EN
登录

RNA生物学的大数据和深度学习

Big data and deep learning for RNA biology

Nature 等信源发布 2024-06-14 10:50

可切换为仅中文


AbstractThe exponential growth of big data in RNA biology (RB) has led to the development of deep learning (DL) models that have driven crucial discoveries. As constantly evidenced by DL studies in other fields, the successful implementation of DL in RB depends heavily on the effective utilization of large-scale datasets from public databases.

摘要RNA生物学(RB)中大数据的指数增长导致了深度学习(DL)模型的发展,这些模型推动了关键的发现。正如其他领域的DL研究不断证明的那样,在RB中成功实施DL在很大程度上取决于有效利用公共数据库中的大规模数据集。

In achieving this goal, data encoding methods, learning algorithms, and techniques that align well with biological domain knowledge have played pivotal roles. In this review, we provide guiding principles for applying these DL concepts to various problems in RB by demonstrating successful examples and associated methodologies.

为了实现这一目标,数据编码方法,学习算法和与生物领域知识很好结合的技术发挥了关键作用。在这篇综述中,我们通过展示成功的例子和相关的方法,为将这些DL概念应用于RB中的各种问题提供了指导原则。

We also discuss the remaining challenges in developing DL models for RB and suggest strategies to overcome these challenges. Overall, this review aims to illuminate the compelling potential of DL for RB and ways to apply this powerful technology to investigate the intriguing biology of RNA more effectively..

我们还讨论了为RB开发DL模型所面临的其余挑战,并提出了克服这些挑战的策略。总的来说,这篇综述旨在阐明DL对RB的引人注目的潜力,以及如何应用这项强大的技术更有效地研究RNA的有趣生物学。。

Leveraging big data with deep learning in RNA biologyOver the last decade, deep learning (DL) has proven to be a versatile tool in biology, aiding in multiple breakthroughs in structural biology, genomics, and transcriptomics1. The power of DL lies in its unique ability to harness the potential of big data2.

利用大数据和RNA生物学的深度学习在过去的十年中,深度学习(DL)已被证明是生物学中的多功能工具,有助于结构生物学,基因组学和转录组学的多项突破1。DL的强大之处在于其利用大数据潜力的独特能力2。

Recently, big data have been rapidly accumulating in multiple domains of biology3. In particular, high-throughput experiments based on RNA sequencing (RNA-seq) have led to the generation of massive amounts of RNA biology (RB) data4. Analyzing these big biological data with DL has led to novel scientific discoveries about RNA and related biological processes.

最近,大数据在生物学的多个领域迅速积累3。特别是,基于RNA测序(RNA-seq)的高通量实验导致产生了大量的RNA生物学(RB)数据4。用DL分析这些大的生物学数据已经导致了关于RNA和相关生物过程的新科学发现。

Therefore, it would be beneficial to review the current progress of DL in RB, focusing on the role of big data.DL models are multilayered artificial neural networks that learn to generate representations of input data. These models can perform downstream tasks such as regression, classification, and generation.

因此,回顾DL在RB中的当前进展将是有益的,重点是大数据的作用。DL模型是学习生成输入数据表示的多层人工神经网络。这些模型可以执行下游任务,例如回归、分类和生成。

They have higher degrees of freedom than do conventional machine learning algorithms and thus can effectively learn representations from high-dimensional data5. This property has allowed DL models to achieve groundbreaking success in various fields, including computer vision6, natural language processing7, and structural biology8.

它们比传统的机器学习算法具有更高的自由度,因此可以有效地从高维数据中学习表示5。这一特性使DL模型在各个领域取得了突破性的成功,包括计算机视觉6、自然语言处理7和结构生物学8。

Constructing such effective DL models requires sufficiently large datasets. However, the availability of such datasets is often a major bottleneck. Auspiciously, the amount of biological data has exploded due to the universal use of high-throughput experiments in RB.RB is an integrative field of biology in which biological processes involving diverse types of RNA are studied.

构建这样有效的DL模型需要足够大的数据集。然而,此类数据集的可用性通常是一个主要瓶颈。幸运的是,由于RB中高通量实验的普遍使用,生物数据量已经爆炸式增长。RB是一个综合生物学领域,研究涉及多种RNA的生物过程。

The utilization of DL in this field has been driven by high-throughput experiments using RNA-seq. These .

DL在该领域的利用是由使用RNA-seq的高通量实验驱动的。这些。

ReferencesChing, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018).PubMed

ReferencesChing,T.等人,《生物学和医学深度学习的机会和障碍》。J、 R.Soc.Interface 1520170387(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, C., Shrivastava, A., Singh, S. & Gupta, A. Revisiting unreasonable effectiveness of data in deep learning era. In Proc. IEEE International Conference on Computer Vision. 843–852 (IEEE, 2017).Stephens, Z. D. et al. Big data: astronomical or genomical? PLoS Biol. 13, e1002195 (2015).PubMed .

Sun,C.,Shrivastava,A.,Singh,S。&Gupta,A。重新审视深度学习时代数据的不合理有效性。在过程中。IEEE国际计算机视觉会议。843-852(IEEE,2017)。Stephens,Z.D.等人,《大数据:天文还是基因组?《公共科学图书馆·生物学》。13,e1002195(2015)。PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 (2019).CAS

Stark,R.,Grzelak,M。&Hadfield,J。RNA测序:青少年时期。Genet自然Rev。20631-656(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).CAS

LeCun,Y.,Bengio,Y。&Hinton,G。深度学习。《自然》521436-444(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).Brown, T. et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020).

He,K.,Zhang,X.,Ren,S。&Sun,J。用于图像识别的深度残差学习。在过程中。IEEE计算机视觉和模式识别会议770-778(IEEE,2016)。Brown,T。等人。语言模型很少是短期学习者。高级神经信息处理。系统。331877-1901(2020)。

Google Scholar

谷歌学者

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).CAS

Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).CAS

CLIP识别大脑中Nova调节的RNA网络。科学3021212-1215(2003)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hafner, M. et al. CLIP and complementary methods. Nat. Rev. Methods Prim. 1, 20 (2021).CAS

Hafner,M.等人,《CLIP和补充方法》。自然修订方法。1,20(2021)。中科院

Google Scholar

谷歌学者

Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).CAS

Dominissini,D。等人。m6A-seq揭示的人和小鼠m6A RNA甲基化组的拓扑结构。Nature 485,201–206(2012)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).CAS

Rouskin,S.,Zubradt,M.,Washietl,S.,Kellis,M。&Weissman,J.S。RNA结构的全基因组探测揭示了体内mRNA结构的活跃展开。《自然》505701-705(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 1–14 (2018).CAS

Hwang,B.,Lee,J.H。&Bang,D。单细胞RNA测序技术和生物信息学管道。实验分子医学50,1-14(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roscher, R., Bohn, B., Duarte, M. F. & Garcke, J. Explainable machine learning for scientific insights and discoveries. IEEE Access. 8, 42200–42216 (2020).

Roscher,R.,Bohn,B.,Duarte,M.F。&Garcke,J。可解释的机器学习用于科学见解和发现。IEEE访问。842200–42216(2020)。

Google Scholar

谷歌学者

Consortium, E. P. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

Consortium,E.P。扩展了人类和小鼠基因组中DNA元素的百科全书。自然583699-710(2020)。

Google Scholar

谷歌学者

Leipzig, J., Nüst, D., Hoyt, C. T., Ram, K. & Greenberg, J. The role of metadata in reproducible computational research. Patterns 2, 100322 (2021).PubMed

莱比锡,J.,Nüst,D.,Hoyt,C.T.,Ram,K。&Greenberg,J。元数据在可重复计算研究中的作用。模式2100322(2021)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41, D991–D995 (2012).PubMed

Barrett,T。等。NCBI GEO:功能基因组学数据集更新档案。核酸研究41,D991–D995(2012)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Consortium, R. E. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–329 (2015).

Consortium,R.E.等人。111个参考人类表观基因组的综合分析。自然518317-329(2015)。

Google Scholar

谷歌学者

Leinonen, R., Sugawara, H. & Shumway, M. The sequence read archive. Nucleic Acids Res. 39, D19–D21 (2011).CAS

Leinonen,R.,Sugawara,H。&Shumway,M。序列读取档案。核酸研究39,D19-D21(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gonçalves, R. S. & Musen, M. A. The variable quality of metadata about biological samples used in biomedical experiments. Sci. Data 6, 190021 (2019).PubMed

Gonçalves,R.S.&Musen,M.A。关于生物医学实验中使用的生物样品的元数据质量可变。科学。数据6190021(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Giles, C. B. et al. ALE: automated label extraction from GEO metadata. BMC Bioinformatics 18, 509 (2017).PubMed

Giles,C.B.等人,《ALE:从地理元数据中自动提取标签》。BMC生物信息学18509(2017)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Serna Garcia, G., Leone, M., Bernasconi, A. & Carman, M. J. GeMI: interactive interface for transformer-based Genomic Metadata Integration. Database 2022, baac036 (2022).Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57 (2012).

Serna Garcia,G.,Leone,M.,Bernasconi,A。&Carman,M.J。GeMI:基于变压器的基因组元数据集成的交互式界面。数据库2022,baac036(2022)。Consortium,E.P。人类基因组中DNA元素的综合百科全书。自然489,57(2012)。

Google Scholar

谷歌学者

Moore et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).PubMed

摩尔等人扩展了人类和小鼠基因组中DNA元素的百科全书。自然583699-710(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rozowsky, J. et al. The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models. Cell 186, 1493–1511.e40 (2023).CAS

Rozowsky,J。等人。多组织个人表观基因组的EN-TEx资源和变异影响模型。细胞1861493-1511.e40(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hong, E. L. et al. Principles of metadata organization at the ENCODE data coordination center. Database 2016, baw001 (2016).PubMed

Hong,E.L.等人,《ENCODE数据协调中心的元数据组织原则》。数据库2016,baw001(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Parkinson, H. et al. ArrayExpress–a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 35, D747–D750 (2007).CAS

Parkinson,H.等人,ArrayExpress–微阵列实验和基因表达谱的公共数据库。核酸研究35,D747–D750(2007)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Burgin, J. et al. The European Nucleotide Archive in 2022. Nucleic Acids Res. 51, D121–D125 (2023).CAS

Burgin,J.等人,《2022年欧洲核苷酸档案》。核酸研究51,D121–D125(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Abugessaisa, I. et al. FANTOM enters 20th year: expansion of transcriptomic atlases and functional annotation of non-coding RNAs. Nucleic Acids Res. 49, D892–D898 (2021).CAS

Abugessaisa,I。et al。FANTOM进入20年:转录组图谱的扩展和非编码RNA的功能注释。核酸研究49,D892–D898(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).CAS

Andersson,R.等人。跨人类细胞类型和组织的活性增强子图谱。《自然》507455–461(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hon, C.-C. et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543, 199–204 (2017).CAS

Hon,C.-C.等人。具有精确5'末端的人类长非编码RNA图谱。自然543199-204(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl. Acad. Sci. USA 100, 15776–15781 (2003).CAS

Shiraki,T。等人。Cap分析基因表达,用于转录起点的高通量分析和启动子使用的鉴定。程序。纳特尔。阿卡德。科学。美国10015776-15781(2003)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramilowski, J. A. et al. Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Res. 30, 1060–1072 (2020).CAS

Ramilowski,J.A。等人。通过分子表型对人类长非编码RNA进行功能注释。基因组研究301060-1072(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

GTEx Consortium et al.The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

GTEx Consortium等人,《GTEx Consortium atlas of genetic Regulation effects over human Tissue》。科学3691318-1330(2020)。

Google Scholar

谷歌学者

Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).PubMed

Weinstein,J.N.等人,《癌症基因组图谱泛癌症分析项目》。纳特·吉内特。451113-1120(2013)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Calabrese, C. et al. Genomic basis for RNA alterations in cancer. Nature 578, 129–136 (2020).CAS

Calabrese,C。等人。癌症中RNA改变的基因组基础。自然578129-136(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).Chapelle, O., Schölkopf, B. & Zien, A. Semi-Supervised Learning (Adaptive Computation and Machine Learning) (MIT Press, 2006).Krishnan, R., Rajpurkar, P. & Topol, E. J. Self-supervised learning in medicine and healthcare.

Goodfellow,I.,Bengio,Y.&Courville,A.《深度学习》(麻省理工学院出版社,2016)。Chapelle,O.,Schölkopf,B。&Zien,A。半监督学习(自适应计算和机器学习)(麻省理工学院出版社,2006)。Krishnan,R.,Rajpurkar,P。和Topol,E。J。医学和医疗保健中的自我监督学习。

Nat. Biomed. Eng. 6, 1346–1352 (2022).PubMed .

自然生物医学。工程61346-1352(2022)。PubMed。

Google Scholar

谷歌学者

Young, J. D., Cai, C. & Lu, X. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma. BMC Bioinformatics 18, 381 (2017).PubMed

Young,J.D.,Cai,C。&Lu,X。无监督深度学习揭示了胶质母细胞瘤的预后相关亚型。BMC生物信息学18381(2017)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, X. et al. Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat. Commun. 11, 2338 (2020).CAS

Li,X。等人。在单细胞RNA-seq分析中,深度学习可以通过去除批次效应来实现准确的聚类。国家公社。112338(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Collobert, R. & Weston, J. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proc. 25th International Conference on Machine Learning 160–167 (ACM, 2008).Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.

Collobert,R。&Weston,J。自然语言处理的统一架构:具有多任务学习的深度神经网络。在过程中。第25届国际机器学习会议160-167(ACM,2008)。Devlin,J.,Chang,M.-W.,Lee,K。和Toutanova,K。BERT:深度双向变压器的语言理解预训练。

In Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) 4171–4186 (ACL, 2019).Yang, F. et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data.

在过程中。2019年计算语言学协会北美分会会议:人类语言技术,第1卷(长短论文)4171-4186(ACL,2019)。Yang,F。等人。scBERT是一种用于单细胞RNA-seq数据细胞类型注释的大规模预训练深度语言模型。

Nat. Mach. Intell. 4, 852–866 (2022)..

纳特,去吧。Intell。4, 852–866 (2022)..

Google Scholar

谷歌学者

Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).CAS

Theodoris,C.V。等人。迁移学习可以在网络生物学中进行预测。自然618616-624(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, Z. et al. Joint masking and self-supervised strategies for inferring small molecule-miRNA associations. Mol. Ther. Nucleic Acids. 35, 102103 (2024).Jin, W. et al. HydRA: deep-learning models for predicting RNA-binding capacity from protein interaction association context and protein sequence.

Zhou,Z.等人。推断小分子miRNA关联的联合掩蔽和自我监督策略。摩尔热。核酸。35102103(2024)。Jin,W。等人。HydRA:从蛋白质相互作用关联背景和蛋白质序列预测RNA结合能力的深度学习模型。

Mol. Cell 83, 2595–611. e11 (2023).CAS .

分子细胞832595-611。e11(2023年)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Peng, X. et al. RBP-TSTL is a two-stage transfer learning framework for genome-scale prediction of RNA-binding proteins. Brief Bioinform. 23, bbac215 (2022).Xu, C. & Jackson, S. A. Machine learning and complex biological data. Genome Biol. 20, 76 (2019).PubMed

Peng,X。等人。RBP-TSTL是用于RNA结合蛋白基因组规模预测的两阶段转移学习框架。简介Bioinform。23,bbac215(2022)。Xu,C.&Jackson,S.A。机器学习和复杂的生物学数据。基因组生物学。20,76(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tzeng, E., Hoffman, J., Zhang, N., Saenko, K. & Darrell, T. Deep domain confusion: maximizing for domain invariance. Preprint at https://arxiv.org/abs/1412.3474 (2014).Ganin, Y. et al. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 1–35 (2016).

Tzeng,E.,Hoffman,J.,Zhang,N.,Saenko,K。&Darrell,T。深度域混淆:最大化域不变性。预印于https://arxiv.org/abs/1412.3474(2014年)。Ganin,Y。等人。神经网络的领域对抗训练。J、 马赫。学习。第17、1-35号决议(2016年)。

Google Scholar

谷歌学者

Chen, J. et al. Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data. Nat. Commun. 13, 6494 (2022).CAS

Chen,J.等人。通过整合大量和单细胞RNA-seq数据对癌症药物反应进行深度转移学习。国家公社。136494(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shaw, D., Chen, H. & Jiang, T. DeepIsoFun: a deep domain adaptation approach to predict isoform functions. Bioinformatics 35, 2535–2544 (2018).PubMed Central

Shaw,D.,Chen,H。&Jiang,T。DeepIsoFun:一种预测同工型功能的深域适应方法。生物信息学352535-2544(2018)。公共医学中心

Google Scholar

谷歌学者

Kelley, D. R. Cross-species regulatory sequence activity prediction. PLoS Comput. Biol. 16, e1008050 (2020).CAS

Kelley,D.R。跨物种调控序列活性预测。PLoS计算机。生物学16,e1008050(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kimmel, J. C. & Kelley, D. R. Semisupervised adversarial neural networks for single-cell classification. Genome Res. 31, 1781–1793 (2021).PubMed

Kimmel,J.C。&Kelley,D.R。用于单细胞分类的半监督对抗性神经网络。基因组研究311781-1793(2021)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proc. 34th International Conference on Machine Learning 1126–1135 (PMLR, 2017).Snell, J., Swersky, K. & Zemel, R. Prototypical networks for few-shot learning. In Advances in Neural Information Processing Systems 30 (NIPS, 2017).Brbić, M.

Finn,C.,Abbeel,P。&Levine,S。模型不可知元学习,用于快速适应深度网络。在过程中。第34届国际机器学习会议1126-1135(PMLR,2017)。Snell,J.,Swersky,K。&Zemel,R。用于少量学习的原型网络。神经信息处理系统进展30(NIPS,2017)。布尔比奇,M。

et al. MARS: discovering novel cell types across heterogeneous single-cell experiments. Nat. Methods 17, 1200–1206 (2020).PubMed .

MARS等人:在异质单细胞实验中发现新的细胞类型。自然方法171200-1206(2020)。PubMed。

Google Scholar

谷歌学者

Qiu, Y. L., Zheng, H., Devos, A., Selby, H. & Gevaert, O. A meta-learning approach for genomic survival analysis. Nat. Commun. 11, 6350 (2020).CAS

Qiu,Y.L.,Zheng,H.,Devos,A.,Selby,H。&Gevaert,O。基因组生存分析的元学习方法。国家公社。116350(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Z. et al. CoraL: interpretable contrastive meta-learning for the prediction of cancer-associated ncRNA-encoded small peptides. Brief. Bioinform. 24, bbad352 (2023).PubMed

Li,Z。等。CoraL:用于预测癌症相关ncRNA编码的小肽的可解释对比元学习。简介。生物信息。24,bbad352(2023)。PubMed出版社

Google Scholar

谷歌学者

Cai, J., Wang, T., Deng, X., Tang, L. & Liu, L. GM-lncLoc: lncRNAs subcellular localization prediction based on graph neural network with meta-learning. BMC Genomics 24, 52 (2023).CAS

Cai,J.,Wang,T.,Deng,X.,Tang,L。&Liu,L。GM lncLoc:基于具有元学习的图神经网络的lncRNA亚细胞定位预测。BMC基因组学24,52(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019).

Shorten,C.&Khoshgoftaar,T.M。关于深度学习的图像数据增强的调查。J、 大数据6,1-48(2019)。

Google Scholar

谷歌学者

Hill, S. T. et al. A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential. Nucleic Acids Res. 46, 8105–8113 (2018).CAS

Hill,S.T.等人。深度递归神经网络发现复杂的生物学规则来破译RNA蛋白质编码潜力。核酸研究468105-8113(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cao, Y., Geddes, T. A., Yang, J. Y. H. & Yang, P. Ensemble deep learning in bioinformatics. Nat. Mach. Intell. 2, 500–508 (2020).

Cao,Y.,Geddes,T.A.,Yang,J.Y.H。&Yang,P。生物信息学中的集成深度学习。自然马赫数。因特尔。2500–508(2020)。

Google Scholar

谷歌学者

Sagi, O. & Rokach, L. Ensemble learning: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8, e1249 (2018).

Sagi,O。和Rokach,L。集合学习:一项调查。Wiley Interdiscip公司。最小已知版本数据。迪斯科。8,e1249(2018)。

Google Scholar

谷歌学者

Pan, X. & Shen, H.-B. Predicting RNA–protein binding sites and motifs through combining local and global deep convolutional neural networks. Bioinformatics 34, 3427–3436 (2018).CAS

Pan,X.&Shen,H.-B。通过结合局部和全局深度卷积神经网络预测RNA-蛋白质结合位点和基序。生物信息学343427-3436(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Camargo, A. P., Sourkov, V., Pereira, G. A. G. & Carazzolle, M. F. RNAsamba: neural network-based assessment of the protein-coding potential of RNA sequences. NAR Genomics Bioinform. 2, lqz024 (2020).

Camargo,A.P.,Sourkov,V.,Pereira,G.A.G。&Carazzolle,M.F.RNAsamba:基于神经网络的RNA序列蛋白质编码潜力评估。NAR Genomics Bioinform。2,lqz024(2020)。

Google Scholar

谷歌学者

Cheng, J. et al. MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol. 20, 48 (2019).PubMed

Cheng,J。et al。MMSplice:模块化建模改进了遗传变异对剪接影响的预测。基因组生物学。20,48(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nguyen, T. A. et al. Direct identification of A-to-I editing sites with nanopore native RNA sequencing. Nat. Methods 19, 833–844 (2022).CAS

Nguyen,T.A.等人。用纳米孔天然RNA测序直接鉴定A到I编辑位点。自然方法19833-844(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kalkatawi, M., Magana-Mora, A., Jankovic, B. & Bajic, V. B. DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions. Bioinformatics 35, 1125–1132 (2019).CAS

Kalkatawi,M.,Magana-Mora,A.,Jankovic,B。&Bajic,V.B。DeepGSR:用于识别基因组信号和区域的优化深度学习结构。生物信息学351125-1132(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, T., Tang, Q., Nie, F., Zhao, Q. & Chen, W. DeepLncPro: an interpretable convolutional neural network model for identifying long non-coding RNA promoters. Brief. Bioinform. 23, bbac447 (2022).PubMed

Zhang,T.,Tang,Q.,Nie,F.,Zhao,Q。&Chen,W。DeepLncPro:一种可解释的卷积神经网络模型,用于识别长的非编码RNA启动子。简介。生物信息。23,bbac447(2022)。PubMed出版社

Google Scholar

谷歌学者

Aoki, G. & Sakakibara, Y. Convolutional neural networks for classification of alignments of non-coding RNA sequences. Bioinformatics 34, i237–i244 (2018).CAS

Aoki,G。&Sakakibara,Y。卷积神经网络,用于非编码RNA序列比对的分类。生物信息学34,i237–i244(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems 26 (NIPS, 2013).Chaabane, M., Williams, R. M., Stephens, A. T. & Park, J. W. circDeep: deep learning approach for circular RNA classification from other long non-coding RNA.

Mikolov,T.,Sutskever,I.,Chen,K.,Corrado,G.S。&Dean,J。单词和短语的分布表示及其组成性。神经信息处理系统进展26(NIPS,2013)。Chaabane,M.,Williams,R.M.,Stephens,A.T.&Park,J.W.circDeep:从其他长的非编码RNA中进行环状RNA分类的深度学习方法。

Bioinformatics 36, 73–80 (2020).CAS .

生物信息学36,73-80(2020)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Farhadi, F., Allahbakhsh, M., Maghsoudi, A., Armin, N. & Amintoosi, H. DiMo: discovery of microRNA motifs using deep learning and motif embedding. Brief. Bioinform. 24, bbad182 (2023).Song, Z. et al. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications.

Farhadi,F.,Allahbakhsh,M.,Maghsoudi,A.,Armin,N。&Amintoosi,H.DiMo:使用深度学习和基序嵌入发现microRNA基序。简介。生物信息。24,bbad182(2023)。Song,Z.等人。基于注意力的多标记神经网络,用于对十二种广泛存在的RNA修饰进行综合预测和解释。

Nat. Commun. 12, 4011 (2021).Le, Q. & Mikolov, T. Distributed representations of sentences and documents. In Proc. 31st International Conference on Machine Learning 1188–1196 (PMLR, 2014).Xie, W., Luo, J., Pan, C. & Liu, Y. SG-LSTM-FRAME: a computational frame using sequence and geometrical information via LSTM to predict miRNA-gene associations.

国家公社。124011(2021)。Le,Q。&Mikolov,T。分发句子和文档的表示。在过程中。第31届国际机器学习会议1188-1196(PMLR,2014)。Xie,W.,Luo,J.,Pan,C。&Liu,Y。SG-LSTM-FRAME:通过LSTM使用序列和几何信息来预测miRNA基因关联的计算框架。

Brief. Bioinform. 22, 2032–2042 (2021).CAS .

简介。生物信息。222032–2042(2021)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Hendra, C. et al. Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nat. Methods 19, 1590–1598 (2022).CAS

Hendra,C.等人。使用多实例学习框架从直接RNA测序中检测m6A。自然方法191590-1598(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Leung, M. K. K., Xiong, H. Y., Lee, L. J. & Frey, B. J. Deep learning of the tissue-regulated splicing code. Bioinformatics 30, i121–i129 (2014).CAS

Leung,M.K.K.,Xiong,H.Y.,Lee,L.J。和Frey,B.J。组织调节剪接代码的深度学习。生物信息学30,i121–i129(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lusk, R. et al. Aptardi predicts polyadenylation sites in sample-specific transcriptomes using high-throughput RNA sequencing and DNA sequence. Nat. Commun. 12, 1652 (2021).CAS

Lusk,R。等人Aptardi使用高通量RNA测序和DNA序列预测样品特异性转录组中的聚腺苷酸化位点。国家公社。121652(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Z. et al. Deep-learning augmented RNA-seq analysis of transcript splicing. Nat. Methods 16, 307–310 (2019).CAS

Zhang,Z.等人。深度学习增强了转录剪接的RNA-seq分析。自然方法16307-310(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Y., Li, Y., Narayan, R., Subramanian, A. & Xie, X. Gene expression inference with deep learning. Bioinformatics 32, 1832–1839 (2016).CAS

Chen,Y.,Li,Y.,Narayan,R.,Subramanian,A。&Xie,X。基因表达推断与深度学习。生物信息学321832-1839(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, G., Zhou, G., Zhang, X., Domeniconi, C. & Guo, M. DMIL-IsoFun: predicting isoform function using deep multi-instance learning. Bioinformatics 37, 4818–4825 (2021).CAS

Yu,G.,Zhou,G.,Zhang,X.,Domeniconi,C。&Guo,M。DMIL IsoFun:使用深度多实例学习预测同工型功能。生物信息学374818-4825(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, K., Wang, C., Sun, L. & Zheng, J. Prediction of gene co-expression from chromatin contacts with graph attention network. Bioinformatics 38, 4457–4465 (2022).CAS

Zhang,K.,Wang,C.,Sun,L。&Zheng,J。通过图形注意网络预测染色质接触的基因共表达。生物信息学384457-4465(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, S. et al. LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property. Brief. Bioinform. 20, 2009–2027 (2019).CAS

Han,S。等人。LncFinder:利用序列内在组成,结构信息和理化性质进行长非编码RNA鉴定的集成平台。简介。生物信息。20,2009–2027(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wen, M., Cong, P., Zhang, Z., Lu, H. & Li, T. DeepMirTar: a deep-learning approach for predicting human miRNA targets. Bioinformatics 34, 3781–3787 (2018).CAS

Wen,M.,Cong,P.,Zhang,Z.,Lu,H。&Li,T。DeepMirTar:预测人类miRNA靶标的深度学习方法。生物信息学343781-3787(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Budach, S. & Marsico, A. pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks. Bioinformatics 34, 3035–3037 (2018).CAS

Budach,S。&Marsico,A。pysster:通过卷积神经网络学习序列和结构基序对生物序列进行分类。生物信息学343035-3037(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ben-Bassat, I., Chor, B. & Orenstein, Y. A deep neural network approach for learning intrinsic protein-RNA binding preferences. Bioinformatics 34, i638–i646 (2018).CAS

Ben Bassat,I.,Chor,B。&Orenstein,Y。一种用于学习内在蛋白质RNA结合偏好的深度神经网络方法。生物信息学34,i638–i646(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021).CAS

Townshend,R.J.L.等人,《RNA结构的几何深度学习》。科学3731047-1051(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yan, Z., Hamilton, W. L. & Blanchette, M. Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions. Bioinformatics 36, i276–i284 (2020).CAS

Yan,Z.,Hamilton,W.L。&Blanchette,M。Graph RNA二级结构的神经表征学习,用于预测RNA-蛋白质相互作用。生物信息学36,i276–i284(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiong, H. Y. et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 347, 1254806 (2015).PubMed

Xiong,H.Y.等人。人类剪接密码揭示了对疾病遗传决定因素的新见解。科学3471254806(2015)。PubMed出版社

Google Scholar

谷歌学者

Zhang, L. et al. A deep learning model to identify gene expression level using cobinding transcription factor signals. Brief. Bioinform. 23, bbab501 (2022).PubMed

Zhang,L.等人。使用共结合转录因子信号识别基因表达水平的深度学习模型。简介。生物信息。23,bbab501(2022)。PubMed出版社

Google Scholar

谷歌学者

Jha, A., Gazzara, M. R. & Barash, Y. Integrative deep models for alternative splicing. Bioinformatics 33, i274–i282 (2017).CAS

Jha,A.,Gazzara,M.R。和Barash,Y。替代剪接的综合深度模型。生物信息学33,i274–i282(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McGeary, S. E. et al. The biochemical basis of microRNA targeting efficacy. Science 366, eaav1741 (2019).CAS

McGeary,S.E.等人。microRNA靶向功效的生化基础。科学366,eaav1741(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989).

Hornik,K.,Stinchcombe,M。&White,H。多层前馈网络是通用近似器。神经网络。2359-366(1989)。

Google Scholar

谷歌学者

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

LeCun,Y.,Bottou,L.,Bengio,Y。&Haffner,P。基于梯度的学习应用于文档识别。程序。IEEE 862278–2324(1998)。

Google Scholar

谷歌学者

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

Rumelhart,D.E.,Hinton,G.E。&Williams,R.J。通过反向传播错误学习表征。自然323533-536(1986)。

Google Scholar

谷歌学者

Yang, C. et al. LncADeep: an ab initio lncRNA identification and functional annotation tool based on deep learning. Bioinformatics 34, 3825–3834 (2018).CAS

Yang,C。等人。LncADeep:一种基于深度学习的从头算lncRNA识别和功能注释工具。生物信息学343825-3834(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mateos, P. A., Zhou, Y., Zarnack, K. & Eyras, E. Concepts and methods for transcriptome-wide prediction of chemical messenger RNA modifications with machine learning. Brief. Bioinform. 24, bbad163 (2023).

Mateos,P.A.,Zhou,Y.,Zarnack,K。&Eyras,E。用机器学习预测化学信使RNA修饰的转录组范围的概念和方法。简介。生物信息。24,bbad163(2023)。

Google Scholar

谷歌学者

Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006).PubMed

Hinton,G.E.,Osindero,S.&Teh,Y.-W。深度信念网的快速学习算法。神经计算机。181527-1554(2006)。PubMed出版社

Google Scholar

谷歌学者

Zhang, S. et al. A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 44, e32 (2015).PubMed

Zhang,S.等人。用于模拟RNA结合蛋白靶标结构特征的深度学习框架。核酸研究44,e32(2015)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krizhevsky A., Sutskever I., Hinton G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25 (NIPS, 2012).Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.

Krizhevsky A.,Sutskever I.,Hinton G.E。使用深度卷积神经网络的Imagenet分类。神经信息处理系统进展25(NIPS,2012)。Alipanahi,B.,Delong,A.,Weirauch,M.T。&Frey,B.J。通过深度学习预测DNA和RNA结合蛋白的序列特异性。

Nat. Biotechnol. 33, 831–838 (2015).CAS .

自然生物技术。33, 831–838 (2015).CAS

PubMed

PubMed

Google Scholar

谷歌学者

Kelley, D. R. et al. Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Res. 28, 739–750 (2018).CAS

Kelley,D.R.等人。用卷积神经网络预测染色体间的顺序调节活性。基因组研究28739-750(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sahu, B. et al. Sequence determinants of human gene regulatory elements. Nat. Genet. 54, 283–294 (2022).CAS

Sahu,B。等人。人类基因调控元件的序列决定因素。纳特·吉内特。54283-294(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zrimec, J. et al. Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nat. Commun. 11, 6141 (2020).CAS

Zrimec,J。等人。深度学习表明,基因表达在共同进化的相互作用基因调控结构的所有部分都被编码。国家公社。116141(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Avsec, Ž., Barekatain, M., Cheng, J. & Gagneur, J. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks. Bioinformatics 34, 1261–1269 (2018).CAS

Avsec,Ž。,Barekatain,M.,Cheng,J。&Gagneur,J。用样条变换建模调节序列的位置效应提高了深度神经网络的预测精度。生物信息学341261-1269(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cuperus, J. T. et al. Deep learning of the regulatory grammar of yeast 5’ untranslated regions from 500,000 random sequences. Genome Res. 27, 2015–2024 (2017).CAS

Cuperus,J.T.等人。从500000个随机序列中深入学习酵母5'非翻译区的调控语法。基因组研究272015–2024(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xia, Z. et al. DeeReCT-PolyA: a robust and generic deep learning method for PAS identification. Bioinformatics 35, 2371–2379 (2019).CAS

Xia,Z。等人。DeeReCT PolyA:一种用于PAS识别的稳健且通用的深度学习方法。生物信息学352371-2379(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zheng, X., Fu, X., Wang, K. & Wang, M. Deep neural networks for human microRNA precursor detection. BMC Bioinform. 21, 17 (2020).CAS

Zheng,X.,Fu,X.,Wang,K。&Wang,M。用于人类microRNA前体检测的深度神经网络。BMC生物信息。21,17(2020)。中科院

Google Scholar

谷歌学者

Leung, M. K. K., Delong, A. & Frey, B. J. Inference of the human polyadenylation code. Bioinformatics 34, 2889–2898 (2018).CAS

Leung,M.K.K.,Delong,A。&Frey,B.J。人类聚腺苷酸化代码的推断。生物信息学342889-2898(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548.e24 (2019).CAS

Jaganathan,K。等人。通过深度学习预测一级序列的剪接。细胞176535-548.e24(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zeng, T. & Li, Y. I. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 23, 103 (2022).CAS

Zeng,T。&Li,Y.I。使用穿山甲预测DNA序列的RNA剪接。基因组生物学。23103(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Luo, Z., Zhang, J., Fei, J. & Ke, S. Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences. Nat. Commun. 13, 2720 (2022).CAS

Luo,Z.,Zhang,J.,Fei,J。&Ke,S。深度学习建模m6A沉积揭示了下游顺式元件序列的重要性。国家公社。132720(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, F. & Koltun, V. Multi-scale context aggregation by dilated convolutions. In 4th International Conference on Learning Representations https://doi.org/10.48550/arXiv.1511.07122 (2016).Szegedy, C. et al. Going deeper with convolutions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 1–9 (IEEE, 2015).Zhao, Y.

Yu,F。&Koltun,V。通过扩张卷积进行多尺度上下文聚合。在第四届学习表征国际会议上https://doi.org/10.48550/arXiv.1511.07122(2016年)。Szegedy,C。等人,深入研究卷积。在过程中。IEEE计算机视觉和模式识别会议1-9(IEEE,2015)。赵,Y。

et al. CUP-AI-Dx: A tool for inferring cancer tissue of origin and molecular subtype using RNA gene-expression data and artificial intelligence. eBioMedicine 61, 103030 (2020).PubMed .

CUP AI Dx:使用RNA基因表达数据和人工智能推断癌症组织起源和分子亚型的工具。eBioMedicine 61103030(2020)。PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lipton, Z. C., Berkowitz, J. & Elkan, C. A critical review of recurrent neural networks for sequence learning. Preprint at https://arxiv.org/abs/1506.00019 (2015).Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom.

Lipton,Z.C.,Berkowitz,J。&Elkan,C。对用于序列学习的递归神经网络的批判性评论。预印于https://arxiv.org/abs/1506.00019(2015年)。Sherstinsky,A。递归神经网络(RNN)和长短期记忆(LSTM)网络的基础。物理。D非线性现象。

404, 132306 (2020)..

404, 132306 (2020)..

Google Scholar

谷歌学者

Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).CAS

Hochreiter,S。&Schmidhuber,J。长期短期记忆。神经计算机。91735-1780(1997)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cho, K. et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proc. 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1724–1734 (ACL, 2014).Sekhon, A., Singh, R. & Qi, Y. DeepDiff: DEEP-learning for predicting DIFFerential gene expression from histone modifications.

Cho,K.等人。使用RNN编码器-解码器学习短语表示以进行统计机器翻译。在过程中。2014年自然语言处理实证方法会议(EMNLP)1724-1734(ACL,2014)。Sekhon,A.,Singh,R。&Qi,Y。DeepDiff:从组蛋白修饰预测差异基因表达的深度学习。

Bioinformatics 34, i891–i900 (2018).CAS .

生物信息学34,i891-i900(2018)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Graves, A., Mohamed, A.-R., Hinton, G. Speech recognition with deep recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing 6645–6649 (IEEE, 2013).Bretschneider, H., Gandhi, S., Deshwar, A. G., Zuberi, K. & Frey, B. J. COSSMO: predicting competitive alternative splice site selection using deep learning.

Graves,A.,Mohamed,A.-R.,Hinton,G。具有深度递归神经网络的语音识别。2013年IEEE声学、语音和信号处理国际会议6645–6649(IEEE,2013)。Bretschneider,H.,Gandhi,S.,Deshwar,A.G.,Zuberi,K。&Frey,B.J。COSSMO:使用深度学习预测竞争性替代剪接位点选择。

Bioinformatics 34, i429–i437 (2018).CAS .

生物信息学34,i429–i437(2018)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grønning, A. G. B. et al. DeepCLIP: predicting the effect of mutations on protein–RNA binding with deep learning. Nucleic Acids Res. 48, 7099–7118 (2020).PubMed

Grønning,A.G.B.等人,《DeepCLIP:通过深度学习预测突变对蛋白质-RNA结合的影响》。核酸研究487099-7118(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Arefeen, A., Xiao, X. & Jiang, T. DeepPASTA: deep neural network based polyadenylation site analysis. Bioinformatics 35, 4577–4585 (2019).CAS

Arefeen,A.,Xiao,X。&Jiang,T。DeepPASTA:基于深度神经网络的聚腺苷酸化位点分析。生物信息学354577-4585(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Trabelsi, A., Chaabane, M. & Ben-Hur, A. Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities. Bioinformatics 35, i269–i277 (2019).CAS

Trabelsi,A.,Chaabane,M。&Ben Hur,A。深度学习架构的综合评估,用于预测DNA/RNA序列结合特异性。生物信息学35,i269-i277(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems 30 (NIPS, 2017).Dosovitskiy, A. et al. An image is worth 16x16 words: transformers for image recognition at scale. In 9th International Conference on Learning Representations https://openreview.net/forum?id=YicbFdNTTy (2021).Yu, H.

Vaswani,A。等人。注意力就是你所需要的。神经信息处理系统进展30(NIPS,2017)。Dosovitskiy,A。等人。一幅图像相当于16x16个单词:用于大规模图像识别的变压器。在第九届学习表征国际会议上https://openreview.net/forum?id=YicbFdNTTy(2021年)。余,H。

& Dai, Z. SANPolyA: a deep learning method for identifying Poly(A) signals. Bioinformatics 36, 2393–2400 (2020).CAS .

&Dai,Z。SANPolyA:一种识别Poly(a)信号的深度学习方法。生物信息学362393-2400(2020)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021).CAS

Avsec,Ž。通过整合远程相互作用,从序列中有效预测基因表达。自然方法181196-1203(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, J.-R., Wang, X.-F., Wen, J.-y, Shang, X.-Q. & Niu, R. Predicting circRNA-miRNA interactions utilizing transformer-based RNA sequential learning and high-order proximity preserved embedding. iScience 27, 108592 (2023).PubMed

Zhou,J.-R.,Wang,X.-F.,Wen,J.-y,Shang,X.-Q.&Niu,R.利用基于变压器的RNA序列学习和高阶邻近保留嵌入预测circRNA-miRNA相互作用。iScience 27108592(2023)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gilmer, J. et al. Neural message passing for quantum chemistry. In Proc. 34th International Conference on Machine Learning 1263–1272 (PMLR, 2017).Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In 5th International Conference on Learning Representations https://openreview.net/forum?id=SJU4ayYgl (2017).Veličković, P.

Gilmer,J.等人,《量子化学的神经信息传递》。在过程中。第34届国际机器学习会议1263-1272(PMLR,2017)。Kipf,T。N。&Welling,M。使用图卷积网络的半监督分类。在第五届学习表征国际会议上https://openreview.net/forum?id=SJU4ayYgl(2017年)。Veličković,P。

et al. Graph attention networks. In 6th International Conference on Learning Representations https://openreview.net/forum?id=rJXMpikCZ (2018).Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2020)..

等人。绘制注意力网络图。在第六届学习表征国际会议上https://openreview.net/forum?id=rJXMpikCZ(2018年)。Wu,Z。等人。关于图神经网络的综合综述。IEEE Trans。神经网络。学习。系统。32,4–24(2020年)。。

Google Scholar

谷歌学者

Forster, D. T. et al. BIONIC: biological network integration using convolutions. Nat. Methods 19, 1250–1261 (2022).CAS

Forster,D.T.等人,《仿生学:使用卷积的生物网络集成》。自然方法191250-1261(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).CAS

Statello,L.,Guo,C.-J.,Chen,L.-L.&Huarte,M。长非编码RNA的基因调控及其生物学功能。Nat。Rev。Mol。Cell Biol。22,96-118(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).CAS

Bartel,D.P。microRNA:靶标识别和调节功能。细胞136215-233(2009)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Peng, Y. & Croce, C. M. The role of microRNAs in human cancer. Signal Transduct. Target. Ther. 1, 15004 (2016).PubMed

Peng,Y。&Croce,C.M。microRNA在人类癌症中的作用。信号传输管。目标。他们。11504(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Slack, F. J. & Chinnaiyan, A. M. The role of non-coding RNAs in oncology. Cell 179, 1033–1055 (2019).CAS

Slack,F.J。&Chinnaiyan,A.M。非编码RNA在肿瘤学中的作用。细胞1791033-1055(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).CAS

Ha,M。&Kim,V.N。microRNA生物发生的调控。Nat。Rev。Mol。Cell Biol。15509-524(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).Cao, H., Wahlestedt, C. & Kapranov, P. Strategies to annotate and characterize long noncoding RNAs: advantages and pitfalls. Trends Genet. 34, 704–721 (2018).CAS .

Agarwal,V.,Bell,G.W.,Nam,J.W。和Bartel,D.P。预测哺乳动物mRNA中有效的microRNA靶位点。eLife 4E05005(2015)。Cao,H.,Wahlestedt,C。&Kapranov,P。注释和表征长非编码RNA的策略:优点和缺陷。趋势Genet。34704-721(2018)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Yuan, J. et al. NPInter v2.0: an updated database of ncRNA interactions. Nucleic Acids Res. 42, D104–D108 (2013).PubMed

Yuan,J。et al。NPInter v2.0:ncRNA相互作用的更新数据库。核酸研究42,D104–D108(2013)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS

Kanehisa,M。&Goto,S。KEGG:京都基因与基因组百科全书。核酸研究28,27-30(2000)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fabregat, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 46, D649–D655 (2018).CAS

Fabregat,A。等人。Reactome Pathway知识库。核酸研究46,D649–D655(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).CAS

Kristensen,L.S.等人。环状RNA的生物发生,生物学和表征。Genet自然Rev。20675-691(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kristensen, L. S., Jakobsen, T., Hager, H. & Kjems, J. The emerging roles of circRNAs in cancer and oncology. Nat. Rev. Clin. Oncol. 19, 188–206 (2022).CAS

Kristensen,L.S.,Jakobsen,T.,Hager,H。&Kjems,J。circRNA在癌症和肿瘤学中的新兴作用。国家修订临床。Oncol公司。19188-206(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, X. et al. circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep. 6, 34985 (2016).CAS

Chen,X。等人。circRNADb:具有蛋白质编码注释的人类环状RNA的综合数据库。科学。代表634985(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harrow, J. et al. GENCODE: the reference human genome annotation for the ENCODE project. Genome Res. 22, 1760–1774 (2012).CAS

Harrow,J.等人,《GENCODE:ENCODE项目的参考人类基因组注释》。Genome Res.221760–1774(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Glažar, P., Papavasileiou, P. & Rajewsky, N. circBase: a database for circular RNAs. RNA 20, 1666–1670 (2014).PubMed

Glažar,P.,Papavasileiou,P。&Rajewsky,N。circBase:环状RNA的数据库。RNA 201666-1670(2014)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meyer, K. D. & Jaffrey, S. R. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15, 313–326 (2014).CAS

Meyer,K.D。&Jaffrey,S.R。动态表位转录组:N6-甲基腺苷和基因表达控制。Nat。Rev。Mol。Cell Biol。15313-326(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wiener, D. & Schwartz, S. The epitranscriptome beyond m6A. Nat. Rev. Genet. 22, 119–131 (2021).CAS

Wiener,D。&Schwartz,S。超越m6A的表位转录组。Genet自然Rev。22119-131(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Delaunay, S., Helm, M. & Frye, M. RNA modifications in physiology and disease: towards clinical applications. Nat. Rev. Genet. 25, 104–122 (2024).Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 20, 303–322 (2020).CAS

Delaunay,S.,Helm,M。&Frye,M。生理学和疾病中的RNA修饰:走向临床应用。Genet自然Rev。25104-122(2024)。Barbieri,I。&Kouzarides,T。RNA修饰在癌症中的作用。《国家癌症评论》2033-322(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).CAS

Linder,B。等人。整个转录组中m6A和m6Am的单核苷酸分辨率作图。《自然方法》12767–772(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schaefer, M., Pollex, T., Hanna, K. & Lyko, F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res. 37, e12 (2009).PubMed

Schaefer,M.,Pollex,T.,Hanna,K。&Lyko,F。通过亚硫酸氢盐测序进行RNA胞嘧啶甲基化分析。核酸研究37,e12(2009)。PubMed出版社

Google Scholar

谷歌学者

Zhong, Z.-D. et al. Systematic comparison of tools used for m6A mapping from nanopore direct RNA sequencing. Nat. Commun. 14, 1906 (2023).CAS

Zhong,Z.-D.等人。用于从纳米孔直接RNA测序进行m6A作图的工具的系统比较。国家公社。141906(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Helm, M. & Motorin, Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet. 18, 275–291 (2017).CAS

Helm,M。&Motorin,Y。检测表位转录组中的RNA修饰:预测和验证。Genet自然Rev。18275-291(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hasan, M. M. et al. Deepm5C: a deep-learning-based hybrid framework for identifying human RNA N5-methylcytosine sites using a stacking strategy. Mol. Ther. 30, 2856–2867 (2022).CAS

Hasan,M.M.等人。Deepm5C:一种基于深度学习的混合框架,用于使用堆叠策略识别人类RNA N5甲基胞嘧啶位点。摩尔热。302856-2867(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tahir, M., Tayara, H. & Chong, K. T. iPseU-CNN: identifying RNA pseudouridine sites using convolutional neural networks. Mol. Ther. Nucleic Acids 16, 463–470 (2019).CAS

Tahir,M.,Tayara,H。&Chong,K.T。iPseU CNN:使用卷积神经网络识别RNA假尿苷位点。摩尔热。核酸16463-470(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mostavi, M., Salekin, S. & Huang, Y. Deep-2’-O-Me: predicting 2’-o-methylation sites by convolutional neural networks. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2394–2397 (IEEE, 2018).Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores.

Mostavi,M.,Salekin,S。&Huang,Y。Deep-2'-O-Me:通过卷积神经网络预测2'-O-甲基化位点。2018年,IEEE医学与生物学工程学会(EMBC)第40届国际年会2394-2397(IEEE,2018)。Garalde,D.R.等人在一系列纳米孔上进行高度平行的直接RNA测序。

Nat. Methods 15, 201–206 (2018).CAS .

自然方法15201-206(2018)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Liu, H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019).PubMed

Liu,H.等人。天然RNA序列中m6A RNA修饰的准确检测。国家公社。104079(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).CAS

Hentze,M.W.,Castello,A.,Schwarzl,T。&Preiss,T。一个勇敢的RNA结合蛋白新世界。Nat。Rev。Mol。Cell Biol。19327-341(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013).CAS

Ray,D.等人。用于解码基因调控的RNA结合基序概要。自然499172-177(2013)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).CAS

Licatalosi,D.D。等人的HITS-CLIP对大脑替代RNA处理产生了全基因组的见解。《自然》456464-469(2008)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).CAS

Hafner,M.等人。通过PAR-CLIP在转录组范围内鉴定RNA结合蛋白和microRNA靶位点。细胞141129-141(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).PubMed

Van Nostrand,E.L.等人。通过增强CLIP(eCLIP)在转录组范围内发现RNA结合蛋白结合位点。《自然方法》13508-514(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Taliaferro, J. M. et al. RNA sequence context effects measured in vitro predict in vivo protein binding and regulation. Mol. Cell. 64, 294–306 (2016).CAS

Taliaferro,J.M.等人。体外测量的RNA序列背景效应预测体内蛋白质结合和调节。摩尔电池。64294-306(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sanchez de Groot, N. et al. RNA structure drives interaction with proteins. Nat. Commun. 10, 3246 (2019).PubMed

Sanchez de Groot,N。等人。RNA结构驱动与蛋白质的相互作用。国家公社。103246(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pan, X., Rijnbeek, P., Yan, J. & Shen, H.-B. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. BMC Genomics 19, 511 (2018).PubMed

Pan,X.,Rijnbeek,P.,Yan,J。&Shen,H.-B。使用深度卷积和递归神经网络预测RNA-蛋白质序列和结构结合偏好。BMC基因组学19511(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Duvenaud, D. K. et al. Convolutional networks on graphs for learning molecular fingerprints. In Advances in Neural Information Processing Systems 28 (NIPS, 2015).Sun, L. et al. Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures. Cell Res.

Duvenaud,D.K.等人。用于学习分子指纹的图上卷积网络。神经信息处理系统进展28(NIPS,2015)。Sun,L.等人。通过使用体内RNA结构的深度学习预测动态细胞蛋白质-RNA相互作用。细胞研究。

31, 495–516 (2021).CAS .

31495-516(2021)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 7132–7141 (IEEE, 2018).Zhou, J. et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat. Genet. 51, 973–980 (2019).CAS .

Hu,J.,Shen,L。和Sun,G。挤压和激发网络。在过程中。IEEE计算机视觉和模式识别会议7132-7141(IEEE,2018)。Zhou,J.等人。全基因组深度学习分析确定了非编码突变对自闭症风险的贡献。纳特·吉内特。51973-980(2019)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Baek, M. et al. Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2023).PubMed

Baek,M.等人。使用RoseTTAFoldNA准确预测蛋白质-核酸复合物。自然方法21117-121(2023)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tian, B. & Manley, J. L. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18, 18–30 (2017).CAS

Tian,B。&Manley,J.L。mRNA前体的替代聚腺苷酸化。Nat。Rev。Mol。Cell Biol。18,18-30(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Matlin, A. J., Clark, F. & Smith, C. W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).CAS

Matlin,A.J.,Clark,F。&Smith,C.W。理解替代剪接:走向细胞代码。Nat。Rev。Mol。Cell Biol。6386-398(2005)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

De Sandre-Giovannoli, A. et al. Lamin a truncation in Hutchinson-Gilford progeria. Science 300, 2055 (2003).PubMed

Sandre Giovannoli,A.等人,《哈钦森-吉尔福德早衰症中的拉明截断》,科学3002055(2003)。PubMed

Google Scholar

谷歌学者

Baralle, F. E. & Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437–451 (2017).CAS

Baralle,F。E。&Giudice,J。选择性剪接作为发育和组织身份的调节剂。Nat。Rev。Mol。Cell Biol。18437-451(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).CAS

Wang,E.T.等人。人体组织转录组中的替代同工型调控。《自然》456470–476(2008)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zuallaert, J. et al. SpliceRover: interpretable convolutional neural networks for improved splice site prediction. Bioinformatics 34, 4180–4188 (2018).CAS

Zuallarert,J。等人。SpliceRover:用于改进剪接位点预测的可解释卷积神经网络。生物信息学344180-4188(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Derti, A. et al. A quantitative atlas of polyadenylation in five mammals. Genome Res. 22, 1173–1183 (2012).CAS

Derti,A。等人。五种哺乳动物聚腺苷酸化的定量图谱。基因组研究221173-1183(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jan, C. H., Friedman, R. C., Ruby, J. G. & Bartel, D. P. Formation, regulation and evolution of Caenorhabditis elegans 3′ UTRs. Nature 469, 97–101 (2011).CAS

Jan,C.H.,Friedman,R.C.,Ruby,J.G。&Bartel,D.P。秀丽隐杆线虫3'UTR的形成,调控和进化。《自然》469,97-101(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gao, X., Zhang, J., Wei, Z. & Hakonarson, H. DeepPolyA: a convolutional neural network approach for polyadenylation site prediction. IEEE Access. 6, 24340–24349 (2018).

Gao,X.,Zhang,J.,Wei,Z。&Hakonarson,H。DeepPolyA:用于聚腺苷酸化位点预测的卷积神经网络方法。IEEE访问。624340-24349(2018)。

Google Scholar

谷歌学者

Bogard, N., Linder, J., Rosenberg, A. B. & Seelig, G. A deep neural network for predicting and engineering alternative polyadenylation. Cell 178, 91–106.e23 (2019).CAS

Bogard,N.,Linder,J.,Rosenberg,A.B。&Seelig,G。一种用于预测和工程替代聚腺苷酸化的深度神经网络。细胞178,91-106.e23(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Beer, M. A. & Tavazoie, S. Predicting gene expression from sequence. Cell 117, 185–198 (2004).CAS

Beer,M.A。&Tavazoie,S。从序列预测基因表达。细胞117185-198(2004)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50, 1171–1179 (2018).CAS

Zhou,J。等人。基于深度学习序列的从头算预测变异对表达和疾病风险的影响。纳特·吉内特。501171-1179(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Agarwal, V. & Shendure, J. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks. Cell Rep. 31, 107663 (2020).CAS

Agarwal,V。&Shendure,J。使用深度卷积神经网络直接从基因组序列预测mRNA丰度。Cell Rep.31107663(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01905-6 (2023).Singh, R., Lanchantin, J., Robins, G. & Qi, Y. DeepChrome: deep-learning for predicting gene expression from histone modifications.

Roohani,Y.,Huang,K。&Leskovec,J。用GEARS预测新型多基因扰动的转录结果。Nat。Biotechnol。https://doi.org/10.1038/s41587-023-01905-6(2023年)。Singh,R.,Lanchantin,J.,Robins,G。&Qi,Y。DeepChrome:从组蛋白修饰预测基因表达的深度学习。

Bioinformatics 32, i639–i648 (2016).CAS .

生物信息学32,i639–i648(2016)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Tasaki, S., Gaiteri, C., Mostafavi, S. & Wang, Y. Deep learning decodes the principles of differential gene expression. Nat. Mach. Intell. 2, 376–386 (2020).PubMed

Tasaki,S.,Gaiteri,C.,Mostafavi,S。&Wang,Y。深度学习解码了差异基因表达的原理。自然马赫数。因特尔。2376-386(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sample, P. J. et al. Human 5′ UTR design and variant effect prediction from a massively parallel translation assay. Nat. Biotechnol. 37, 803–809 (2019).CAS

样本,P.J.等人。大规模平行翻译测定的人类5'UTR设计和变异效应预测。美国国家生物技术公司。37803-809(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiang, Y. et al. Pervasive downstream RNA hairpins dynamically dictate start-codon selection. Nature 621, 423–430 (2023).CAS

Xiang,Y。等人。普遍存在的下游RNA发夹动态地决定了起始密码子的选择。自然621423-430(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).CAS

Pardi,N.,Hogan,M.J.,Porter,F.W。和Weissman,D。mRNA疫苗-疫苗学的新时代。《药物目录》修订版。17261-279(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).CAS

Childs Disney,J.L.等人,用小分子靶向RNA结构。《药物目录》修订版。21736-762(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).CAS

Warner,K.D.,Hajdin,C.E。和Weeks,K.M。用药物样小分子靶向RNA的原理。《药物目录》修订版。17547-558(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics—challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).CAS

Winkle,M.,El Daly,S.M.,Fabbri,M。&Calin,G.A。非编码RNA治疗挑战和潜在解决方案。《药物目录》修订版。20629-651(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Setten, R. L., Rossi, J. J. & Han, S.-P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019).CAS

Setten,R.L.,Rossi,J.J.&Han,S.-P。基于RNAi的疗法的现状和未来方向。《药物目录》修订版。18421-446(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Byron, S. A., Van Keuren-Jensen, K. R., Engelthaler, D. M., Carpten, J. D. & Craig, D. W. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat. Rev. Genet. 17, 257–271 (2016).CAS

Byron,S.A.,Van Keuren Jensen,K.R.,Engelthaler,D.M.,Carpten,J.D。&Craig,D.W。将RNA测序转化为临床诊断:机遇和挑战。Genet自然Rev。17257-271(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cummings, B. B. et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci. Transl. Med. 9, eaal5209 (2017).PubMed

Cummings,B.B.等人。通过转录组测序改进孟德尔疾病的遗传诊断。科学。翻译。医学杂志9,eaal5209(2017)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mayhew, M. B. et al. A generalizable 29-mRNA neural-network classifier for acute bacterial and viral infections. Nat. Commun. 11, 1177 (2020).CAS

Mayhew,M.B.等人。用于急性细菌和病毒感染的可推广的29 mRNA神经网络分类器。国家公社。111177(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Comitani, F. et al. Diagnostic classification of childhood cancer using multiscale transcriptomics. Nat. Med. 29, 656–666 (2023).CAS

Comitani,F。等人。使用多尺度转录组学对儿童癌症进行诊断分类。《自然医学》29656-666(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, T. et al. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nat. Commun. 12, 3445 (2021).CAS

Wang,T。等人,MOGONET使用图卷积网络整合多组学数据,允许患者分类和生物标志物识别。国家公社。123445(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schmauch, B. et al. A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat. Commun. 11, 3877 (2020).CAS

Schmauch,B。等人。一种深度学习模型,用于从整个幻灯片图像预测肿瘤的RNA-Seq表达。国家公社。113877(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).CAS

Chaudhary,N.,Weissman,D。&Whitehead,K.A。传染病的mRNA疫苗:原理,递送和临床翻译。《药物目录》修订版。20817-838(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qin, S. et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 7, 166 (2022).CAS

秦,S。等。基于mRNA的疗法:对抗疾病的强大而通用的工具。信号传输管。目标。他们。7166(2022年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiménez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2, 573–584 (2020).

Jiménez Luna,J.,Grisoni,F。&Schneider,G。药物发现与可解释的人工智能。自然马赫数。因特尔。2573-584(2020)。

Google Scholar

谷歌学者

Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).CAS

Vamathevan,J。等人。机器学习在药物发现和开发中的应用。《药物目录》修订版。18463-477(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wayment-Steele, H. K. et al. Deep learning models for predicting RNA degradation via dual crowdsourcing. Nat. Mach. Intell. 4, 1174–1184 (2022).PubMed

Wayment Steele,H.K.等人。通过双重众包预测RNA降解的深度学习模型。自然马赫数。因特尔。41174-1184(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, T. & Guestrin, C. XGboost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM, 2016).Wong, C. UK first to approve CRISPR treatment for diseases: what you need to know. Nature 623, 676–677 (2023).CAS .

Chen,T。和Guestrin,C。XGboost:一个可扩展的树提升系统。在过程中。第22届ACM SIGKDD知识发现和数据挖掘国际会议785-794(ACM,2016)。Wong,C。UK首次批准CRISPR治疗疾病:你需要知道什么。自然623676-677(2023)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Chuai, G. et al. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. 19, 80 (2018).PubMed

Chuai,G。等人。DeepCRISPR:通过深度学习优化CRISPR指导RNA设计。基因组生物学。19,80(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiang, X. et al. Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. Nat. Commun. 12, 3238 (2021).CAS

Xiang,X。等人。通过数据整合和深度学习增强CRISPR-Cas9 gRNA效率预测。国家公社。12338(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marquart, K. F. et al. Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nat. Commun. 12, 5114 (2021).CAS

Marquart,K.F.等人。使用在高通量目标库屏幕上训练的基于注意力的深度学习算法预测基础编辑结果。国家公社。125114(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mathis, N. et al. Predicting prime editing efficiency and product purity by deep learning. Nat. Biotechnol. 41, 1151–1159 (2023).CAS

Mathis,N.等人。通过深度学习预测主要编辑效率和产品纯度。美国国家生物技术公司。411151-1159(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wessels, H.-H. et al. Prediction of on-target and off-target activity of CRISPR–Cas13d guide RNAs using deep learning. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01830-8 (2023).Park, S. et al. shRNAI: a deep neural network for the design of highly potent shRNAs. Preprint at bioRxiv https://doi.org/10.1101/2024.01.09.574789 (2024).Gao, D.

Wessels,H.-H.等人。使用深度学习预测CRISPR–Cas13d指导RNA的靶向和脱靶活性。美国国家生物技术公司。https://doi.org/10.1038/s41587-023-01830-8(2023年)。Park,S.等人。shRNAI:用于设计高效shRNA的深度神经网络。bioRxiv预印本https://doi.org/10.1101/2024.01.09.574789(2024年)。高,D。

et al. A deep learning approach to identify gene targets of a therapeutic for human splicing disorders. Nat. Commun. 12, 3332 (2021).CAS .

等人。一种深度学习方法,用于鉴定人类剪接障碍治疗剂的基因靶标。国家公社。123332(2021)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Abascal, F. et al. Perspectives on ENCODE. Nature 583, 693–698 (2020).

Abascal,F.等人,《编码透视图》。《自然》583693-698(2020)。

Google Scholar

谷歌学者

Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).Lindeboom, R. G. H., Regev, A. & Teichmann, S. A. Towards a Human Cell Atlas: taking notes from the past. Trends Genet. 37, 625–630 (2021).CAS

Regev,A。等人,《人类细胞图谱》。eLife 6,e27041(2017)。Lindeboom,R.G.H.,Regev,A。&Teichmann,S.A。走向人类细胞图谱:从过去记录。趋势Genet。37625-630(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Deng, J. et al. Imagenet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).Lin, T.-Y. et al. Microsoft coco: common objects in context. In Proc. Computer Vision–ECCV 2014: 13th European Conference 740–755 (Springer, 2014).Rajpurkar, P., Zhang, J., Lopyrev, K.

Deng,J。等人。Imagenet:一个大规模的分层图像数据库。2009年IEEE计算机视觉和模式识别会议248–255(IEEE,2009)。Lin,T.-Y.等人。Microsoft coco:上下文中的常见对象。在过程中。计算机视觉–ECCV 2014:第13届欧洲会议740–755(Springer,2014)。Rajpurkar,P.,Zhang,J.,Lopyrev,K。

& Liang, P. Squad: 100,000+ questions for machine comprehension of text. In Proc. 2016 Conference on Empirical Methods in Natural Language Processing 2383–2392 (ACL, 2016).Wang, A. et al. GLUE: a multi-task benchmark and analysis platform for natural language understanding. In Proc. 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP 353–355 (ACL, 2018).Pagès-Gallego, M.

&Liang,P。Squad:机器理解文本的100000多个问题。在过程中。2016年自然语言处理实证方法会议2383-2392(ACL,2016)。GLUE:一个用于自然语言理解的多任务基准和分析平台。在过程中。2018年EMNLP研讨会BlackboxNLP:分析和解释NLP 353-355的神经网络(ACL,2018)。佩耶斯-加列戈,M。

& de Ridder, J. Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling. Genome Biol. 24, 71 (2023).PubMed .

&de Ridder,J。纳米孔测序基础调用深度学习模型的综合基准和体系结构分析。基因组生物学。24,71(2023)。PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Horlacher, M. et al. A systematic benchmark of machine learning methods for protein–RNA interaction prediction. Brief. Bioinform. 24, bbad307 (2023).PubMed

Horlacher,M.等人。用于蛋白质-RNA相互作用预测的机器学习方法的系统基准。简介。生物信息。24,bbad307(2023)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, Z. et al. Benchmark of computational methods for predicting microRNA-disease associations. Genome Biol. 20, 202 (2019).PubMed

Huang,Z.等人。预测microRNA疾病关联的计算方法基准。基因组生物学。20202(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sasse, A. et al. Benchmarking of deep neural networks for predicting personal gene expression from DNA sequence highlights shortcomings. Nat. Genet. 55, 2060–2064 (2023).CAS

Sasse,A.等人,《深度神经网络从DNA序列预测个人基因表达的基准测试》突出了缺陷。纳特·吉内特。552060-2064(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, C. et al. Personal transcriptome variation is poorly explained by current genomic deep learning models. Nat. Genet. 55, 2056–2059 (2023).CAS

目前的基因组深度学习模型很难解释个人转录组变异。纳特·吉内特。552056-2059(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Khan, S. A. et al. Reusability report: Learning the transcriptional grammar in single-cell RNA-sequencing data using transformers. Nat. Mach. Intell. 5, 1437–1446 (2023).

Khan,S.A.等人,《可重用性报告:使用transformers学习单细胞RNA测序数据中的转录语法》。自然马赫数。因特尔。51437-1446(2023)。

Google Scholar

谷歌学者

Tan, M. & Le, Q. Efficientnet: rethinking model scaling for convolutional neural networks. In Proc. 36th International Conference on Machine Learning 6105–6114 (PMLR, 2019).Thompson, N. C., Greenewald, K., Lee, K. & Manso, G. F. The computational limits of deep learning. In Ninth Computing within Limits 2023.

Tan,M。&Le,Q。Efficientnet:重新考虑卷积神经网络的模型缩放。在过程中。第36届国际机器学习会议6105-6114(PMLR,2019)。Thompson,N.C.,Greenewald,K.,Lee,K。&Manso,G.F。深度学习的计算限制。2023年第九次计算。

https://doi.org/10.21428/bf6fb269.1f033948 (LIMITS, 2023).Vermeulen, C. et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 622, 842–849 (2023).Bauer, W. et al. A novel 29-messenger RNA host-response assay from whole blood accurately identifies bacterial and viral infections in patients presenting to the emergency department with suspected infections: a prospective observational study.

https://doi.org/10.21428/bf6fb269.1f033948(限制,2023年)。Vermeulen,C。等人。手术期间超快速深度学习中枢神经系统肿瘤分类。自然622842-849(2023)。Bauer,W。等人。一项来自全血的新型29信使RNA宿主反应测定法可准确识别急诊科疑似感染患者的细菌和病毒感染:一项前瞻性观察性研究。

Crit. Care Med. 49, 1664–1673 (2021).CAS .

Crit。《护理医学》491664-1673(2021)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Menghani, G. Efficient deep learning: a survey on making deep learning models smaller, faster, and better. ACM Comput. Surv. 55, 1–37 (2023).

Menghani,G。高效深度学习:关于使深度学习模型更小,更快,更好的调查。ACM计算机。Surv。55,1-37(2023)。

Google Scholar

谷歌学者

Micikevicius, P. et al. Mixed precision training. In 6th International Conference on Learning Representations https://openreview.net/forum?id=r1gs9JgRZ (2018).Jacob, B. et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2704–2713 (IEEE, 2018).He, Y., Zhang, X.

Micikevicius,P。等人。混合精度训练。在第六届学习表征国际会议上https://openreview.net/forum?id=r1gs9JgRZ(2018年)。Jacob,B.等人。用于有效整数算术推理的神经网络量化和训练。在过程中。IEEE计算机视觉和模式识别会议2704-2713(IEEE,2018)。何Y.,张X。

& Sun, J. Channel pruning for accelerating very deep neural networks. In Proc. IEEE International Conference on Computer Vision 1389–1397 (IEEE, 2017).Howard, A. G. et al. Mobilenets: efficient convolutional neural networks for mobile vision applications. Preprint at https://arxiv.org/abs/1704.04861 (2017).Iandola, F.

&Sun,J。用于加速非常深的神经网络的通道修剪。在过程中。IEEE计算机视觉国际会议1389–1397(IEEE,2017)。Howard,A.G.等人,《移动网络:用于移动视觉应用的高效卷积神经网络》。预印于https://arxiv.org/abs/1704.04861(2017年)。伊恩多拉,F。

N. et al SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. Preprint at https://arxiv.org/abs/1602.07360 (2016).Zhang, X., Zhou, X., Lin, M. & Sun, J. Shufflenet: an extremely efficient convolutional neural network for mobile devices. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 6848–6856 (IEEE, 2018).Tan, M.

N、 等人的SqueezeNet:AlexNet级精度,参数少50倍,模型尺寸小于0.5 MB。预印于https://arxiv.org/abs/1602.07360(2016年)。Zhang,X.,Zhou,X.,Lin,M。&Sun,J。Shufflenet:一种用于移动设备的极其有效的卷积神经网络。在过程中。IEEE计算机视觉和模式识别会议6848–6856(IEEE,2018)。谭,M。

& Le, Q. EfficientNetV2: Smaller models and faster training. In Proc. 38th International Conference on Machine Learning 10096–10106 (PMLR, 2021).Penzar, D. et al. LegNet: a best-in-class deep learning model for short DNA regulatory regions. Bioinformatics 39, btad457 (2023).CAS .

&Le,Q。EfficientNetV2:更小的模型和更快的训练。在过程中。第38届国际机器学习会议10096–10106(PMLR,2021)。Penzar,D。等人。LegNet:针对短DNA调控区的最佳深度学习模型。生物信息学39,btad457(2023)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Baltrušaitis, T., Ahuja, C. & Morency, L.-P. Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443 (2018).PubMed

Baltrušaitis,T.,Ahuja,C.&Morency,L.-P。多模式机器学习:调查和分类。IEEE Trans。模式肛门。马赫。因特尔。41423-443(2018)。PubMed出版社

Google Scholar

谷歌学者

Ashuach, T. et al. MultiVI: deep generative model for the integration of multimodal data. Nat. Methods 20, 1222–1231 (2023).CAS

Ashuach,T。等人,《MultiVI:多模态数据集成的深度生成模型》。自然方法201222-1231(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Long, D. et al. Potent effect of target structure on microRNA function. Nat. Struct. Mol. Biol. 14, 287–294 (2007).CAS

Long,D.等人。靶结构对microRNA功能的有效作用。自然结构。分子生物学。14287-294(2007)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X.-W., Liu, C.-X., Chen, L.-L. & Zhang, Q. C. RNA structure probing uncovers RNA structure-dependent biological functions. Nat. Chem. Biol. 17, 755–766 (2021).CAS

Wang,X.-W.,Liu,C.-X.,Chen,L.-L.&Zhang,Q.C。RNA结构探测揭示了RNA结构依赖性生物学功能。自然化学。生物学17755-766(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mortimer, S. A., Kidwell, M. A. & Doudna, J. A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).CAS

Mortimer,S.A.,Kidwell,M.A。和Doudna,J.A。从全基因组研究中对RNA结构和功能的见解。Genet自然Rev。15469-479(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat. Commun. 12, 941 (2021).CAS

Sato,K.,Akiyama,M。和Sakakibara,Y。使用热力学积分的深度学习进行RNA二级结构预测。国家公社。12941(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10, 5407 (2019).PubMed

Singh,J.,Hanson,J.,Paliwal,K。&Zhou,Y。使用二维深度神经网络和转移学习的集合进行RNA二级结构预测。国家公社。105407(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, W. et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. Nat. Commun. 14, 7266 (2023).CAS

Wang,W。等。trRosettaRNA:使用transformer网络自动预测RNA 3D结构。自然通讯。147266(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guidotti, R. et al. A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR). 51, 1–42 (2018).

Guidotti,R.等人,《解释黑箱模型的方法综述》。ACM计算机。Surv。(CSUR)。51,1-42(2018)。

Google Scholar

谷歌学者

Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems Vol. 30. https://papers.nips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf (Curran Associates, Inc., 2017).Janssens, J. et al.

Lundberg,S.M.&Lee,S.-I。解释模型预测的统一方法。神经信息处理系统进展第30卷。https://papers.nips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf(Curran Associates,Inc.,2017)。Janssens,J。等人。

Decoding gene regulation in the fly brain. Nature 601, 630–636 (2022).CAS .

解码苍蝇大脑中的基因调控。自然601630-636(2022)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

de Almeida, B. P., Reiter, F., Pagani, M. & Stark, A. DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of synthetic enhancers. Nat. Genet. 54, 613–624 (2022).PubMed

de Almeida,B.P.,Reiter,F.,Pagani,M。&Stark,A。DeepSTARR从DNA序列预测增强子活性,并实现合成增强子的从头设计。纳特·吉内特。54613-624(2022)。PubMed出版社

Google Scholar

谷歌学者

Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: visualising image classification models and saliency maps. In Proceedings of the International Conference on Learning Representations. https://doi.org/10.48550/arXiv.1312.6034 (2014)Shrikumar, A., Greenside, P., Shcherbina, A.

Simonyan,K.,Vedaldi,A。&Zisserman,A。深入卷积网络:可视化图像分类模型和显着性图。学习表征国际会议论文集。https://doi.org/10.48550/arXiv.1312.6034(2014)Shrikumar,A.,Greenside,P.,Shcherbina,A。

& Kundaje, A. Not just a black box: learning important features through propagating activation differences. Preprint at https://arxiv.org/abs/1605.01713 (2016).Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In Proc. 34th International Conference on Machine Learning 3319–3328 (PMLR, 2017).Bach, S.

&Kundaje,A。不仅仅是一个黑匣子:通过传播激活差异来学习重要特征。预印于https://arxiv.org/abs/1605.01713(2016年)。Sundararajan,M.,Taly,A。&Yan,Q。深度网络的公理归因。在过程中。第34届国际机器学习会议3319-3328(PMLR,2017)。巴赫,S。

et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10, e0130140 (2015).PubMed .

等。关于通过逐层相关传播对非线性分类器决策的像素解释。PLoS ONE 10,e0130140(2015)。PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences In International Conference on Machine Learning 3145–3153 (PMLR, 2017).Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.

Shrikumar,A.,Greenside,P。&Kundaje,A。通过在国际机器学习会议3145-3153(PMLR,2017)中传播激活差异来学习重要特征。停止解释高风险决策的黑箱机器学习模型,而是使用可解释的模型。

Nat. Mach. Intell. 1, 206–215 (2019).PubMed .

纳特,去吧。Intell。1, 206–215 (2019).PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bommasani R., et al. On the opportunities and risks of foundation models. Preprint at https://arxiv.org/abs/2108.07258 (2021).Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with gpt-4. Preprint at https://arxiv.org/abs/2303.12712 (2023).OpenAI, et al. GPT-4 technical report.

Bommasani R.等人,关于基金会模型的机会和风险。预印于https://arxiv.org/abs/2108.07258(2021年)。Bubeck,S.等人,《人工通用智能的火花:gpt-4的早期实验》。预印于https://arxiv.org/abs/2303.12712(2023年)。OpenAI等人,《GPT-4技术报告》。

Preprint at https://arxiv.org/abs/2303.08774 (2023).Radford, A., Narasimhan, K., Salimans, T. & Sutskever, I. Improving language understanding by generative pre-training. Preprint at https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf (2018).Ji, Y., Zhou, Z., Liu, H.

预印于https://arxiv.org/abs/2303.08774(2023年)。Radford,A.,Narasimhan,K.,Salimans,T。&Sutskever,I。通过生成性预训练提高语言理解。预印于https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf(2018年)。季Y.,周Z.,刘H。

& Davuluri, R. V. DNABERT: pre-trained bidirectional encoder representations from transformers model for DNA-language in genome. Bioinformatics 37, 2112–2120 (2021).CAS .

&Davuluri,R.V.DNABERT:来自变形金刚模型的预训练双向编码器表示,用于基因组中的DNA语言。生物信息学372112-2120(2021)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, D. et al. DNAGPT: a generalized pretrained tool for multiple DNA sequence analysis tasks. Preprint at https://www.biorxiv.org/content/10.1101/2023.07.11.548628v1 (2023).Celaj, A. et al. An RNA foundation model enables discovery of disease mechanisms and candidate therapeutics.

Zhang,D。等人。DNAGPT:用于多个DNA序列分析任务的通用预训练工具。预印于https://www.biorxiv.org/content/10.1101/2023.07.11.548628v1(2023年)。Celaj,A。等人。RNA基金会模型能够发现疾病机制和候选疗法。

Preprint at https://www.biorxiv.org/content/10.1101/2023.09.20.558508v1 (2023).Chen, J. et al. Interpretable RNA foundation model from unannotated data for highly accurate RNA structure and function predictions. Preprint at https://www.biorxiv.org/content/10.1101/2022.08.06.503062v1.full (2022).Badia-i-Mompel, P.

预印于https://www.biorxiv.org/content/10.1101/2023.09.20.558508v1(2023年)。Chen,J。等人。来自未注释数据的可解释RNA基础模型,用于高度准确的RNA结构和功能预测。预印于https://www.biorxiv.org/content/10.1101/2022.08.06.503062v1.full(2022年)。巴迪亚-蒙佩尔,P。

et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 24, 739–754 (2023).CAS .

等。单细胞多组学时代的基因调控网络推断。Genet自然Rev。24739-754(2023)。CAS。

PubMed

PubMed

Google Scholar

谷歌学者

Cha, J. & Lee, I. Single-cell network biology for resolving cellular heterogeneity in human diseases. Exp. Mol. Med. 52, 1798–1808 (2020).CAS

Cha,J。&Lee,I。单细胞网络生物学,用于解决人类疾病中的细胞异质性。《实验分子医学》521798-1808(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).CAS

Obermeyer,Z.,Powers,B.,Vogeli,C。&Mullainathan,S。在用于管理人群健康的算法中剖析种族偏见。科学366447-453(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).CAS

Sirugo,G.,Williams,S.M。和Tishkoff,S.A。人类基因研究中缺失的多样性。细胞177,26-31(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Consortium GT. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

GTEx联盟GT。GTEx联盟人类组织遗传调控效应图谱。科学3691318-1330(2020)。

Google Scholar

谷歌学者

Spratt, D. E. et al. Racial/ethnic disparities in genomic sequencing. JAMA Oncol. 2, 1070–1074 (2016).PubMed

Spratt,D.E.等人,《基因组测序中的种族/民族差异》。JAMA Oncol。21070-1074(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, J. et al. Algorithmic fairness in computational medicine. EBioMedicine 84, 104250 (2022).PubMed

Xu,J。等人。计算医学中的算法公平性。EBioMedicine 84104250(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharma, S. et al. Data augmentation for discrimination prevention and bias disambiguation. In Proc. AAAI/ACM Conference on AI, Ethics, and Society; 358–364 (ACM, 2020).Investigators AoURP. The “All of Us” research program. New Engl. J. Med. 381, 668–676 (2019).

Sharma,S.等人,《防止歧视和消除偏见的数据增强》。在过程中。AAAI/ACM关于AI,道德和社会的会议;358-364(ACM,2020)。调查员AoURP。“我们所有人”研究计划。新英语。J、 医学381668-676(2019)。

Google Scholar

谷歌学者

Gürsoy, G. et al. Functional genomics data: privacy risk assessment and technological mitigation. Nat. Rev. Genet. 23, 245–258 (2022).PubMed

Gürsoy,G.等人,《功能基因组学数据:隐私风险评估和技术缓解》。Genet自然Rev。23245-258(2022)。PubMed出版社

Google Scholar

谷歌学者

Lunshof, J. E., Chadwick, R., Vorhaus, D. B. & Church, G. M. From genetic privacy to open consent. Nat. Rev. Genet. 9, 406–411 (2008).CAS

Lunshof,J.E.,Chadwick,R.,Vorhaus,D.B。和Church,G.M。从基因隐私到公开同意。Genet自然Rev。9406-411(2008)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shokri, R. & Shmatikov, V. Privacy-preserving deep learning. In Proc. 22nd ACM SIGSAC Conference on Computer and Communications Security, 1310–1321 (ACM, 2015).Wan, Z. et al. Sociotechnical safeguards for genomic data privacy. Nat. Rev. Genet. 23, 429–445 (2022).CAS

Shokri,R。&Shmatikov,V。隐私保护深度学习。在过程中。第22届ACM SIGSAC计算机与通信安全会议,1310-1321(ACM,2015)。Wan,Z.等人,《基因组数据隐私的社会技术保障》。Genet自然Rev。23429-445(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gymrek, M., McGuire, A. L., Golan, D., Halperin, E. & Erlich, Y. Identifying personal genomes by surname inference. Science 339, 321–324 (2013).CAS

Gymrek,M.,McGuire,A.L.,Golan,D.,Halperin,E。&Erlich,Y。通过姓氏推断识别个人基因组。科学339321-324(2013)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Acar, A., Aksu, H., Uluagac, A. S. & Conti, M. A survey on homomorphic encryption schemes: theory and implementation. ACM Comput. Surv. 51, 1–35 (2018).

Acar,A.,Aksu,H.,Uluagac,A.S。&Conti,M。关于同态加密方案的调查:理论和实现。ACM计算机。Surv。51,1-35(2018)。

Google Scholar

谷歌学者

Gilad-Bachrach, R. et al. Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In International Conference on Machine Learning, PMLR, 201–210 (PMLR, 2016).Konečný, J. et al. Federated learning: strategies for improving communication efficiency. Preprint at https://arxiv.org/abs/1610.05492 (2016).Rieke, N.

Gilad Bachrach,R.等人,《加密网:将神经网络应用于高通量和准确度的加密数据》。在国际机器学习会议上,PMLR,201-210(PMLR,2016)。Konečný,J.等人,《联合学习:提高沟通效率的策略》。预印于https://arxiv.org/abs/1610.05492(2016年)。Rieke,N。

et al. The future of digital health with federated learning. NPJ Digit. Med. 3, 119 (2020).PubMed .

等。数字健康与联合学习的未来。NPJ数字。医学杂志3119(2020)。PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dayan, I. et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat. Med. 27, 1735–1743 (2021).CAS

Dayan,I.等人。联合学习预测新型冠状病毒肺炎患者的临床结果。《自然医学》271735-1743(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Warnat-Herresthal, S. et al. Swarm learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021).CAS

Warnat Herresthal,S.等人,《分散和保密临床机器学习的群体学习》。自然594265-270(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).CAS

Wang,H.等人,《人工智能时代的科学发现》。自然620,47-60(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Katz, K. et al. The Sequence Read Archive: a decade more of explosive growth. Nucleic Acids Res. 50, D387–D390 (2022).CAS

Katz,K.等人,《序列读取档案:十年以上的爆炸性增长》。核酸研究50,D387–D390(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).CAS

Hudson,T.J.等人,《国际癌症基因组计划网络》。《自然》464993–998(2010)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ko, G. et al. KoNA: Korean Nucleotide Archive as a new data repository for nucleotide sequence data. Genomics Proteomics Bioinformatics, qzae017 https://doi.org/10.1093/gpbjnl/qzae017 (2024).Lee, B. et al. Introduction of the Korea BioData Station (K-BDS) for sharing biological data.

Ko,G。等。KoNA:韩国核苷酸档案作为核苷酸序列数据的新数据库。基因组学蛋白质组学生物信息学,qzae017https://doi.org/10.1093/gpbjnl/qzae017(2024年)。Lee,B.等人。韩国生物数据站(K-BDS)简介,用于共享生物数据。

Genomics Inform. 21, e12 (2023).PubMed .

基因组学通知。21,e12(2023)。PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zou, Q., Xing, P., Wei, L. & Liu, B. Gene2vec: gene subsequence embedding for prediction of mammalian N(6)-methyladenosine sites from mRNA. Rna 25, 205–218 (2019).CAS

Zou,Q.,Xing,P.,Wei,L。&Liu,B。Gene2vec:用于从mRNA预测哺乳动物N(6)-甲基腺苷位点的基因亚序列嵌入。Rna 25205-218(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis study was supported by the National Research Foundation of Korea (NRF), which is funded by the Ministry of Science and ICT, Republic of Korea (NRF-2019M3E5D3073104, NRF-2020R1A2C3007032, NRF-2020R1A5A1018081, and NRF-2022M3A9I2082294).Author informationAuthor notesThese authors contributed equally: Hyeonseo Hwang, Hyeonseong Jeon, Nagyeong Yeo.Authors and AffiliationsSchool of Biological Sciences, Seoul National University, Seoul, Republic of KoreaHyeonseo Hwang, Nagyeong Yeo & Daehyun BaekInterdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of KoreaHyeonseong Jeon & Daehyun BaekGenome4me Inc., Seoul, Republic of KoreaHyeonseong Jeon & Daehyun BaekAuthorsHyeonseo HwangView author publicationsYou can also search for this author in.

下载参考文献致谢本研究得到了韩国国家研究基金会(NRF)的支持,该基金会由大韩民国科学和信息通信技术部资助(NRF-2019M3E5D3073104,NRF-2020R1A2C3007032,NRF-2020R1A5A1018081和NRF-2022M3A9I2082294)。作者信息作者注意到这些作者做出了同样的贡献:Hyeonseo Hwang,Hyeonseong Jeon,Nagyeong Yeo。作者和附属机构首尔国立大学生物科学学院,首尔,韩国共和国首尔Hyeonseo Hwang,Nagyeong Yeo&Daehyun-Baek生物信息学跨学科项目,首尔国立大学,韩国共和国首尔Hyeonseong Jeon&Daehyun-BaekGenome4me Inc.,首尔,韩国共和国首尔Hyeonseong Jeon&Daehyun-BaekAuthorsHyeonseo-HwangView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarHyeonseong JeonView author publicationsYou can also search for this author in

PubMed Google ScholarHyeonseong JeonView作者出版物您也可以在

PubMed Google ScholarNagyeong YeoView author publicationsYou can also search for this author in

PubMed Google ScholarNagyeong YeoView作者出版物您也可以在

PubMed Google ScholarDaehyun BaekView author publicationsYou can also search for this author in

PubMed Google ScholarDaehyun BaekView作者出版物您也可以在

PubMed Google ScholarContributionsD.B. conceived the review. H.H., H.J., and N.Y. wrote the manuscript. All of the authors revised the manuscript.Corresponding authorCorrespondence to

PubMed谷歌学术贡献SD。B、 构思了审查。H、 H.,H.J。和N.Y.撰写了手稿。所有作者都修改了手稿。对应作者对应

Daehyun Baek.Ethics declarations

Daehyun Baek。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary Information for Big Data and Deep Learning for RNA BiologyRights and permissions

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息RNA生物学大数据和深度学习的补充信息权利和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleHwang, H., Jeon, H., Yeo, N. et al. Big data and deep learning for RNA biology.

转载和许可本文引用本文Hwang,H.,Jeon,H.,Yeo,N。等人。RNA生物学的大数据和深度学习。

Exp Mol Med (2024). https://doi.org/10.1038/s12276-024-01243-wDownload citationReceived: 31 January 2024Revised: 27 February 2024Accepted: 05 March 2024Published: 14 June 2024DOI: https://doi.org/10.1038/s12276-024-01243-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Exp Mol Med(2024)。https://doi.org/10.1038/s12276-024-01243-wDownload引文收到日期:2024年1月31日修订日期:2024年2月27日接受日期:2024年3月5日发布日期:2024年6月14日OI:https://doi.org/10.1038/s12276-024-01243-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供