商务合作
动脉网APP
可切换为仅中文
AbstractAcute promyelocytic leukemia (APL) is characterized by rearrangements of the retinoic acid receptor, RARα, which makes all-trans retinoic acid (ATRA) highly effective in the treatment of this disease, inducing promyelocytes differentiation. Current therapy, based on ATRA in combination with arsenic trioxide, with or without chemotherapy, provides high rates of event-free survival and overall survival.
摘要急性早幼粒细胞白血病(APL)的特征是视黄酸受体RARα的重排,这使得全反式视黄酸(ATRA)在治疗该疾病方面非常有效,诱导早幼粒细胞分化。目前基于ATRA联合三氧化二砷的治疗方法,无论有无化疗,均可提供高无事件生存率和总生存率。
However, a decline in the drug activity, due to increased ATRA metabolism and RARα mutations, is often observed over long-term treatments. Furthermore, dedifferentiation can occur providing relapse of the disease. In this study we evaluated fenretinide, a semisynthetic ATRA derivative, encapsulated in nanomicelles (nano-fenretinide) as an alternative treatment to ATRA in APL.
然而,在长期治疗中经常观察到由于ATRA代谢增加和RARα突变导致的药物活性下降。此外,如果疾病复发,可能会发生去分化。在这项研究中,我们评估了芬维a胺,一种半合成的ATRA衍生物,封装在纳米胶束(纳米芬维a胺)中,作为APL中ATRA的替代治疗方法。
Nano-fenretinide was prepared by fenretinide encapsulation in a self-assembling phospholipid mixture. Physico-chemical characterization was carried out by dinamic light scattering and spectrophotometry. The biological activity was evaluated by MTT assay, flow cytometry and confocal laser-scanning fluorescence microscopy.
通过将芬维a胺包封在自组装磷脂混合物中制备纳米芬维a胺。通过dinamic光散射和分光光度法进行物理化学表征。通过MTT测定,流式细胞术和共聚焦激光扫描荧光显微镜评估生物活性。
Nano-fenretinide induced apoptosis in acute promyelocytic leukemia cells (HL60) by an early increase of reactive oxygen species and a mitochondrial potential decrease. The fenretinide concentration that induced 90–100% decrease in cell viability was about 2.0 µM at 24 h, a concentration easily achievable in vivo when nano-fenretinide is administered by oral or intravenous route, as demonstrated in previous studies.
纳米芬维a胺通过早期增加活性氧和线粒体电位降低诱导急性早幼粒细胞白血病细胞(HL60)凋亡。诱导细胞活力降低90-100%的芬维a胺浓度在24小时时约为2.0µM,如先前的研究所示,当通过口服或静脉内途径给予纳米芬维a胺时,该浓度在体内很容易达到。
Nano-fenretinide was effective, albeit at slightly higher concentrations, also in doxorubicin-resistant HL60 cells, while a comparison with TK6 lymphoblasts indicated a lack of toxicity on normal cells. The results indicate that nano-fenretinide can be considered an.
纳米芬维a胺在阿霉素耐药的HL60细胞中也有效,尽管浓度略高,但与TK6淋巴母细胞的比较表明对正常细胞缺乏毒性。结果表明,纳米芬维A胺可以被认为是一种。
IntroductionFenretinide (4-hydroxyphenyl retinamide, FEN) is a semisynthetic derivative of ATRA endowed with antitumor activity and a low toxicity profile. The main adverse effect is represented by decreased night vision reversible upon treatment suspension1. FEN antitumor activity, largely proved in a wide range of solid tumors and hematologic malignancies2 is based on multiple mechanisms triggering apoptosis in tumor cells by reactive oxygen species (ROS) increase, unbalancement of ceramides/dehydroceramides ratio and RARβ induction3.Many studies reported FEN activity on non-APL, acute myeloid leukemia (AML) cells, without significant effect on normal counterparts4,5,6,7,8,9,10.However, in spite of its antitumor activity and low toxicity profile, FEN has not entered in clinical use because its scant bioavailability prevents the achievement of suitable plasma concentrations to elicit a therapeutic response.
简介芬维a胺(4-羟基苯基维a酰胺,FEN)是ATRA的半合成衍生物,具有抗肿瘤活性和低毒性。主要的不良反应表现为治疗中止后可逆的夜视下降1。FEN的抗肿瘤活性在广泛的实体瘤和血液系统恶性肿瘤中得到了广泛的证实2,其基于多种机制,通过活性氧(ROS)的增加,神经酰胺/脱氢神经酰胺比例的不平衡和RARβ的诱导来触发肿瘤细胞的凋亡3。许多研究报道FEN对非APL急性髓细胞白血病(AML)细胞的活性,对正常对照组没有显着影响4,5,6,7,8,9,10。然而,尽管FEN具有抗肿瘤活性和低毒性,但由于其生物利用度低,因此尚未进入临床使用,因为其生物利用度低,无法获得合适的血浆浓度以引发治疗反应。
The many attempts made over the years to increase FEN bioavailability produced only few formulations that entered in clinical trials but did not provide satisfying results either in solid tumors or in hematologic malignancies2,3.A FEN nanoformulation (NF) was obtained by FEN entrapment in supramolecular aggregates, formed in aqueous medium by spontaneous self-assembling of suitable amphiphilic phospholipid-based mixtures.
多年来为提高FEN生物利用度所做的许多尝试仅产生了少数进入临床试验的制剂,但在实体瘤或血液系统恶性肿瘤中均未提供令人满意的结果2,3。FEN纳米制剂(NF)是通过FEN包埋在超分子聚集体中获得的,该聚集体通过自发自组装合适的两亲性磷脂基混合物在水性介质中形成。
NF was studied in vitro and in vivo in a wide range of tumor models11,12,13,14,15,16. NF in vivo studies demonstrated a bioavailability and an antitumor activity much higher than free FEN, either by intravenous or oral administration11,12,13,14,15,16.In this study we evaluated the activity of this nanoformulation in APL cell lines.
NF在多种肿瘤模型中进行了体外和体内研究11,12,13,14,15,16。NF体内研究表明,通过静脉内或口服给药11,12,13,14,15,16,生物利用度和抗肿瘤活性远高于游离FEN。在这项研究中,我们评估了这种纳米制剂在APL细胞系中的活性。
AML is a malignant clonal disease where the presence of genetic alterations in myeloid cells causes inhibition of diff.
AML是一种恶性克隆性疾病,其中骨髓细胞中遗传改变的存在导致差异抑制。
Data availability
数据可用性
All data are available on request to the corresponding authors.
所有数据均可应要求提供给相应的作者。
ReferencesCaruso, R. C. et al. Effects of fenretinide (4-HPR) on dark adaptation. Arch. Ophthalmol. 116, 759–763 (1998).CAS
参考文献Caruso,R.C。等人。芬维A胺(4-HPR)对暗适应的影响。拱门。眼科。116759-763(1998)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cooper, J. P., Reynolds, C. P., Cho, H. & Kang, M. H. Clinical development of fenretinide as an antineoplastic drug: Pharmacology perspectives. Exp. Biol. Med. 242, 1178–1184 (2017).CAS
Cooper,J.P.,Reynolds,C.P.,Cho,H。&Kang,M.H。芬维A胺作为抗肿瘤药物的临床开发:药理学观点。实验生物。医学杂志2421178-1184(2017)。中科院
Google Scholar
谷歌学者
Potenza, R. L., Lodeserto, P. & Orienti, I. Fenretinide in cancer and neurological disease: A two-face janus molecule. Int. J. Mol. Sci. 23, 7426 (2022).CAS
Potenza,R.L.,Lodeserto,P。&Orienti,I。芬维A胺在癌症和神经系统疾病中的作用:一种双面janus分子。Int.J.Mol.Sci。237426(2022)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, H. et al. Chemosensitization by 4-hydroxyphenyl retinamide-induced NF-κB inhibition in acute myeloid leukemia cells. Cancer Chemother. Pharmacol. 86, 257–266 (2020).CAS
Zhang,H。等。4-羟基苯基视黄酰胺对急性髓系白血病细胞的化学增敏作用诱导NF-κB抑制。癌症化疗。药理学。86257-266(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xiong, J. et al. Fenretinide-induced apoptosis of acute myeloid leukemia cells via NR4A1 translocation into mitochondria and Bcl-2 transformation. J. Cancer 10, 6767–6778 (2019).CAS
熊,J。等。芬维A胺通过NR4A1易位进入线粒体和Bcl-2转化诱导急性髓系白血病细胞凋亡。J、 癌症106767-6778(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Morad, S. A. F., Davis, T. S., Kester, M., Loughran, T. P. & Cabot, M. C. Dynamics of ceramide generation and metabolism in response to fenretinide: Diversity within and among leukemia. Leuk. Res. 39, 1071–1078 (2015).CAS
Morad,S.A.F.,Davis,T.S.,Kester,M.,Loughran,T.P。&Cabot,M.C。神经酰胺产生和代谢对芬维A胺的反应动力学:白血病内部和之间的多样性。白血病。第391071-1078号决议(2015年)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Du, Y. et al. Fenretinide targets chronic myeloid leukemia stem/progenitor cells by regulation of redox signaling. Antioxid. Redox Signal. 20, 1866–1880 (2014).CAS
Du,Y。等人,芬维A胺通过调节氧化还原信号传导靶向慢性粒细胞白血病干/祖细胞。抗氧化剂。氧化还原信号。201866-1880(2014)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, H. et al. Preferential eradication of acute myelogenous leukemia stem cells by fenretinide. Proc. Natl. Acad. Sci. USA 110, 5606–5611 (2013).ADS
Zhang,H。等。芬维A胺优先根除急性骨髓性白血病干细胞。程序。纳特尔。阿卡德。科学。美国1105606–5611(2013)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kang, M. H., Wan, Z., Kang, Y. H., Sposto, R. & Reynolds, C. P. Mechanism of synergy of N-(4-hydroxyphenyl)retinamide and ABT-737 in acute lymphoblastic leukemia cell lines: Mcl-1 inactivation. J. Natl. Cancer Inst. 100, 580–595 (2008).CAS
Kang,M.H.,Wan,Z.,Kang,Y.H.,Sposto,R。&Reynolds,C.P。N-(4-羟基苯基)视黄酰胺和ABT-737在急性淋巴细胞白血病细胞系中协同作用的机制:Mcl-1失活。J、 纳特尔。癌症研究所100580-595(2008)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ozpolat, B., Tari, A. M., Mehta, K. & Lopez-Berestein, G. Nuclear retinoid receptors are involved in N-(4-hydroxyphenyl) retinamide (Fenretinide)-induced gene expression and growth inhibition in HL-60 acute myeloid leukemia cells. Leuk. Lymphoma 45, 979–985 (2004).CAS
Ozpolat,B.,Tari,A.M.,Mehta,K。&Lopez-Berestein,G。核类视黄醇受体参与N-(4-羟基苯基)视黄酰胺(芬维A胺)诱导的HL-60急性髓细胞白血病细胞的基因表达和生长抑制。白血病。淋巴瘤45979-985(2004)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Orienti, I. et al. Nanomicellar lenalidomide-fenretinide combination suppresses tumor growth in an MYCN amplified neuroblastoma tumor. Int. J. Nanomed. 15, 6873–6886 (2020).CAS
纳米胶束来那度胺-芬维A胺组合抑制MYCN扩增的神经母细胞瘤肿瘤中的肿瘤生长。内景J.Nanomed。156873-6886(2020)。中科院
Google Scholar
谷歌学者
Orienti, I. et al. A novel nanomicellar combination of fenretinide and lenalidomide shows marked antitumor activity in a neuroblastoma xenograft model. Drug Des. Dev. Ther. 13, 4305–4319 (2019).CAS
Orienti,I。等人。芬维A胺和来那度胺的新型纳米胶束组合在神经母细胞瘤异种移植模型中显示出显着的抗肿瘤活性。药物Des。开发人员。134305-4319(2019)。中科院
Google Scholar
谷歌学者
Orienti, I. et al. A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells. J. Exp. Clin. Cancer Res. 38, 373 (2019).PubMed
Orienti,I。等人。一种新型口服胶束芬维A胺制剂,具有增强的生物利用度和抗肿瘤活性,可对抗癌症干细胞的多种肿瘤。J、 实验临床。癌症研究38373(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Orienti, I. et al. A new bioavailable fenretinide formulation with antiproliferative, antimetabolic, and cytotoxic effects on solid tumors. Cell Death Dis. 10, 529 (2019).PubMed
Orienti,I。等人。一种新的生物可利用的芬维A胺制剂,对实体瘤具有抗增殖,抗代谢和细胞毒性作用。细胞死亡Dis。10529(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Galassi, L. et al. Naxitamab activity in neuroblastoma cells is enhanced by nanofenretinide and nanospermidine. Pharmaceutics 15, 648 (2023).CAS
Galassi,L。等人。纳米芬维A胺和纳米二氢吡啶可增强神经母细胞瘤细胞中的Naxitamab活性。药剂学15648(2023)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lodeserto, P., Rossi, M., Blasi, P., Farruggia, G. & Orienti, I. Nanospermidine in combination with nanofenretinide induces cell death in neuroblastoma cell lines. Pharmaceutics 14, 1215 (2022).CAS
Lodeserto,P.,Rossi,M.,Blasi,P.,Farruggia,G。&Orienti,I。纳米精胺与纳米芬维A胺联合诱导神经母细胞瘤细胞系中的细胞死亡。药剂学141215(2022)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saultz, J. N. & Tyner, J. W. Chasing leukemia differentiation through induction therapy, relapse and transplantation. Blood Rev. 57, 101000 (2023).CAS
Saultz,J.N。&Tyner,J.W。通过诱导治疗,复发和移植追踪白血病分化。Blood Rev.57101000(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Masetti, R. et al. Chemotherapy-free treatment for acute promyelocytic leukemia: The pediatric view of a revolutionary tale. Front. Oncol. 13, 1135350 (2023).CAS
Masetti,R.等人,《急性早幼粒细胞白血病的无化疗治疗:革命性故事的儿科观点》。正面。Oncol公司。131135350(2023)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kuhlen, M., Klusmann, J.-H. & Hoell, J. I. Molecular approaches to treating pediatric leukemias. Front. Pediatr. 7, 368 (2019).PubMed
Kuhlen,M.,Klusmann,J.-H.&Hoell,J.I.治疗小儿白血病的分子方法。正面。儿科。7368(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dos Santos, G. A., Kats, L. & Pandolfi, P. P. Synergy against PML-RARa: Targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J. Exp. Med. 210, 2793–2802 (2013).PubMed
Dos Santos,G.A.,Kats,L。&Pandolfi,P.P。针对PML-RARa的协同作用:靶向急性早幼粒细胞白血病的转录,蛋白水解,分化和自我更新。J、 实验医学2102793-2802(2013)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moosavi, M. A. & Djavaheri-Mergny, M. Autophagy: New insights into mechanisms of action and resistance of treatment in acute promyelocytic leukemia. Int. J. Mol. Sci. 20, 3559 (2019).CAS
Moosavi,M.A。&Djavaheri-Mergny,M。自噬:对急性早幼粒细胞白血病的作用机制和治疗耐药性的新见解。Int.J.Mol.Sci。203559(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jimenez, J. J., Chale, R. S., Abad, A. C. & Schally, A. V. Acute promyelocytic leukemia (APL): A review of the literature. Oncotarget 11, 992–1003 (2020).PubMed
Jimenez,J.J.,Chale,R.S.,Abad,A.C。&Schally,A.V。急性早幼粒细胞白血病(APL):文献综述。Oncotarget 11992–1003(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gonçalves, A., Rocha, F. & Estevinho, B. N. Pharmaceutical/clinical strategies in the treatment of acute promyelocytic leukemia: All-trans retinoic acid encapsulation by spray-drying technology as an innovative approach-comprehensive overview. Pharmaceuticals 16, 180 (2023).PubMed
Gonçalves,A.,Rocha,F。&Estevinho,B.N。治疗急性早幼粒细胞白血病的药物/临床策略:通过喷雾干燥技术包封全反式维甲酸作为创新方法综合概述。制药16180(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jing, J. et al. Physiologically based pharmacokinetic model of all-trans-retinoic acid with application to cancer populations and drug interactions. J. Pharmacol. Exp. Ther. 361, 246–258 (2017).CAS
Jing,J。等人。基于生理学的全反式维甲酸药代动力学模型,应用于癌症人群和药物相互作用。J、 药理学。实验温度。361246-258(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McKenzie, M. D. et al. Interconversion between tumorigenic and differentiated states in acute myeloid leukemia. Cell Stem Cell 25, 258-272.e9 (2019).CAS
McKenzie,M.D.等人,《急性髓系白血病致瘤状态和分化状态之间的相互转化》。细胞干细胞25258-272.e9(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rego, E. M. & De Santis, G. C. Differentiation syndrome in promyelocytic leukemia: Clinical presentation, pathogenesis and treatment. Mediterr. J. Hematol. Infect. Dis. 3, e2011048 (2011).CAS
Rego,E.M。&De Santis,G.C。早幼粒细胞白血病的分化综合征:临床表现,发病机制和治疗。地中海。J、 血液学。感染。Dis。3,e2011048(2011)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carrall, J. A. et al. Optimizing arsenic therapy by selectively targeting leukemia cells. J. Med. Chem. 66, 12101–12114 (2023).CAS
Carrall,J.A.等人通过选择性靶向白血病细胞优化砷治疗。J、 医学化学。6612101-12114(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yan, M., Wang, H., Wei, R. & Li, W. Arsenic trioxide: Applications, mechanisms of action, toxicity and rescue strategies to date. Arch. Pharm. Res. https://doi.org/10.1007/s12272-023-01481-y (2023).Article
Yan,M.,Wang,H.,Wei,R。&Li,W。三氧化二砷:迄今为止的应用,作用机制,毒性和救援策略。拱门。制药研究。https://doi.org/10.1007/s12272-023-01481-y(2023年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Loh, Z. et al. Arsenic-induced neurotoxicity in patients with acute promyelocytic leukaemia. Br. J. Haematol. https://doi.org/10.1111/bjh.19297 (2024).Article
Loh,Z。等人。砷对急性早幼粒细胞白血病患者的神经毒性。Br.J.血液学。https://doi.org/10.1111/bjh.19297(2024年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
di Martino, O. & Welch, J. S. Retinoic acid receptors in acute myeloid leukemia therapy. Cancers 11, 1915 (2019).CAS
di Martino,O。&Welch,J.S。视黄酸受体在急性髓性白血病治疗中的作用。癌症111915(2019)。中科院
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tsai, D. E. et al. A phase I study of bexarotene, a retinoic X receptor agonist, in non-M3 acute myeloid leukemia. Clin. Cancer Res. 14, 5619–5625 (2008).CAS
Tsai,D.E.等人。维甲酸X受体激动剂贝沙罗汀在非M3急性髓细胞白血病中的I期研究。临床。癌症研究145619-5625(2008)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
El-Houjeiri, L. et al. Antitumor effect of the atypical retinoid ST1926 in acute myeloid leukemia and nanoparticle formulation prolongs lifespan and reduces tumor burden of xenograft mice. Mol. Cancer Ther. 16, 2047–2057 (2017).CAS
El Houjeiri,L。等人。非典型类视黄醇ST1926在急性骨髓性白血病和纳米颗粒制剂中的抗肿瘤作用延长了寿命并减轻了异种移植小鼠的肿瘤负担。分子癌症治疗。162047-2057(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ponzanelli, I. et al. Isolation and characterization of an acute promyelocytic leukemia cell line selectively resistant to the novel antileukemic and apoptogenic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid. Blood 95, 2672–2682 (2000).CAS
Ponzanelli,I。等人。对新型抗白血病和凋亡类视黄醇6-[3-金刚烷基-4-羟基苯基]-2-萘羧酸选择性耐药的急性早幼粒细胞白血病细胞系的分离和表征。血液952672-2682(2000)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).CAS
Mosmann,T。细胞生长和存活的快速比色测定:在增殖和细胞毒性测定中的应用。J、 免疫。方法65,55-63(1983)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Green, L. M., Reade, J. L. & Ware, C. F. Rapid colorimetric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory lymphokines. J. Immunol. Methods 70, 257–268 (1984).CAS
Green,L.M.,Reade,J.L。&Ware,C.F。细胞活力的快速比色测定:应用于细胞毒性和生长抑制性淋巴因子的定量。J、 免疫。方法70257-268(1984)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stepanenko, A. A. & Dmitrenko, V. V. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene 574, 193–203 (2015).CAS
Stepanenko,A.A。&Dmitrenko,V.V。MTT测定的缺陷:抑制剂的直接和脱靶效应可导致细胞活力的高估/低估。基因574193-203(2015)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ghasemi, M., Turnbull, T., Sebastian, S. & Kempson, I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 22, 12827 (2021).CAS
Ghasemi,M.,Turnbull,T.,Sebastian,S。&Kempson,I。MTT测定:批量和单细胞分析中的效用,局限性,陷阱和解释。Int.J.Mol.Sci。2212827(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rai, Y. et al. Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci. Rep. 8, 1531 (2018).ADS
线粒体生物发生和代谢过度活化限制了MTT法在估计辐射诱导的生长抑制中的应用。科学。代表81531(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Erba, E. et al. Flow cytometric analysis of DNA content in human ovarian cancers. Br. J. Cancer 60, 45–50 (1989).CAS
Erba,E.等人。人类卵巢癌DNA含量的流式细胞术分析。Br.J.Cancer 60,45-50(1989)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grisham, M. B. Methods to detect hydrogen peroxide in living cells: Possibilities and pitfalls. Comp. Biochem. Physiol. A 165, 429–438 (2013).CAS
Grisham,M.B。检测活细胞中过氧化氢的方法:可能性和缺陷。公司。生物化学。生理学。165429-438(2013)。中科院
Google Scholar
谷歌学者
Gomes, A., Fernandes, E. & Lima, J. L. F. C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65, 45–80 (2005).CAS
Gomes,A.,Fernandes,E。&Lima,J.L.F.C。用于检测活性氧的荧光探针。J、 生物化学。生物物理。方法65,45-80(2005)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fang, J., Nakamura, H. & Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).CAS
Fang,J.,Nakamura,H。&Maeda,H。EPR效应:用于药物递送的肿瘤血管的独特特征,涉及的因素以及效应的限制和增强。高级药物输送。修订版63136-151(2011)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).CAS
Gao,X.,Cui,Y.,Levenson,R.M.,Chung,L.W.K.&Nie,S。体内癌症靶向和半导体量子点成像。美国国家生物技术公司。22969-976(2004)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).CAS
Jain,R.K。&Stylianopoulos,T。将纳米医学递送至实体瘤。国家修订临床。Oncol公司。7653-664(2010)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).CAS
Matsumura,Y。&Maeda,H。癌症化疗中大分子治疗的新概念:蛋白质和抗肿瘤剂smancs的肿瘤累积机制。癌症研究466387-6392(1986)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chekman, I. S., Potemkina, N. N. & Tumanov, V. A. Nicotinamide coenzymes as an object of drug and poison activity (review of the literature). Farmakol. Toksikol. 40, 113–122 (1977).CAS
Chekman,I.S.,Potemkina,N.N。和Tumanov,V.A。烟酰胺辅酶作为药物和毒物活性的对象(文献综述)。法马科尔。托克西科。40113-122(1977)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fisher, P. B., Schachter, D., Abbott, R. E., Callaham, M. F. & Huberman, E. Membrane lipid dynamics in human promyelocytic leukemia cells sensitive and resistant to 12-O-tetradecanoylphorbol-13-acetate induction of differentiation. Cancer Res. 44, 5550–5554 (1984).CAS
Fisher,P.B.,Schachter,D.,Abbott,R.E.,Callaham,M.F。&Huberman,E。人类早幼粒细胞白血病细胞中的膜脂质动力学对12-O-十四烷酰基佛波醇-13-乙酸酯诱导分化敏感和耐药。《癌症研究》445550–5554(1984)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kopecka, J. et al. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist. Updates 49, 100670 (2020).
Kopecka,J。等。磷脂和胆固醇:癌症多药耐药性的诱导剂和治疗靶点。抗药性。更新49100670(2020)。
Google Scholar
谷歌学者
Boutin, C. et al. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells. J. Biomed. Opt. 14, 034030 (2009).ADS
Boutin,C。等人。多药耐药癌细胞中质膜微流体的高度异质性。J、 生物医学。选择。14034030(2009)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Drori, S., Eytan, G. D. & Assaraf, Y. G. Potentiation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability. Eur. J. Biochem. 228, 1020–1029 (1995).CAS
Drori,S.,Eytan,G.D。和Assaraf,Y.G。多药耐药化学增敏剂增强抗癌药物的细胞毒性涉及膜流动性的改变,导致膜通透性增加。Eur.J.生物化学。2281020-1029(1995)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Barasch, A., Raber-Durlacher, J., Epstein, J. B. & Carroll, J. Effects of pre-radiation exposure to LLLT of normal and malignant cells. Support. Care Cancer 24, 2497–2501 (2016).PubMed
Barasch,A.,Raber-Durlacher,J.,Epstein,J.B。&Carroll,J。预辐射暴露于正常和恶性细胞的LLLT的影响。支持。护理癌症242497-2501(2016)。PubMed出版社
Google Scholar
谷歌学者
Nagy, J. A., Chang, S.-H., Dvorak, A. M. & Dvorak, H. F. Why are tumour blood vessels abnormal and why is it important to know?. Br. J. Cancer 100, 865–869 (2009).CAS
Nagy,J.A.,Chang,S.-H.,Dvorak,A.M。和Dvorak,H.F。为什么肿瘤血管异常,为什么知道它很重要?。Br.J.Cancer 100865-869(2009)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65, 71–79 (2013).CAS
Maeda,H.,Nakamura,H。&Fang,J。大分子药物递送至实体瘤的EPR效应:改善肿瘤摄取,降低全身毒性和体内独特的肿瘤成像。高级药物输送。第65、71–79版(2013年)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Prabhakar, U. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412–2417 (2013).CAS
Prabhakar,U.等人。肿瘤学中纳米药物递送的增强渗透性和保留效应的挑战和关键考虑因素。癌症研究732412-2417(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Greish, K. Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: Are we there yet?. Drug Discov. Today Technol. 9, e161–e166 (2012).CAS
Greish,K。抗癌纳米药物选择性靶向的增强渗透性和保留效应:我们到了吗?。药物发现。今日科技。9,e161–e166(2012)。中科院
Google Scholar
谷歌学者
Tomasoni, C., Pievani, A., Rambaldi, B., Biondi, A. & Serafini, M. A question of frame: The role of the bone marrow stromal niche in myeloid malignancies. Hemasphere 7, e896 (2023).CAS
Tomasoni,C.,Pievani,A.,Rambaldi,B.,Biondi,A。&Serafini,M。框架问题:骨髓基质生态位在骨髓恶性肿瘤中的作用。Hemasphere 7,e896(2023)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Skelding, K. A., Barry, D. L., Theron, D. Z. & Lincz, L. F. Bone marrow microenvironment as a source of new drug targets for the treatment of acute myeloid leukaemia. Int. J. Mol. Sci. 24, 563 (2022).PubMed
Skelding,K.A.,Barry,D.L.,Theron,D.Z。&Lincz,L.F。骨髓微环境是治疗急性髓性白血病的新药靶标的来源。Int.J.Mol.Sci。24563(2022)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe project work was funded by the “Ministero dell’Università e della Ricerca” PRIN 2017, project n. 20175XBSX4 (Targeting Hedgehog pathway: Virtual screening identification and sustainable synthesis of novel Smo and Gli inhibitors and their pharmacological drug delivery strategies for improved therapeutic effects in tumors).Author informationAuthors and AffiliationsDepartment of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127, Bologna, ItalyGiovanna Farruggia, Lorenzo Anconelli, Lucrezia Galassi, Manuela Voltattorni, Martina Rossi, Paolo Blasi & Isabella OrientiCenter for Applied Biomedical Research (CRBA), University of Bologna, 40126, Bologna, ItalyGiovanna Farruggia, Lucrezia Galassi, Martina Rossi & Paolo BlasiNational Institute of Biostructures and Biosystems, Via Delle Medaglie d’Oro 305, 00136, Rome, ItalyGiovanna FarruggiaSection of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, ItalyPietro LodesertoAuthorsGiovanna FarruggiaView author publicationsYou can also search for this author in.
下载参考文献致谢该项目工作由“Ministero dell'Universitàe della Ricerca”于2017年4月资助,项目编号20175XBSX4(靶向刺猬通路:新型Smo和Gli抑制剂的虚拟筛选鉴定和可持续合成及其药理药物递送策略,以改善肿瘤的治疗效果)。作者信息作者和附属机构博洛尼亚大学药学与生物技术系,Via San Donato 19/240127,博洛尼亚,ItalyGiovanna Farruggia,Lorenzo Anconelli,Lucrezia Galassi,Manuela Volattorni,Martina Rossi,Paolo Blasi&Isabella OrientiCenter for Applied Biomedical Research(CRBA),博洛尼亚大学,40126,博洛尼亚,ItalyGiovanna Farruggia,Lucrezia Galassi,Martina Rossi&Paolo BlasiNational Institute of Biostructures and Biosystems,Via Delle Medaglie d'Oro 30500136,罗马,ItalyGiovanna Farruggia罗马大学系统医学系内分泌和代谢疾病科Tor Vergata,00133,罗马,ItalyPietro LodesertoAuthorsGiovanna FarruggiaView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarLorenzo AnconelliView author publicationsYou can also search for this author in
PubMed Google ScholarLorenzo AnconelliView作者出版物您也可以在
PubMed Google ScholarLucrezia GalassiView author publicationsYou can also search for this author in
PubMed Google ScholarLucrezia GalassiView作者出版物您也可以在
PubMed Google ScholarManuela VoltattorniView author publicationsYou can also search for this author in
PubMed Google ScholarManuela VoltattorniView作者出版物您也可以在
PubMed Google ScholarMartina RossiView author publicationsYou can also search for this author in
PubMed Google ScholarMartina RossiView作者出版物您也可以在
PubMed Google ScholarPietro LodesertoView author publicationsYou can also search for this author in
PubMed Google ScholarPietro LodesertoView作者出版物您也可以在
PubMed Google ScholarPaolo BlasiView author publicationsYou can also search for this author in
PubMed Google ScholarPaolo BlasiView作者出版物您也可以在
PubMed Google ScholarIsabella OrientiView author publicationsYou can also search for this author in
PubMed Google ScholarIsabella OrientiView作者出版物您也可以在
PubMed Google ScholarContributionsG.F., I.O. conceptualization, writing, original draft preparation, review and editing, supervision; L.A. methodology, software, validation, formal analysis and investigation; L.G. methodology, software, validation, formal analysis and investigation; M.V.
PubMed谷歌学术贡献。F、 ,即概念化,写作,原稿准备,审查和编辑,监督;五十、 A.方法、软件、验证、正式分析和调查;五十、 G.方法、软件、验证、正式分析和调查;M、 五。
formal analysis and investigation; M.R., P.L. methodology, writing, original draft preparation, review and editing; PB: Conceptualization, writing, original draft preparation, review and editing, supervision, funding acquisition.Corresponding authorsCorrespondence to.
形式分析和调查;M、 R.,P.L.方法论,写作,原稿准备,审查和编辑;PB:概念化,写作,原稿准备,审查和编辑,监督,资金获取。通讯作者通讯。
Paolo Blasi or Isabella Orienti.Ethics declarations
保罗·布拉西或伊莎贝拉·奥伦蒂。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleFarruggia, G., Anconelli, L., Galassi, L. et al. Nano-fenretinide demonstrates remarkable activity in acute promyeloid leukemia cells.
转载和许可本文引用本文Farruggia,G.,Anconelli,L.,Galassi,L。等人。纳米芬维A胺在急性早幼粒细胞白血病细胞中表现出显着的活性。
Sci Rep 14, 13737 (2024). https://doi.org/10.1038/s41598-024-64629-wDownload citationReceived: 15 December 2023Accepted: 26 March 2024Published: 14 June 2024DOI: https://doi.org/10.1038/s41598-024-64629-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
科学报告1413737(2024)。https://doi.org/10.1038/s41598-024-64629-wDownload引文接收日期:2023年12月15日接收日期:2024年3月26日发布日期:2024年6月14日OI:https://doi.org/10.1038/s41598-024-64629-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsAPL4-Hydroxyphenyl retinamide
关键词APL4-羟基苯基视黄酰胺
All-trans retinoic acidAntitumor activityMitochondrial membrane potentialReactive oxygen speciesHL60HL60RTK6
全反式维甲酸抗肿瘤活性线粒体膜电位活性氧物种HL60HL60RTK6
Subjects
主题
Acute myeloid leukaemiaCancerHaematological cancerLeukaemia
急性髓系白血病癌症白血病
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。