing in health and disease. Antioxid. Redox Signal 29, 846–863 (2018).CAS

Gatsiou,A.,Vlachogiannis,N.,Lunella,F.F.,Sachse,M。&Stellos,K。腺苷到肌苷RNA在健康和疾病中的编辑。抗氧化剂。氧化还原信号29846-863(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, W. et al. The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1. Cell Discov. 8, 117 (2022).CAS

Huang,W。等人。snoRNA样lncRNA LNC-SNO49AB通过激活RNA编辑酶ADAR1来驱动白血病。细胞Discov。8117(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Borchardt, E. K., Martinez, N. M. & Gilbert, W. V. Regulation and function of RNA pseudouridylation in human cells. Annu. Rev. Genet. 54, 309–336 (2020).CAS

Borchardt,E.K.,Martinez,N.M。和Gilbert,W.V。人类细胞中RNA假尿苷酸化的调节和功能。年。Genet牧师。54309-336(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, T. Y., Mehta, R. & Glatt, S. Pseudouridines in RNAs: switching atoms means shifting paradigms. FEBS Lett. 595, 2310–2322 (2021).CAS

Lin,T.Y.,Mehta,R。&Glatt,S。Pseudouridines在RNA中:切换原子意味着转变范式。FEBS Lett公司。5952310-2322(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kiss, D. J. et al. The structure-derived mechanism of box H/ACA pseudouridine synthase offers a plausible paradigm for programmable RNA editing. ACS Catal. 12, 2756–2769 (2022).Zacchini, F. et al. Human dyskerin binds to cytoplasmic H/ACA-box-containing transcripts affecting nuclear hormone receptor dependence.

Kiss,D.J。等人。box H/ACA假尿苷合酶的结构衍生机制为可编程RNA编辑提供了一个合理的范例。ACS加泰罗尼亚。122756-2769(2022)。Zacchini,F。等人。人dyskerin与含有影响核激素受体依赖性的转录本的细胞质H/ACA盒结合。

Genome Biol. 23, 177 (2022).CAS .

基因组生物学。23177(2022)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Badis, G., Fromont-Racine, M. & Jacquier, A. A snoRNA that guides the two most conserved pseudouridine modifications within rRNA confers a growth advantage in yeast. RNA 9, 771–779 (2003).CAS

Badis,G.,Fromont-Racine,M。&Jacquier,A。指导rRNA中两个最保守的假尿苷修饰的snoRNA赋予酵母生长优势。RNA 9771-779(2003)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Breznak, S. M. et al. H/ACA snRNP-dependent ribosome biogenesis regulates translation of polyglutamine proteins. Sci. Adv. 9, eade5492 (2023).CAS

Breznak,S.M.等人,H/ACA snRNP依赖性核糖体生物发生调节聚谷氨酰胺蛋白的翻译。科学。广告9,eade5492(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jady, B. E., Ketele, A., Moulis, D. & Kiss, T. Guide RNA acrobatics: positioning consecutive uridines for pseudouridylation by H/ACA pseudouridylation loops with dual guide capacity. Genes Dev. 36, 70–83 (2022).CAS

Jady,B.E.,Ketele,A.,Moulis,D。&Kiss,T。Guide RNA acrobatics:通过具有双引导能力的H/ACA假尿苷化环定位连续尿苷进行假尿苷化。基因发展36,70-83(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).CAS

Hentze,M.W.,Castello,A.,Schwarzl,T。&Preiss,T。一个勇敢的RNA结合蛋白新世界。Nat。Rev。Mol。Cell Biol。19327-341(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Romero-Barrios, N., Legascue, M. F., Benhamed, M., Ariel, F. & Crespi, M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res. 46, 2169–2184 (2018).CAS

Romero Barrios,N.,Legascue,M.F.,Benhamed,M.,Ariel,F。&Crespi,M。长非编码RNA的剪接调控。核酸研究462169-2184(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368 (2017).CAS

Galganski,L.,Urbanek,M.O。&Krzyzosiak,W.J。核斑点:分子组织,生物学功能和在疾病中的作用。核酸研究4510350-10368(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morais, P., Adachi, H. & Yu, Y. T. Spliceosomal snRNA epitranscriptomics. Front. Genet. 12, 652129 (2021).CAS

Morais,P.,Adachi,H。&Yu,Y.T。剪接体snRNA表位转录组学。正面。基因。12652129(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shao, C. et al. Mechanisms for U2AF to define 3’ splice sites and regulate alternative splicing in the human genome. Nat. Struct. Mol. Biol. 21, 997–1005 (2014).CAS

Shao,C。等人。U2AF定义3'剪接位点并调节人类基因组中选择性剪接的机制。自然结构。分子生物学。21997-1005(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tholen, J., Razew, M., Weis, F. & Galej, W. P. Structural basis of branch site recognition by the human spliceosome. Science 375, 50–57 (2022).CAS

Tholen,J.,Razew,M.,Weis,F。&Galej,W.P。人类剪接体识别分支位点的结构基础。科学375,50-57(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Agrawal, A. A. et al. An extended U2AF(65)-RNA-binding domain recognizes the 3’ splice site signal. Nat. Commun. 7, 10950 (2016).CAS

Agrawal,A.A。等人。扩展的U2AF(65)-RNA结合结构域识别3'剪接位点信号。国家公社。710950(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bernard, D. et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 29, 3082–3093 (2010).CAS

Bernard,D。等人。长核保留的非编码RNA通过调节基因表达来调节突触发生。EMBO J.293082–3093(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).CAS

Tripathi,V。等人。核保留的非编码RNA MALAT1通过调节SR剪接因子磷酸化来调节选择性剪接。分子细胞39925-938(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miao, H. et al. MALAT1 modulates alternative splicing by cooperating with the splicing factors PTBP1 and PSF. Sci. Adv. 8, eabq7289 (2022).CAS

Miao,H。等人。MALAT1通过与剪接因子PTBP1和PSF合作来调节选择性剪接。科学。Adv.8,eabq7289(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bhat, P., Honson, D. & Guttman, M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat. Rev. Mol. Cell Biol. 22, 653–670 (2021).CAS

Bhat,P.,Honson,D。&Guttman,M。核区室化作为定量控制基因表达的机制。Nat。Rev。Mol。Cell Biol。22653-670(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fox, A. H., Nakagawa, S., Hirose, T. & Bond, C. S. Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem. Sci. 43, 124–135 (2018).CAS

Fox,A.H.,Nakagawa,S.,Hirose,T。&Bond,C.S。Paraspeckles:长的非编码RNA遇到相分离的地方。趋势生物化学。科学。43124-135(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Imamura, K. et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell 54, 1055 (2014).CAS

Imamura,K。等人。长的非编码RNA NEAT1依赖性SFPQ从启动子区域重新定位到副斑,在免疫刺激下介导IL8表达。分子细胞541055(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hirose, T. et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol. Biol. Cell 25, 169–183 (2014).PubMed

Hirose,T。等人。NEAT1长非编码RNA通过亚核体内的蛋白质隔离来调节转录。分子生物学。细胞25169-183(2014)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Song, C. et al. Immunotherapy for Alzheimer’s disease: targeting beta-amyloid and beyond. Transl. Neurodegener. 11, 18 (2022).CAS

Song,C.等人。阿尔茨海默病的免疫疗法:靶向β淀粉样蛋白及其他。翻译。神经退行性变。11、18(2022年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mittal, P. & Roberts, C. W. M. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 17, 435–448 (2020).CAS

Mittal,P。&Roberts,C.W.M。癌症生物学,生物标志物和治疗中的SWI/SNF复合物。国家修订临床。Oncol公司。17435-448(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reddy, D. et al. Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing. EMBO Rep. 24, e55345 (2023).CAS

Reddy,D。等人,Paraspeckles与SWI/SNF亚基ARID1B相互作用以调节转录和剪接。EMBO代表24,e55345(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

McDonald, B. et al. Canonical BAF complex activity shapes the enhancer landscape that licenses CD8(+) T cell effector and memory fates. Immunity 56, 1303–1319.e1305 (2023).CAS

McDonald,B。等人。典型的BAF复合物活性塑造了增强子景观,从而许可了CD8(+)T细胞效应子和记忆命运。免疫力561303–1319.e1305(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fujisawa, T. & Filippakopoulos, P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat. Rev. Mol. Cell Biol. 18, 246–262 (2017).CAS

Fujisawa,T。&Filippakopoulos,P。含溴结构域蛋白质的功能及其在体内平衡和癌症中的作用。Nat。Rev。Mol。Cell Biol。18246-262(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rahnamoun, H. et al. RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nat. Struct. Mol. Biol. 25, 687–697 (2018).CAS

Rahnamoun,H。等人。RNA与BRD4相互作用以促进增强的染色质参与和转录激活。自然结构。分子生物学。25687-697(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pastori, C. et al. The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation. Proc. Natl Acad. Sci. USA 112, 8326–8331 (2015).CAS

Bromodomain蛋白BRD4控制HOTAIR,HOTAIR是胶质母细胞瘤增殖所必需的长非编码RNA。程序。国家科学院。科学。美国1128326–8331(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pei, R. et al. JMJD6-BRD4 complex stimulates lncRNA HOTAIR transcription by binding to the promoter region of HOTAIR and induces radioresistance in liver cancer stem cells. J. Transl. Med. 21, 752 (2023).CAS

Pei,R。等人,JMJD6-BRD4复合物通过与HOTAIR的启动子区域结合来刺激lncRNA HOTAIR转录,并诱导肝癌干细胞的放射抗性。J、 翻译。医学杂志21752(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pistoni, M. et al. Longnoncoding RNA NEAT1 acts as a molecular switch for BRD4 transcriptional activity and mediates repression of BRD4/WDR5 target genes. Mol. Cancer Res. 19, 799–811 (2021).PubMed

Pistoni,M。等人。长链非编码RNA NEAT1充当BRD4转录活性的分子开关,并介导BRD4/WDR5靶基因的抑制。Mol.Cancer Res.19799–811(2021)。PubMed出版社

Google Scholar

谷歌学者

Easton, A. et al. Identification and characterization of a MAPT-targeting locked nucleic acid antisense oligonucleotide therapeutic for tauopathies. Mol. Ther. Nucleic Acids 29, 625–642 (2022).CAS

Easton,A.等人。针对tauopathies的MAPT靶向锁定核酸反义寡核苷酸的鉴定和表征。摩尔热。核酸29625-642(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grossi, E. et al. A lncRNA-SWI/SNF complex crosstalk controls transcriptional activation at specific promoter regions. Nat. Commun. 11, 936 (2020).CAS

Grossi,E。等人,lncRNA SWI/SNF复合物串扰控制特定启动子区域的转录激活。国家公社。11936(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mancini, M. et al. Involvement of transcribed lncRNA uc.291 and SWI/SNF complex in cutaneous squamous cell carcinoma. Discov. Oncol. 12, 14 (2021).CAS

Mancini,M。等人。转录的lncRNA uc.291和SWI/SNF复合物参与皮肤鳞状细胞癌。迪斯科。Oncol公司。12、14(2021年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, Y. K. RNA therapy: rich history, various applications and unlimited future prospects. Exp. Mol. Med. 54, 455–465 (2022).CAS

Kim,Y.K。RNA疗法:丰富的历史,各种应用和无限的未来前景。实验分子医学54455-465(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lim, K. H., Yang, S., Kim, S. H. & Joo, J. Y. Elevation of ACE2 as a SARS-CoV-2 entry receptor gene expression in Alzheimer’s disease. J. Infect. 81, e33–e34 (2020).CAS

Lim,K.H.,Yang,S.,Kim,S.H。&Joo,J.Y。ACE2在阿尔茨海默病中作为SARS-CoV-2进入受体基因表达的升高。J、 感染。81,e33–e34(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lim, K. H., Yang, S., Kim, S. H. & Joo, J. Y. Identifying new COVID-19 receptor neuropilin-1 in severe Alzheimer’s disease patients group brain using genome-wide association study approach. Front. Genet. 12, 741175 (2021).CAS

Lim,K.H.,Yang,S.,Kim,S.H。&Joo,J.Y。使用全基因组关联研究方法鉴定严重阿尔茨海默病患者组脑中新的COVID-19受体neuropilin-1。正面。基因。12741175(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Feng, R., Patil, S., Zhao, X., Miao, Z. & Qian, A. RNA therapeutics—research and clinical advancements. Front. Mol. Biosci. 8, 710738 (2021).CAS

Feng,R.,Patil,S.,Zhao,X.,Miao,Z。&Qian,A。RNA治疗研究和临床进展。正面。摩尔生物科学。8710738(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics—challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).CAS

Winkle,M.,El Daly,S.M.,Fabbri,M。&Calin,G.A。非编码RNA治疗挑战和潜在解决方案。《药物目录》修订版。20629-651(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rasul, M. F. et al. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol. Cancer 21, 64 (2022).PubMed

Rasul,M.F。等人克服使用CRISPR/Cas9替代癌症治疗的主要挑战的策略。分子癌症21,64(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ledford, H. Is CRISPR safe? Genome editing gets its first FDA scrutiny. Nature 623, 234–235 (2023).CAS

莱德福德,H。CRISPR安全吗?基因组编辑首次受到FDA审查。自然623234-235(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Antonio-Aguirre, B. & Arevalo, J. F. Treating patients with geographic atrophy: are we there yet? Int. J. Retin. Vitreous 9, 72 (2023).

Antonio Aguirre,B.&Arevalo,J.F.治疗地理萎缩患者:我们到了吗?内景J.Retin。玻璃体9,72(2023)。

Google Scholar

谷歌学者

Kang, C. Avacincaptad pegol: first approval. Drugs 83, 1447–1453 (2023).CAS

Kang,C。Avacincaptad pegol:首次批准。药物831447-1453(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhu, Y., Zhu, L., Wang, X. & Jin, H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).CAS

Zhu,Y.,Zhu,L.,Wang,X。&Jin,H。基于RNA的疗法:概述和招股说明书。细胞死亡Dis。13644(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sparmann, A. & Vogel, J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J. 42, e114760 (2023).CAS

Sparmann,A。&Vogel,J。基于RNA的医学:从分子机制到治疗。EMBO J.42,e114760(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, C. K., Kafert-Kasting, S. & Thum, T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ. Res. 126, 663–678 (2020).CAS

Huang,C.K.,Kafert-Kasting,S。&Thum,T。心血管疾病非编码RNA治疗剂的临床前和临床开发。保监会。第126663-678号决议(2020年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).CAS

Paunovska,K.,Loughrey,D。&Dahlman,J.E。用于RNA治疗的药物递送系统。Genet自然Rev。23265-280(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, Y., Shu, R. & Liu, J. The development and improvement of ribonucleic acid therapy strategies. Mol. Ther. Nucleic Acids 26, 997–1013 (2021).CAS

Zhao,Y.,Shu,R。&Liu,J。核糖核酸治疗策略的发展和改进。摩尔热。核酸26997-1013(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Azofeifa, J. G. et al. Enhancer RNA profiling predicts transcription factor activity. Genome Res. 28, 334–344 (2018).CAS

Azofeifa,J.G。等人增强子RNA分析预测转录因子活性。基因组研究28334-344(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marinus, T. & Incarnato, D. RNA framework for assaying the structure of RNAs by high-throughput sequencing. Methods Mol. Biol. 2284, 63–76 (2021).CAS

Marinus,T。&Inconato,D。RNA框架,用于通过高通量测序测定RNA的结构。方法分子生物学。2284,63-76(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shao, D. et al. An m6A/m5C/m1A/m7G-related long non-coding RNA signature to predict prognosis and immune features of glioma. Front. Genet. 13, 903117 (2022).CAS

Shao,D。等人。一种m6A/m5C/m1A/m7G相关的长非编码RNA标记,用于预测神经胶质瘤的预后和免疫特征。正面。基因。13903117(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lim, K. H., Kim, S. H., Yang, S., Chun, S. & Joo, J. Y. Advances in multiplex PCR for Alzheimer’s disease diagnostics targeting CDK genes. Neurosci. Lett. 749, 135715 (2021).CAS

Lim,K.H.,Kim,S.H.,Yang,S.,Chun,S。&Joo,J.Y。针对CDK基因的阿尔茨海默病诊断的多重PCR进展。神经科学。利特。749135715(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, S. H., Lim, K. H., Yang, S. & Joo, J. Y. Boosting of tau protein aggregation by CD40 and CD48 gene expression in Alzheimer’s disease. FASEB J. 37, e22702 (2023).CAS

Kim,S.H.,Lim,K.H.,Yang,S。&Joo,J.Y。通过CD40和CD48基因表达在阿尔茨海默病中促进tau蛋白聚集。FASEB J.37,e22702(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, S. H. et al. Prediction of Alzheimer’s disease-specific phospholipase c gamma-1 SNV by deep learning-based approach for high-throughput screening. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2011250118 (2021).Joo, J. Y. et al. Prediction of genetic alteration of phospholipase C isozymes in brain disorders: Studies with deep learning.

Kim,S.H.等人。通过基于深度学习的高通量筛选方法预测阿尔茨海默病特异性磷脂酶cγ-1 SNV。程序。国家科学院。科学。美国118,https://doi.org/10.1073/pnas.2011250118(2021年)。Joo,J.Y.等人。脑疾病中磷脂酶C同工酶遗传改变的预测:深度学习研究。

Adv. Biol. Regul. 82, 100833 (2021).CAS .

高级生物学。规则。82, 100833 (2021).CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Yang, S., Kim, S. H., Kang, M. & Joo, J. Y. Harnessing deep learning into hidden mutations of neurological disorders for therapeutic challenges. Arch. Pharm. Res. 46, 535–549 (2023).CAS

Yang,S.,Kim,S.H.,Kang,M。&Joo,J.Y。利用深度学习对神经系统疾病的隐藏突变进行治疗挑战。拱门。《药学》第46535-549号决议(2023年)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lim, K. H. et al. Cryptic mutations of PLC family members in brain disorders: recent discoveries and a deep-learning-based approach. Brain 146, 1267–1280 (2023).PubMed

Lim,K.H.等人,《PLC家族成员在脑部疾病中的隐性突变:最新发现和基于深度学习的方法》。大脑1461267-1280(2023)。PubMed出版社

Google Scholar

谷歌学者

Kim, S.-H., Yang, S., Yang, E., Kang, M. & Joo, J.-Y. Potent of strategic approaches for tauopathies ranging from single-cell transcriptome to microbiome. Anim. Cells Syst. 27, 378–393 (2023).CAS

Kim,S.-H.,Yang,S.,Yang,E.,Kang,M。&Joo,J.-Y。从单细胞转录组到微生物组的tau蛋白病的有效战略方法。动画。细胞系统。27378-393(2023)。中科院

Google Scholar

谷歌学者

Sun, P. P. et al. DeepMRMP: a new predictor for multiple types of RNA modification sites using deep learning. Math. Biosci. Eng. 16, 6231–6241 (2019).PubMed

Sun,P。P。等人。DeepMRMP:使用深度学习的多种类型RNA修饰位点的新预测因子。数学。生物科学。工程166231–6241(2019)。PubMed出版社

Google Scholar

谷歌学者

Noviello, T. M. R., Ceccarelli, F., Ceccarelli, M. & Cerulo, L. Deep learning predicts short non-coding RNA functions from only raw sequence data. PLoS Comput. Biol. 16, e1008415 (2020).CAS

Noviello,T.M.R.,Ceccarelli,F.,Ceccarelli,M。&Cerulo,L。深度学习仅从原始序列数据预测短的非编码RNA功能。PLoS计算机。生物学16,e1008415(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liang, S. et al. Rm-LR: a long-range-based deep learning model for predicting multiple types of RNA modifications. Comput. Biol. Med. 164, 107238 (2023).CAS

Liang,S。et al。Rm LR:一种基于远程的深度学习模型,用于预测多种类型的RNA修饰。计算机。生物医学164107238(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mostavi, M., Salekin, S. & Huang, Y. Deep-2’-O-Me: predicting 2’-O-methylation sites by convolutional neural networks. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2394–2397 (2018).PubMed

Mostavi,M.,Salekin,S。&Huang,Y。Deep-2'-O-Me:通过卷积神经网络预测2'-O-甲基化位点。年。国际会议IEEE工程医学生物学。Soc.20182394-2397(2018)。PubMed出版社

Google Scholar

谷歌学者

Zhuang, J. et al. PseUdeep: RNA pseudouridine site identification with deep learning algorithm. Front. Genet. 12, 773882 (2021).CAS

Zhuang,J。et al。PseUdeep:用深度学习算法识别RNA假尿苷位点。正面。基因。12773882(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, H. et al. EMDLP: ensemble multiscale deep learning model for RNA methylation site prediction. BMC Bioinform. 23, 221 (2022).

Wang,H。等人。EMDLP:用于RNA甲基化位点预测的集成多尺度深度学习模型。BMC生物信息。23221(2022)。

Google Scholar

谷歌学者

Hasan, M. M. et al. Deepm5C: a deep-learning-based hybrid framework for identifying human RNA N5-methylcytosine sites using a stacking strategy. Mol. Ther. 30, 2856–2867 (2022).CAS

Hasan,M.M.等人。Deepm5C:一种基于深度学习的混合框架,用于使用堆叠策略识别人类RNA N5甲基胞嘧啶位点。摩尔热。302856-2867(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Luo, Z. et al. DLm6Am: a deep-learning-based tool for identifying N6,2’-O-dimethyladenosine sites in RNA sequences. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms231911026 (2022).Wen, M., Cong, P., Zhang, Z., Lu, H. & Li, T. DeepMirTar: a deep-learning approach for predicting human miRNA targets.

Luo,Z。等人。DLm6Am:一种基于深度学习的工具,用于鉴定RNA序列中的N6,2'-O-二甲基腺苷位点。Int.J.Mol.Sci。23年,https://doi.org/10.3390/ijms231911026(2022年)。Wen,M.,Cong,P.,Zhang,Z.,Lu,H。&Li,T。DeepMirTar:预测人类miRNA靶标的深度学习方法。

Bioinformatics 34, 3781–3787 (2018).CAS .

生物信息学343781-3787(2018)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Alam, T., Islam, M. T., Househ, M., Bouzerdoum, A. & Kawsar, F. A. DeepDSSR: deep learning structure for human donor splice sites recognition. Stud. Health Technol. Inf. 262, 236–239 (2019).

Alam,T.,Islam,M.T.,Housh,M.,Bouzerdoum,A。&Kawsar,F.A。DeepDSSR:用于人类供体剪接位点识别的深度学习结构。螺柱健康技术。Inf.262236–239(2019)。

Google Scholar

谷歌学者

Pan, X., Fang, Y., Li, X., Yang, Y. & Shen, H. B. RBPsuite: RNA-protein binding sites prediction suite based on deep learning. BMC Genom. 21, 884 (2020).CAS

Pan,X.,Fang,Y.,Li,X.,Yang,Y。&Shen,H.B。RBPsuite:基于深度学习的RNA-蛋白质结合位点预测套件。BMC基因组。21884(2020)。中科院

Google Scholar

谷歌学者

Zeng, M. et al. DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding. Brief Bioinform. 23, https://doi.org/10.1093/bib/bbab360 (2022).Chaabane, M., Williams, R. M., Stephens, A. T. & Park, J. W. circDeep: deep learning approach for circular RNA classification from other long non-coding RNA.

Zeng,M。et al。DeepLncLoc:基于子序列嵌入的长非编码RNA亚细胞定位预测的深度学习框架。简介Bioinform。23年,https://doi.org/10.1093/bib/bbab360(2022年)。Chaabane,M.,Williams,R.M.,Stephens,A.T.&Park,J.W.circDeep:从其他长的非编码RNA中进行环状RNA分类的深度学习方法。

Bioinformatics 36, 73–80 (2020).CAS .

生物信息学36,73-80(2020)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Chantsalnyam, T., Siraj, A., Tayara, H. & Chong, K. T. ncRDense: a novel computational approach for classification of non-coding RNA family by deep learning. Genomics 113, 3030–3038 (2021).CAS

Chantsalnyam,T.,Siraj,A.,Tayara,H。&Chong,K。T。ncRDense:一种通过深度学习对非编码RNA家族进行分类的新型计算方法。基因组学1133030–3038(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fu, L. et al. UFold: fast and accurate RNA secondary structure prediction with deep learning. Nucleic Acids Res. 50, e14 (2022).CAS

Fu,L。等人。UFold:通过深度学习快速准确地预测RNA二级结构。核酸研究50,e14(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kagaya, Y. et al. NuFold: a novel tertiary RNA structure prediction method using deep learning with flexible nucleobase center representation. bioRxiv, https://doi.org/10.1101/2023.09.20.558715 (2023).Nasaev, S. S., Mukanov, A. R., Kuznetsov, I. I. & Veselovsky, A. V. AliNA—a deep learning program for RNA secondary structure prediction.

Kagaya,Y。等人。NuFold:一种使用深度学习和灵活的核碱基中心表示的新型三级RNA结构预测方法。生物十四号,https://doi.org/10.1101/2023.09.20.558715(2023年)。Nasaev,S.S.,Mukanov,A.R.,Kuznetsov,I.I.&Veselovsky,A.V.AliNA-用于RNA二级结构预测的深度学习程序。

Mol. Inform. 42, e2300113 (2023).Niu, M., Wu, J., Zou, Q., Liu, Z. & Xu, L. rBPDL:predicting RNA-binding proteins using deep learning. IEEE J. Biomed. Health Inf. 25, 3668–3676 (2021)..

摩尔通知。42,e2300113(2023)。Niu,M.,Wu,J.,Zou,Q.,Liu,Z。&Xu,L。rBPDL:使用深度学习预测RNA结合蛋白。IEEE J.生物医学。健康信息253668-3676(2021)。。

Google Scholar

谷歌学者

Du, X., Zhao, X. & Zhang, Y. DeepBtoD: improved RNA-binding proteins prediction via integrated deep learning. J. Bioinform. Comput Biol. 20, 2250006 (2022).CAS

Du,X.,Zhao,X。&Zhang,Y。DeepBtoD:通过集成深度学习改进RNA结合蛋白预测。J、 生物信息。计算机生物学。202225006(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsJ.Y.J., S.Y. and S.H.K. conceived the manuscript. S.Y. and S.H.K. created the figures and wrote the manuscript. E.Y. collected the information and edited the manuscript. M.K. revised and reviewed the manuscript. J.Y.J. supervised manuscript preparation.

下载referencesAcknowledgementsJ。Y、 J.,S.Y.和S.H.K.构思了手稿。S、 Y.和S.H.K.创建了这些数字并撰写了手稿。E、 Y.收集信息并编辑手稿。M、 K.修订并审阅了手稿。J、 Y.J.监督手稿准备。

We thank Jeehye Jung and Jeonghyeon Choi for assisting with the data investigation. All authors have read and agreed to the published version of the manuscript. The graphical figures were made with biorender.com. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2023-00217123) and the Ministry of Science and ICT (2022R1A2C1002984).Author informationAuthor notesThese authors contributed equally: Sumin Yang, Sung-Hyun Kim.Authors and AffiliationsDepartment of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of KoreaSumin Yang, Sung-Hyun Kim, Eunjeong Yang & Jae-Yeol JooDepartment of Computer Science, University of Nevada, Las Vegas, NV, 89154, USAMingon KangAuthorsSumin YangView author publicationsYou can also search for this author in.

我们感谢Jeehye Jung和Jeonghyeon Choi协助数据调查。所有作者均已阅读并同意稿件的发布版本。图形由biorender.com制作。这项工作得到了韩国政府(MSIT)(RS-2023-00217123)和科学与信息通信技术部(2022R1A2C1002984)资助的韩国国家研究基金会(NRF)资助的支持。作者信息作者注意到这些作者做出了同样的贡献:Sumin Yang,Sung Hyun Kim。作者和所属机构汉阳大学药学院药学系,京畿道安山,15588,朝鲜民主主义共和国,杨成贤,杨恩贞和Jae Yeol JooDepartment of Computer Science,内华达大学,拉斯维加斯,内华达州,89154,USAMingon Kangauthorsumin YangView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarSung-Hyun KimView author publicationsYou can also search for this author in

PubMed Google ScholarSung Hyun KimView作者出版物您也可以在

PubMed Google ScholarEunjeong YangView author publicationsYou can also search for this author in

PubMed Google ScholarEunjeong YangView作者出版物您也可以在

PubMed Google ScholarMingon KangView author publicationsYou can also search for this author in

PubMed Google Scholarmamingon KangView作者出版物您也可以在

PubMed Google ScholarJae-Yeol JooView author publicationsYou can also search for this author in

PubMed Google ScholarJae Yeol JooView作者出版物您也可以在

PubMed Google ScholarCorresponding authorCorrespondence to

PubMed谷歌学者通讯社

Jae-Yeol Joo.Ethics declarations

Jae Yeol-Joo。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleYang, S., Kim, SH., Yang, E. et al. Molecular insights into regulatory RNAs in the cellular machinery.

转载和许可本文引用本文Yang,S.,Kim,SH.,Yang,E。等人对细胞机制中调控RNA的分子见解。

Exp Mol Med (2024). https://doi.org/10.1038/s12276-024-01239-6Download citationReceived: 18 December 2023Revised: 27 February 2024Accepted: 05 March 2024Published: 14 June 2024DOI: https://doi.org/10.1038/s12276-024-01239-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Exp Mol Med(2024)。https://doi.org/10.1038/s12276-024-01239-6Download引文收到日期:2023年12月18日修订日期:2024年2月27日接受日期:2024年3月5日发布日期:2024年6月14日OI:https://doi.org/10.1038/s12276-024-01239-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供