EN
登录

环状RNA翻译的分子机制

Molecular mechanisms of circular RNA translation

Nature 等信源发布 2024-06-14 10:50

可切换为仅中文


AbstractCircular RNAs (circRNAs) are covalently closed single-stranded RNAs without a 5′ cap structure and a 3′ poly(A) tail typically present in linear mRNAs of eukaryotic cells. CircRNAs are predominantly generated through a back-splicing process within the nucleus. CircRNAs have long been considered non-coding RNAs seemingly devoid of protein-coding potential.

摘要环状RNA(circRNA)是共价闭合的单链RNA,没有5'帽结构和3'聚(a)尾,通常存在于真核细胞的线性mRNA中。circRNA主要通过细胞核内的反向剪接过程产生。长期以来,circRNA被认为是非编码RNA,似乎缺乏蛋白质编码潜力。

However, many recent studies have challenged this idea and have provided substantial evidence that a subset of circRNAs can associate with polysomes and indeed be translated. Therefore, in this review, we primarily highlight the 5’ cap-independent internal initiation of translation that occurs on circular RNAs.

然而,最近的许多研究挑战了这一观点,并提供了大量证据表明circRNA的一个子集可以与多核糖体结合并确实可以翻译。因此,在这篇综述中,我们主要强调了在环状RNA上发生的5'cap独立的内部翻译起始。

Several molecular features of circRNAs, including the internal ribosome entry site, N6-methyladenosine modification, and the exon junction complex deposited around the back-splicing junction after back-splicing event, play pivotal roles in their efficient internal translation. We also propose a possible relationship between the translatability of circRNAs and their stability, with a focus on nonsense-mediated mRNA decay and nonstop decay, both of which are well-characterized mRNA surveillance mechanisms.

circRNA的几个分子特征,包括内部核糖体进入位点,N6-甲基腺苷修饰以及在反向剪接事件后沉积在反向剪接连接周围的外显子连接复合物,在其有效的内部翻译中起关键作用。我们还提出了circRNA的可翻译性与其稳定性之间的可能关系,重点是无义介导的mRNA衰变和不间断衰变,这两者都是特征明确的mRNA监测机制。

An in-depth understanding of circRNA translation will reshape and expand our current knowledge of proteomics..

对circRNA翻译的深入理解将重塑和扩展我们目前对蛋白质组学的知识。。

IntroductionIn eukaryotic cells, circular RNAs (circRNAs) are produced primarily by back-splicing events of pre-mRNAs1. Nascent pre-mRNAs are produced by RNA polymerase II and undergo multiple processing steps in the nucleus, including 5′-capping, 3′-polyadenylation, and splicing. Splicing removes introns and ligates consecutive neighboring exons to generate a mature messenger RNA (mRNA).

引言在真核细胞中,环状RNA(circRNA)主要由pre-mRNAs1的反向剪接事件产生。新生的前mRNA由RNA聚合酶II产生,并在细胞核中经历多个加工步骤,包括5'-加帽,3'-聚腺苷酸化和剪接。剪接去除内含子并连接连续的相邻外显子以产生成熟的信使RNA(mRNA)。

Notably, not all splicing processes occur between exons located in close proximity in terms of nucleotide sequences. Specific features of nucleotides in introns flanking exons facilitate RNA looping, which causes the downstream 5′ splice site (splice donor) to be in close proximity to the upstream 3′ splice site (splice acceptor).

值得注意的是,并非所有剪接过程都发生在核苷酸序列非常接近的外显子之间。外显子侧翼内含子中核苷酸的特定特征有助于RNA环化,从而导致下游5'剪接位点(剪接供体)与上游3'剪接位点(剪接受体)非常接近。

These features include inverted repeats or nucleotide sequences that interact with RNA-binding proteins (RBPs) with dimerization ability. Spatial proximity between exon termini triggers an alternative noncanonical mode of splicing (termed back-splicing) and allows the biogenesis of circRNAs that are covalently closed structures and possess a head-to-tail connected single-stranded structure2.

这些特征包括与具有二聚化能力的RNA结合蛋白(RBP)相互作用的反向重复序列或核苷酸序列。外显子末端之间的空间接近触发了另一种非规范剪接模式(称为反向剪接),并允许circRNA的生物发生,这些circRNA是共价闭合结构,具有头尾连接的单链结构2。

Due to the lack of both a 5′ cap and a 3′ poly(A) tail, circRNAs are generally resistant to exoribonuclease attack and exhibit greater stability than that of the cognate linear mRNAs with identical nucleotide sequences.In this review, we provide an overview of the various methods for circRNA biogenesis and summarize the diverse molecular functions of circRNAs, including their roles as microRNA (miRNA) sponges, protein regulators, and templates for protein synthesis.

由于缺乏5'帽和3'poly(a)尾,circRNA通常对核糖核酸酶攻击具有抗性,并且比具有相同核苷酸序列的同源线性mRNA表现出更高的稳定性。在这篇综述中,我们概述了circRNA生物发生的各种方法,并总结了circRNA的多种分子功能,包括它们作为microRNA(miRNA)海绵,蛋白质调节剂和蛋白质合成模板的作用。

Next, we examine the molecular details of circRNA translation and consider the possible relationship between circRNA translation and circRNA stability.CircRNA biogenesisMost eukaryotic circRNAs are produced vi.

接下来,我们检查circRNA翻译的分子细节,并考虑circRNA翻译与circRNA稳定性之间的可能关系。CircRNA生物发生大多数真核生物CircRNA产生于vi。

ReferencesLiu, C. X. & Chen, L. L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).CAS

参考文献Liu,C.X。&Chen,L.L。环状RNA:表征,细胞作用和应用。细胞1852016-2034(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lasda, E. & Parker, R. Circular RNAs: diversity of form and function. RNA 20, 1829–1842 (2014).CAS

Lasda,E。&Parker,R。环状RNA:形式和功能的多样性。RNA 201829-1842(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, L. L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 17, 205–211 (2016).CAS

Chen,L.L。环状RNA的生物发生和新兴作用。Nat。Rev。Mol。Cell Biol。17205-211(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).CAS

Zhang,X.O.等人。互补序列介导的外显子环化。细胞159134-147(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhou, M., Xiao, M. S., Li, Z. & Huang, C. New progresses of circular RNA biology: from nuclear export to degradation. RNA Biol. 18, 1365–1373 (2021).CAS

Zhou,M.,Xiao,M.S.,Li,Z。&Huang,C。环状RNA生物学的新进展:从核输出到降解。RNA生物学。181365-1373(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liang, D. & Wilusz, J. E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233–2247 (2014).PubMed

Liang,D。&Wilusz,J。E。短内含子重复序列促进环状RNA产生。基因发展282233-2247(2014)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).CAS

Jeck,W.R.等人。环状RNA丰富,保守,并与ALU重复序列相关。RNA 19141-157(2013)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aufiero, S. et al. Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons. RNA 24, 815–827 (2018).CAS

Aufiero,S。等人。心脏circRNA主要来自组成型外显子,而不是选择性剪接的外显子。RNA 24815-827(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).CAS

Ashwal-Fluss,R。等人。circRNA生物发生与前mRNA剪接竞争。分子细胞56,55-66(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).CAS

Conn,S.J.等人。RNA结合蛋白震动调节circRNA的形成。细胞1601125-1134(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gupta, S. K. et al. Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression. Circ. Res. 122, 246–254 (2018).CAS

Gupta,S.K.等人,Quaking通过调节心脏环状RNA的表达来抑制阿霉素介导的心脏毒性。保监会。第122246-254号决议(2018年)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Montañés-Agudo, P. et al. Quaking regulates circular RNA production in cardiomyocytes. J. Cell Sci. 136, jcs261120 (2023).PubMed

Montañés-Agudo,P。等人。Quaking调节心肌细胞中环状RNA的产生。J、 细胞科学。136,jcs261120(2023)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Errichelli, L. et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat. Commun. 8, 14741 (2017).CAS

FUS影响小鼠胚胎干细胞衍生的运动神经元中的环状RNA表达。国家公社。814741(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, S. et al. FUS-induced circular RNA ZNF609 promotes tumorigenesis and progression via sponging miR-142-3p in lung cancer. J. Cell Physiol. 236, 79–92 (2021).CAS

Liu,S。等人。FUS诱导的环状RNA ZNF609通过海绵状miR-142-3p在肺癌中促进肿瘤发生和进展。J、 细胞生理学。236、79-92(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Colantoni, A. et al. FUS alters circRNA metabolism in human motor neurons carrying the ALS-linked P525L mutation. Int. J. Mol. Sci. 24, 3181 (2023).CAS

Colantoni,A。等人,FUS改变携带ALS连锁P525L突变的人类运动神经元中的circRNA代谢。Int.J.Mol.Sci。243181(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Knupp, D., Cooper, D. A., Saito, Y., Darnell, R. B. & Miura, P. NOVA2 regulates neural circRNA biogenesis. Nucleic Acids Res. 49, 6849–6862 (2021).CAS

Knupp,D.,Cooper,D.A.,Saito,Y.,Darnell,R.B。&Miura,P.NOVA2调节神经circRNA的生物发生。核酸研究496849-6862(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ivanov, A. et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10, 170–177 (2015).CAS

Ivanov,A。等人对内含子序列的分析揭示了动物中环状RNA生物发生的标志。Cell Rep.10170–177(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).CAS

Rybak-Wolf,A。等人。哺乳动物大脑中的环状RNA高度丰富,保守且动态表达。分子细胞58870-885(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Aktaş, T. et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115–119 (2017).PubMed

Aktaş,T。等人DHX9抑制源自人类基因组Alu入侵的RNA加工缺陷。自然544115-119(2017)。PubMed出版社

Google Scholar

谷歌学者

Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806 (2013).CAS

Zhang,Y。等人。环状内含子长非编码RNA。分子细胞51792-806(2013)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lu, Z. et al. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 21, 1554–1565 (2015).CAS

Lu,Z。等人。后生动物tRNA内含子在体内产生稳定的环状RNA。RNA 211554-1565(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schmidt, C. A., Giusto, J. D., Bao, A., Hopper, A. K. & Matera, A. G. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res. 47, 6452–6465 (2019).CAS

Schmidt,C.A.,Giusto,J.D.,Bao,A.,Hopper,A.K。&Matera,A.G。后生动物tricRNA生物发生的分子决定因素。核酸研究476452-6465(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Salgia, S. R., Singh, S. K., Gurha, P. & Gupta, R. Two reactions of Haloferax volcanii RNA splicing enzymes: joining of exons and circularization of introns. RNA 9, 319–330 (2003).CAS

Salgia,S.R.,Singh,S.K.,Gurha,P。&Gupta,R。Haloferax volcanii RNA剪接酶的两个反应:外显子的连接和内含子的环化。RNA 9319-330(2003)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Abelson, J., Trotta, C. R. & Li, H. tRNA splicing. J. Biol. Chem. 273, 12685–12688 (1998).CAS

Abelson,J.,Trotta,C.R。&Li,H。tRNA剪接。J、 生物。化学。27312685–12688(1998)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).CAS

Enuka,Y。等人。环状RNA寿命长,对生长因子的反应仅显示最小的早期改变。核酸研究441370-1383(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, Z. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).PubMed

Li,Z。等人。外显子-内含子环状RNA调节细胞核中的转录。自然结构。分子生物学。22256-264(2015)。PubMed出版社

Google Scholar

谷歌学者

Tay, M. L. & Pek, J. W. Maternally inherited stable intronic sequence RNA triggers a self-reinforcing feedback loop during development. Curr. Biol. 27, 1062–1067 (2017).CAS

Tay,M.L。&Pek,J.W。母系遗传的稳定内含子序列RNA在发育过程中触发自增强反馈环。货币。生物学271062-1067(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Y., Song, J., Liu, Y., Zhou, Z. & Wang, X. Transcription activation of circ-STAT3 induced by Gli2 promotes the progression of hepatoblastoma via acting as a sponge for miR-29a/b/c-3p to upregulate STAT3/Gli2. J. Exp. Clin. Cancer Res. 39, 101 (2020).PubMed

Liu,Y.,Song,J.,Liu,Y.,Zhou,Z.&Wang,X.由Gli2诱导的circ-STAT3的转录激活通过充当miR-29a/b/c-3p的海绵来促进肝母细胞瘤的进展。上调STAT3/Gli2。J、 实验临床。癌症研究39101(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Conn, V. M. et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat. Plants 3, 17053 (2017).CAS

Conn,V.M.等人。来自SEPALLATA3的circRNA通过R环形成调节其同源mRNA的剪接。《自然植物》317053(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Abdelmohsen, K. et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14, 361–369 (2017).PubMed

Abdelmohsen,K。等人。HuR靶环状RNA的鉴定揭示了CircPABPN1对PABPN1翻译的抑制。RNA生物学。14361-369(2017)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, N. et al. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ. 26, 2758–2773 (2019).CAS

Wu,N。等人。yes相关蛋白(YAP)的翻译通过抑制翻译起始机制的组装而被其环状RNA拮抗。细胞死亡不同。262758-2773(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Du, W. W. et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur. Heart J. 38, 1402–1412 (2017).CAS

Du,W。W。等人,Foxo3环状RNA通过调节与应激和衰老反应相关的多种因子来促进心脏衰老。《欧洲心脏杂志》381402-1412(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schreiner, S., Didio, A., Hung, L. H. & Bindereif, A. Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res. 48, 12326–12335 (2020).CAS

Schreiner,S.,Didio,A.,Hung,L.H。&Bindereif,A。具有蛋白质海绵功能的环状RNA的设计和应用。核酸研究4812326-12335(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Du, W. W. et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24, 357–370 (2017).CAS

Du,W。W。等人。通过增强Foxo3活性的环状RNA诱导肿瘤细胞凋亡。细胞死亡不同。24357-370(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zeng, Y. et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7, 3842–3855 (2017).CAS

Zeng,Y。等人。环状RNA结合并激活AKT磷酸化和核定位,减少细胞凋亡并增强心脏修复。Theranostics 73842-3855(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chia, W., Liu, J., Huang, Y. G. & Zhang, C. A circular RNA derived from DAB1 promotes cell proliferation and osteogenic differentiation of BMSCs via RBPJ/DAB1 axis. Cell Death Dis. 11, 372 (2020).CAS

Chia,W.,Liu,J.,Huang,Y.G。&Zhang,C。源自DAB1的环状RNA通过RBPJ/DAB1轴促进BMSC的细胞增殖和成骨分化。细胞死亡Dis。11372(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).CAS

Hansen,T.B.等人。天然RNA环作为有效的microRNA海绵起作用。自然495384-388(2013)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).CAS

Hansen,T.B.等人,《涉及Ago2介导的环状反义RNA切割的miRNA依赖性基因沉默》,EMBO J.304414–4422(2011)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, G. et al. cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PLoS ONE 10, e0131225 (2015).PubMed

Huang,G。等人。cir-ITCH通过调节Wnt/β-连环蛋白途径在结直肠癌中发挥抑制作用。PLoS ONE 10,e013125(2015)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lim, T. B. et al. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc. Res. 115, 1998–2007 (2019).CAS

Lim,T.B.等人靶向心肌细胞中高度丰富的环状RNA circSlc8a1可减轻压力超负荷诱导的肥大。心血管。1998年至2007年(2019年)第115号决议。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, C. et al. Silencing Of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics 7, 2863–2877 (2017).CAS

Liu,C。等人。沉默环状RNA-ZNF609可改善血管内皮功能障碍。Theranostics 72863-2877(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, Q. et al. Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol. Cancer 18, 111 (2019).PubMed

Lu,Q。等人。环状RNA circSLC8A1作为miR-130b/miR-494的海绵,通过调节PTEN来抑制膀胱癌的进展。摩尔癌症18111(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).CAS

Memczak,S。等人。环状RNA是一大类具有调节效力的动物RNA。自然495333-338(2013)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Peng, L. et al. Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung’s disease. Oncotarget 8, 808–818 (2017).PubMed

Peng,L。等人。环状RNA ZNF609作为竞争性内源RNA,通过海绵状miR-150-5p在先天性巨结肠中调节AKT3的表达。Oncotarget 8808–818(2017)。PubMed出版社

Google Scholar

谷歌学者

Hsiao, K. Y. et al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 77, 2339–2350 (2017).CAS

Hsiao,K.Y.等。环状RNA CCDC66的非编码作用促进结肠癌的生长和转移。癌症研究772339-2350(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, W., Du, W. W., Li, X., Yee, A. J. & Yang, B. B. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35, 3919–3931 (2016).CAS

Yang,W.,Du,W.W.,Li,X.,Yee,A.J。&Yang,B.B。环状RNA和Foxo3假基因的非编码作用促进Foxo3活性抑制肿瘤生长和血管生成。癌基因353919-3931(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zheng, Q. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7, 11215 (2016).CAS

Zheng,Q。等人。环状RNA分析揭示了丰富的circHIPK3,其通过海绵状多个miRNA来调节细胞生长。国家公社。711125(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pelletier, J. & Sonenberg, N. The organizing principles of eukaryotic ribosome recruitment. Annu. Rev. Biochem. 88, 307–335 (2019).CAS

Pelletier,J。&Sonenberg,N。真核生物核糖体募集的组织原则。年。生物化学评论。88307-335(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tahmasebi, S., Khoutorsky, A., Mathews, M. B. & Sonenberg, N. Translation deregulation in human disease. Nat. Rev. Mol. Cell Biol. 19, 791–807 (2018).CAS

Tahmasebi,S.,Khoutorsky,A.,Mathews,M.B。和Sonenberg,N。人类疾病中的翻译放松管制。Nat。Rev。Mol。Cell Biol。19791-807(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pamudurti, N. R. et al. Translation of CircRNAs. Mol. Cell 66, 9–21.e27 (2017).CAS

Pamudurti,N.R.等。CircRNAs的翻译。摩尔细胞66,9–21.e27(2017)。CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260.e229 (2019).PubMed

van Heesch,S.等人,《人类心脏的转化景观》。细胞178242-260.e229(2019)。PubMed出版社

Google Scholar

谷歌学者

Diallo, L. H. et al. How are circRNAs translated by non-canonical initiation mechanisms? Biochimie 164, 45–52 (2019).CAS

Diallo,L.H。等人。circRNA是如何通过非规范启动机制翻译的?生物化学164,45-52(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fan, X., Yang, Y., Chen, C. & Wang, Z. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat. Commun. 13, 3751 (2022).CAS

Fan,X.,Yang,Y.,Chen,C。&Wang,Z。由短IRES样元件驱动的环状RNA的普遍翻译。国家公社。133751(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37.e29 (2017).CAS

Legnini,I。等人Circ-ZNF609是一种环状RNA,可以翻译并在肌生成中起作用。分子细胞66,22-37.e29(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, C. X. & Chen, L. L. Expanded regulation of circular RNA translation. Mol. Cell 81, 4111–4113 (2021).CAS

Liu,C.X。&Chen,L.L。扩展了环状RNA翻译的调控。分子细胞814111-4113(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sinha, T., Panigrahi, C., Das, D. & Chandra Panda, A. Circular RNA translation, a path to hidden proteome. Wiley Interdiscip. Rev. RNA 13, e1685 (2022).CAS

Sinha,T.,Panigrahi,C.,Das,D。和Chandra Panda,A。环状RNA翻译,隐藏蛋白质组的途径。Wiley Interdiscip公司。RNA版本13,e1685(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, Y. et al. Expanding uncapped translation and emerging function of circular RNA in carcinomas and noncarcinomas. Mol. Cancer 21, 13 (2022).PubMed

Wang,Y.等。扩大环状RNA在癌和非癌中的无上限翻译和新兴功能。分子癌症21,13(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wen, S. Y., Qadir, J. & Yang, B. B. Circular RNA translation: novel protein isoforms and clinical significance. Trends Mol. Med. 28, 405–420 (2022).CAS

Wen,S.Y.,Qadir,J。&Yang,B.B。环状RNA翻译:新型蛋白质同种型和临床意义。趋势分子医学28405-420(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).CAS

Yang,Y。等人。由N6-甲基腺苷驱动的环状RNA的广泛翻译。Cell Res.27626–641(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, M. et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 9, 4475 (2018).PubMed

Zhang,M。等人。由环状LINC-PINT编码的肽抑制胶质母细胞瘤中的致癌转录延伸。国家公社。94475(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chang, J. et al. An interaction between eIF4A3 and eIF3g drives the internal initiation of translation. Nucleic Acids Res. 51, 10950–10969 (2023).CAS

Chang,J。等人。eIF4A3和eIF3g之间的相互作用驱动翻译的内部启动。核酸研究5110950-10969(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jang, S. K. et al. A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643 (1988).CAS

Jang,S.K.等人。脑心肌炎病毒RNA的5'非翻译区的一段在体外翻译过程中指导核糖体的内部进入。J、 维罗尔。622636-2643(1988)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pelletier, J., Kaplan, G., Racaniello, V. R. & Sonenberg, N. Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5’ noncoding region. Mol. Cell Biol. 8, 1103–1112 (1988).CAS

Pelletier,J.,Kaplan,G.,Racaniello,V.R。&Sonenberg,N。脊髓灰质炎病毒mRNA的帽非依赖性翻译由5'非编码区内的序列元件赋予。分子细胞生物学。81103-1112(1988)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Abdullah, S. W., Wu, J., Wang, X., Guo, H. & Sun, S. Advances and breakthroughs in IRES-directed translation and replication of picornaviruses. mBio 14, e0035823 (2023).PubMed

Abdullah,S.W.,Wu,J.,Wang,X.,Guo,H。&Sun,S。IRES指导的小核糖核酸病毒翻译和复制的进展和突破。mBio 14,e0035823(2023)。PubMed出版社

Google Scholar

谷歌学者

Marques, R., Lacerda, R. & Romão, L. Internal ribosome entry site (IRES)-Mediated translation and its potential for novel mRNA-based therapy development. Biomedicines 10, 1865 (2022).Zhao, J. et al. IRESbase: a comprehensive database of experimentally validated internal ribosome entry sites.

Marques,R.,Lacerda,R。&Romão,L。内部核糖体进入位点(IRES)介导的翻译及其基于mRNA的新型疗法开发的潜力。生物医学101865(2022)。Zhao,J。等人。IRESbase:一个经过实验验证的内部核糖体进入位点的综合数据库。

Genom. Proteom. Bioinform. 18, 129–139 (2020)..

通过蛋白质瘤。生物信息。18, 129-139 (2020)..

Google Scholar

谷歌学者

Chen, C. K. et al. Structured elements drive extensive circular RNA translation. Mol. Cell 81, 4300–4318.e4313 (2021).CAS

Chen,C.K.等人。结构元件驱动广泛的环状RNA翻译。分子细胞814300–4318.e4313(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weingarten-Gabbay, S. et al. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).PubMed

Weingarten-Gabbay,S.等人。人类和病毒基因组中帽非依赖性翻译序列的系统发现。科学351,aad4939(2016)。PubMed出版社

Google Scholar

谷歌学者

Li, J. et al. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol. Cancer 19, 142 (2020).CAS

Li,J。等人。环状HER2 RNA阳性三阴性乳腺癌对帕妥珠单抗敏感。摩尔癌症19142(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, M. et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 37, 1805–1814 (2018).CAS

Zhang,M.等人。一种由SHPRH基因圆形编码的新型蛋白质抑制胶质瘤肿瘤发生。癌基因371805-1814(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jiang, T. et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol. Cancer 20, 66 (2021).CAS

Jiang,T。等人。由circMAPK1编码的新型蛋白质通过抑制MAPK信号传导的激活来抑制胃癌的进展。分子癌症20,66(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xia, X. et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol. Cancer 18, 131 (2019).PubMed

Xia,X。等人。一种由环状AKT3 RNA编码的新型肿瘤抑制蛋白通过与活性磷酸肌醇依赖性激酶-1竞争来抑制胶质母细胞瘤的致瘤性。摩尔癌症18131(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pan, Z. et al. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol. Cancer 19, 71 (2020).CAS

Pan,Z。等人。一种由circFNDC3B编码的新型蛋白质通过调节结肠癌中的Snail来抑制肿瘤进展和EMT。分子癌症19,71(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, Y. et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl Cancer Inst. 110, 304–315 (2018).CAS

Yang,Y。等人。FBXW7环状RNA在抑制胶质瘤肿瘤发生中的新作用。J、 国家癌症研究所110304-315(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, X. et al. A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol. 22, 33 (2021).CAS

Wu,X。等人。由环状SMO RNA编码的新型蛋白质对于刺猬信号传导激活和胶质母细胞瘤致瘤性至关重要。基因组生物学。22,33(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liang, W. C. et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 20, 84 (2019).PubMed

Liang,W.C.等人。环状RNA circβ-连环蛋白的翻译通过激活Wnt途径促进肝癌细胞生长。基因组生物学。20,84(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gao, X. et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat. Cell Biol. 23, 278–291 (2021).CAS

Gao,X。等人。环状RNA编码的致癌E-钙粘蛋白变体通过激活EGFR-STAT3信号传导促进胶质母细胞瘤的致瘤性。自然细胞生物学。23278-291(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Peng, Y. et al. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol. Cancer 20, 158 (2021).CAS

Peng,Y。等人。由circAXIN1编码的新型蛋白AXIN1-295aa激活Wnt/β-连环蛋白信号通路以促进胃癌进展。分子癌症20158(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gu, C. et al. CHEK1 and circCHEK1_246aa evoke chromosomal instability and induce bone lesion formation in multiple myeloma. Mol. Cancer 20, 84 (2021).CAS

Gu,C。等人,CHEK1和circCHEK1\u 246aa引起染色体不稳定并诱导多发性骨髓瘤中的骨病变形成。分子癌症20,84(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Malik, I., Kelley, C. P., Wang, E. T. & Todd, P. K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 22, 589–607 (2021).CAS

Malik,I.,Kelley,C.P.,Wang,E.T。&Todd,P.K。核苷酸重复扩增障碍的分子机制。Nat。Rev。Mol。Cell Biol。22589-607(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, S. et al. Nuclear export and translation of circular repeat-containing intronic RNA in C9ORF72-ALS/FTD. Nat. Commun. 12, 4908 (2021).CAS

Wang,S.等人。C9ORF72-ALS/FTD中含有内含子RNA的环状重复序列的核输出和翻译。国家公社。124908(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cheng, W. et al. C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat. Commun. 9, 51 (2018).PubMed

Cheng,W。等人。C9ORF72 GGGGCC重复相关的非AUG翻译通过eIF2α磷酸化被应激上调。国家公社。9,51(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kearse, M. G. & Wilusz, J. E. Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev. 31, 1717–1731 (2017).CAS

Kearse,M.G.&Wilusz,J.E。非AUG翻译:真核生物蛋白质合成的新起点。基因发展311717-1731(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meyer, K. D. & Jaffrey, S. R. Rethinking m(6)A readers, writers, and erasers. Annu. Rev. Cell Dev. Biol. 33, 319–342 (2017).CAS

Meyer,K.D.&Jaffrey,S.R.反思m(6)A读者,作家和橡皮擦。年。Rev.Cell Dev.Biol。33319-342(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).CAS

Roundtree,I.A.,Evans,M.E.,Pan,T。&He,C。基因表达调控中的动态RNA修饰。细胞1691187-1200(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wiener, D. & Schwartz, S. The epitranscriptome beyond m(6)A. Nat. Rev. Genet. 22, 119–131 (2021).CAS

Wiener,D。&Schwartz,S。超越m(6)A的表位转录组。Nat。Rev。Genet。22119-131(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, Y., Hsu, P. J., Chen, Y. S. & Yang, Y. G. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 28, 616–624 (2018).CAS

Yang,Y.,Hsu,P.J.,Chen,Y.S.&Yang,Y.G.动态转录组学m(6)装饰:作家,橡皮擦,读者和RNA代谢中的功能。Cell Res.28616-624(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, Y., Choe, J., Park, O. H. & Kim, Y. K. Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet. 36, 177–188 (2020).CAS

Lee,Y.,Choe,J.,Park,O.H。&Kim,Y.K。通过m(6)A修饰驱动mRNA降解的分子机制。趋势Genet。36177-188(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Meyer, K. D. m(6)A-mediated translation regulation. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 301–309 (2019).CAS

Meyer,K.D.m(6)A介导的翻译调控。生物化学。生物物理。Acta基因调控。机械。1862301-309(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Meyer, K. D. et al. 5’ UTR m(6)A promotes cap-independent translation. Cell 163, 999–1010 (2015).CAS

Meyer,K.D.等人5'UTR m(6)A促进了帽独立翻译。细胞163999-1010(2015)。CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, X. et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).CAS

Wang,X。等人。N(6)-甲基腺苷调节信使RNA翻译效率。细胞1611388-1399(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, A. et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 27, 444–447 (2017).CAS

李,A.等。细胞质m(6)阅读器YTHDF3促进信使核糖核酸翻译。Cell Res.27444-47(2017)。CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shi, H. et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).CAS

Shi,H。等人。YTHDF3促进N(6)-甲基腺苷修饰的RNA的翻译和衰变。Cell Res.27315-328(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Choe, J. et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561, 556–560 (2018).CAS

Choe,J。等人。METTL3-eIF3h的mRNA环化增强翻译并促进肿瘤发生。自然561556-560(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R. I. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62, 335–345 (2016).CAS

Lin,S.,Choe,J.,Du,P.,Triboulet,R。&Gregory,R.I。m(6)A甲基转移酶METTL3促进人类癌细胞的翻译。分子细胞62335-345(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Welden, J. R. et al. RNA editing of microtubule-associated protein tau circular RNAs promotes their translation and tau tangle formation. Nucleic Acids Res. 50, 12979–12996 (2022).CAS

Welden,J.R.等人。微管相关蛋白tau环状RNA的RNA编辑促进其翻译和tau缠结形成。核酸研究5012979-12996(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boehm, V. & Gehring, N. H. Exon junction complexes: supervising the gene expression assembly line. Trends Genet. 32, 724–735 (2016).CAS

Boehm,V。&Gehring,N.H。外显子连接复合物:监督基因表达装配线。趋势Genet。32724-735(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Le Hir, H., Sauliere, J. & Wang, Z. The exon junction complex as a node of post-transcriptional networks. Nat. Rev. Mol. Cell Biol. 17, 41–54 (2016).CAS

Le Hir,H.,Sauliere,J。&Wang,Z。外显子连接复合体作为转录后网络的节点。Nat。Rev。Mol。Cell Biol。17,41-54(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Woodward, L. A., Mabin, J. W., Gangras, P. & Singh, G. The exon junction complex: a lifelong guardian of mRNA fate. Wiley Interdiscip. Rev. RNA 8, 1411 (2017).

Woodward,L.A.,Mabin,J.W.,Gangras,P。&Singh,G。外显子连接复合体:mRNA命运的终身守护者。Wiley Interdiscip公司。RNA版本81411(2017)。

Google Scholar

谷歌学者

Lin, H. H. et al. Exon junction complex mediates the cap-independent translation of circular RNA. Mol. Cancer Res. 21, 1220–1233 (2023).CAS

Lin,H.H.等人,《外显子连接复合物介导环状RNA的帽非依赖性翻译》,《分子癌症研究》211220-1233(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Song, Z. et al. eIF3j inhibits translation of a subset of circular RNAs in eukaryotic cells. Nucleic Acids Res. 50, 11529–11549 (2022).CAS

Song,Z。等人,eIF3j抑制真核细胞中环状RNA子集的翻译。核酸研究5011529-11549(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ryu, I. et al. eIF4A3 phosphorylation by CDKs affects NMD during the cell cycle. Cell Rep. 26, 2126–2139.e2129 (2019).CAS

Ryu,I。等人。CDK对eIF4A3的磷酸化在细胞周期中影响NMD。Cell Rep.262126–2139.e2129(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ho-Xuan, H. et al. Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Res. 48, 10368–10382 (2020).CAS

Ho Xuan,H。等人。对过表达环状RNA翻译的综合分析揭示了线性转录本的普遍翻译。核酸研究4810368-10382(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, J. et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat. Commun. 10, 2300 (2019).PubMed

Zhao,J.等人。编码人乳头瘤病毒环状RNA的癌蛋白的转化活性。国家公社。102300(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiang, Y., Chen, X. & Zhang, W. Overexpression-based detection of translatable circular RNAs is vulnerable to coexistent linear RNA byproducts. Biochem. Biophys. Res. Commun. 558, 189–195 (2021).CAS

Jiang,Y.,Chen,X。&Zhang,W。基于过表达的可翻译环状RNA检测易受共存线性RNA副产物的影响。生物化学。生物物理。公共资源。558189-195(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, Y. K. & Maquat, L. E. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA 25, 407–422 (2019).CAS

Kim,Y.K。&Maquat,L.E。RNA衰变的前期和中心:UPF1在无义介导的mRNA衰变及其后。RNA 25407-422(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).CAS

Kurosaki,T.,Popp,M.W。&Maquat,L.E。通过无义介导的mRNA衰变对基因表达进行质量和数量控制。Nat。Rev。Mol。Cell Biol。20406-420(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Powers, K. T., Szeto, J. A. & Schaffitzel, C. New insights into no-go, non-stop and nonsense-mediated mRNA decay complexes. Curr. Opin. Struct. Biol. 65, 110–118 (2020).CAS

Powers,K.T.,Szeto,J.A。&Schaffitzel,C。对不走,不停和无义介导的mRNA衰变复合物的新见解。货币。奥平。结构。生物学65110-118(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shoemaker, C. J. & Green, R. Translation drives mRNA quality control. Nat. Struct. Mol. Biol. 19, 594–601 (2012).CAS

Shoemaker,C.J。和Green,R。翻译驱动mRNA质量控制。自然结构。分子生物学。19594-601(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

AbouHaidar, M. G., Venkataraman, S., Golshani, A., Liu, B. & Ahmad, T. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc. Natl Acad. Sci. USA 111, 14542–14547 (2014).CAS

AbouHaidar,M.G.,Venkataraman,S.,Golshani,A.,Liu,B。&Ahmad,T。220 nt复制共价闭合环状RNA的新型编码,翻译和基因表达。Proc。国家科学院。科学。美国11114542–14547(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maquat, L. E. Molecular biology. Skiing toward nonstop mRNA decay. Science 295, 2221–2222 (2002).CAS

Maquat,L.E。分子生物学。滑向不间断的mRNA衰变。科学2952221-2222(2002)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).CAS

Frischmeyer,P.A。等人。一种消除缺少终止密码子的转录本的mRNA监测机制。科学2952258-2261(2002)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).PubMed

van Hoof,A.,Frischmeyer,P.A.,Dietz,H.C。&Parker,R。外来体介导的缺乏终止密码子的mRNA的识别和降解。科学2952262-2264(2002)。PubMed出版社

Google Scholar

谷歌学者

Abe, N. et al. Rolling circle translation of circular RNA in living human cells. Sci. Rep. 5, 16435 (2015).CAS

Abe,N.等人。活细胞中环状RNA的滚环翻译。科学。代表516435(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Perriman, R. & Ares, M. Jr. Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo. RNA 4, 1047–1054 (1998).CAS

Perriman,R。&Ares,M。Jr。环状mRNA可以在体内指导极长重复序列蛋白的翻译。RNA 41047-1054(1998)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mo, D. et al. A universal approach to investigate circRNA protein coding function. Sci. Rep. 9, 11684 (2019).PubMed

Mo,D。等人。研究circRNA蛋白编码功能的通用方法。科学。代表911684(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y. et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol. 23, 743–756 (2021).CAS

Liu,Y。等人。滚动翻译的EGFR变体维持EGFR信号传导并促进胶质母细胞瘤的致瘤性。神经肿瘤学。23743-756(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Das, A., Sinha, T., Mishra, S. S., Das, D. & Panda, A. C. Identification of potential proteins translated from circular RNA splice variants. Eur. J. Cell Biol. 102, 151286 (2023).CAS

Das,A.,Sinha,T.,Mishra,S.S.,Das,D。&Panda,A.C。鉴定从环状RNA剪接变体翻译的潜在蛋白质。Eur.J.细胞生物学。102151286(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, R. et al. Characterization of ALTO-encoding circular RNAs expressed by Merkel cell polyomavirus and trichodysplasia spinulosa polyomavirus. PLoS Pathog. 17, e1009582 (2021).CAS

Yang,R。等人。由默克尔细胞多瘤病毒和棘状毛发育不良多瘤病毒表达的编码ALTO的环状RNA的表征。PLoS Pathog。17,e1009582(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tse, H., Cai, J. J., Tsoi, H. W., Lam, E. P. & Yuen, K. Y. Natural selection retains overrepresented out-of-frame stop codons against frameshift peptides in prokaryotes. BMC Genom. 11, 491 (2010).

Tse,H.,Cai,J.J.,Tsoi,H.W.,Lam,E.P。&Yuen,K.Y。自然选择保留了原核生物中针对移码肽的框外终止密码子过多。BMC基因组。11491(2010)。

Google Scholar

谷歌学者

Wang, X. et al. Regulation of HIV-1 Gag-Pol expression by shiftless, an inhibitor of programmed -1 ribosomal frameshifting. Cell 176, 625–635.e614 (2019).CAS

Wang,X。等人。通过程序性1核糖体移码抑制剂shiftless调节HIV-1 Gag Pol表达。细胞176625-635.e614(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pisignano, G. et al. Going circular: history, present, and future of circRNAs in cancer. Oncogene 42, 2783–2800 (2023).CAS

Pisignano,G。等人,《循环:癌症中circRNA的历史,现状和未来》。癌基因422783-2800(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e821 (2019).CAS

Liu,C.X。等人。环状RNA的结构和降解调节先天免疫中的PKR活化。细胞177865-880.e821(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by the National Research Foundation (NRF) of Korea (NRF-2015R1A3A2033665, NRF-2018R1A5A1024261, and NRF-2022M3E5F1017965 to Y.K.K.; and RS-2023-00242239 to H.J.H.).Author informationAuthors and AffiliationsDepartment of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of KoreaHyun Jung Hwang & Yoon Ki KimAuthorsHyun Jung HwangView author publicationsYou can also search for this author in.

下载参考文献致谢这项工作得到了韩国国家研究基金会(NRF)的支持(Y.K.K.的NRF-2015R1A3A2033665,NRF-2018R1A5A1024261和NRF-2022M3E5F1017965;以及H.J.H.的RS-2023-00242239)。作者信息作者和附属机构韩国高级科学技术研究所生物科学系,大田,34141,大韩民国Hyun Jung Hwang&Yoon Ki Kim作者Hyun Jung Hwang View作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarYoon Ki KimView author publicationsYou can also search for this author in

PubMed Google ScholarYoon Ki KimView作者出版物您也可以在

PubMed Google ScholarContributionsY.K.K. conceptualized the manuscript. H.J.H. and Y.K.K. conducted literature reviews, drafted the manuscript, and participated in its revision and editing. H.J.H. prepared the figures.Corresponding authorCorrespondence to

PubMed谷歌学术贡献。K、 K.将手稿概念化。H、 J.H.和Y.K.K.进行了文献综述,起草了手稿,并参与了修订和编辑。H、 J.H.准备了这些数字。对应作者对应

Yoon Ki Kim.Ethics declarations

尹基金。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleHwang, H.J., Kim, Y.K. Molecular mechanisms of circular RNA translation.

转载和许可本文引用本文Hwang,H.J.,Kim,Y.K。环状RNA翻译的分子机制。

Exp Mol Med (2024). https://doi.org/10.1038/s12276-024-01220-3Download citationReceived: 10 December 2023Revised: 22 February 2024Accepted: 23 February 2024Published: 14 June 2024DOI: https://doi.org/10.1038/s12276-024-01220-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Exp Mol Med(2024)。https://doi.org/10.1038/s12276-024-01220-3Download引文接收日期:2023年12月10日修订日期:2024年2月22日接受日期:2024年2月23日发布日期:2024年6月14日OI:https://doi.org/10.1038/s12276-024-01220-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供