商务合作
动脉网APP
可切换为仅中文
AbstractA morphometric similarity (MS) network can be constructed using multiple magnetic resonance imaging parameters of each cortical region. An MS network can be used to assess the similarity between cortical regions. Although MS networks can detect microstructural alterations and capture connections between histologically similar cortical areas, the influence of schizophrenia on the topological characteristics of MS networks remains unclear.
摘要可以使用每个皮质区域的多个磁共振成像参数构建形态相似性(MS)网络。MS网络可用于评估皮质区域之间的相似性。尽管MS网络可以检测微观结构的改变并捕获组织学上相似的皮质区域之间的连接,但精神分裂症对MS网络拓扑特征的影响仍不清楚。
We obtained T1- and diffusion-weighted images of 239 healthy controls and 190 individuals with schizophrenia to construct the MS network. Group comparisons of the mean MS of the cortical regions and subnetworks were performed. The strengths of the connections between the cortical regions and the global and nodal network indices were compared between the groups.
我们获得了239名健康对照者和190名精神分裂症患者的T1和弥散加权图像,以构建MS网络。对皮质区域和子网络的平均MS进行了组比较。比较各组之间皮质区域与全局和节点网络指数之间的连接强度。
Clinical associations with the network indices were tested using Spearman’s rho. Compared with healthy controls, individuals with schizophrenia had significant group differences in the mean MS of several cortical regions and subnetworks. Individuals with schizophrenia had both superior and inferior strengths of connections between cortical regions compared with those of healthy controls.
使用Spearman的rho测试了与网络指数的临床关联。与健康对照组相比,精神分裂症患者在几个皮层区域和子网络的平均MS上存在显着的群体差异。。
We observed regional abnormalities of the MS network in individuals with schizophrenia regarding lower centrality values of the pars opercularis, superior frontal, and superior temporal areas. Specific nodal network measures of the right pars opercularis and left superior temporal areas were associated with illness duration in individuals with schizophrenia.
我们观察到精神分裂症患者MS网络的区域异常,涉及鳃部,额上和颞上区域的中心性较低。右侧鳃盖部和左侧颞上区的特定节点网络测量值与精神分裂症患者的疾病持续时间相关。
We identified regional abnormalities of the MS network in schizophrenia with the left superior temporal area possibly being a key region in topological organization and cortical connections..
。。
IntroductionDespite the enormous socioeconomic burden of schizophrenia1, the neurobiological background of the etiology and pathophysiology of schizophrenia is still elusive. Structural abnormalities of brain regions in individuals with schizophrenia have been consistently reported; however, the individual results vary2.
引言尽管精神分裂症的社会经济负担巨大,但精神分裂症病因和病理生理学的神经生物学背景仍然难以捉摸。精神分裂症患者大脑区域的结构异常一直有报道;但是,个人结果各不相同2。
Dysconnectivity among brain regions has been hypothesized to be the primary pathophysiology for schizophrenia, suggesting that abnormal connections among cortical and subcortical regions contribute to clinical symptoms of schizophrenia, together with structural and functional changes in individual brain regions.
。
Accordingly, abnormalities in intra- and inter-networks in individuals with schizophrenia have drawn increasing attention3. A meta-analysis of resting-state functional connectivity in individuals with schizophrenia reported an imbalance in connections among large-scale brain networks and revealed the core role of the ventral attention network in a disconnected brain network model4.
因此,精神分裂症患者的内部和内部网络异常引起了越来越多的关注3。。
Consequently, the abnormalities in individual brain regions and their connections should be considered in tandem to clarify the neural mechanisms involved in schizophrenia.The brain network can be conceptualized as a graph in which nodes are brain regions, and edges are their connections. Graph-based network analysis has the advantage of resulting in several network properties reflective of the segregation and integration of individual brain regions5.
因此,应同时考虑单个大脑区域及其连接的异常,以阐明精神分裂症的神经机制。大脑网络可以概念化为一个图形,其中节点是大脑区域,边缘是它们的连接。基于图的网络分析的优点是可以产生反映单个大脑区域分离和整合的几种网络特性5。
The topological characteristics of brain networks in individuals with schizophrenia include less efficient wiring networks and a low prevalence of local clustering and hierarchical organization6. The results indicate disrupted network organization with widespread and local network disturbances in individuals with schizop.
精神分裂症患者大脑网络的拓扑特征包括布线网络效率较低,局部聚类和分层组织的发生率较低6。结果表明,精神分裂症患者的网络组织受到破坏,并伴有广泛的局部网络干扰。
Data availability
数据可用性
The data of this study are available from the corresponding author upon reasonable request.
本研究的数据可根据合理要求从通讯作者处获得。
ReferencesKadakia, A. et al. The Economic Burden of Schizophrenia in the United States. J. Clin. Psychiatry 83 https://doi.org/10.4088/JCP.22m14458 (2022).Karlsgodt, K. H., Sun, D. & Cannon, T. D. Structural and Functional Brain Abnormalities in Schizophrenia. Curr. Dir. Psychol. Sci. 19, 226–231 (2010).Article .
参考文献Kadakia,A。等人,《美国精神分裂症的经济负担》。J、 临床。精神病学83https://doi.org/10.4088/JCP.22m14458(2022年)。Karlsgodt,K.H.,Sun,D。和Cannon,T.D。精神分裂症的大脑结构和功能异常。货币。心理学总监。。19226-231(2010)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Limongi, R. et al. Glutamate and Dysconnection in the Salience Network: Neurochemical, Effective Connectivity, and Computational Evidence in Schizophrenia. Biol. Psychiatry 88, 273–281 (2020).Article
Limongi,R。等。突显网络中的谷氨酸和连接异常:精神分裂症的神经化学,有效连接和计算证据。生物学精神病学88273-281(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dong, D., Wang, Y., Chang, X., Luo, C. & Yao, D. Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophr. Bull. 44, 168–181 (2018).Article
Dong,D.,Wang,Y.,Chang,X.,Luo,C。&Yao,D。精神分裂症中大规模脑网络的功能障碍:静息状态功能连接的荟萃分析。精神分裂症。公牛。44168-181(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
van den Heuvel, M. P., Mandl, R. C., Stam, C. J., Kahn, R. S. & Hulshoff Pol, H. E. Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J. Neurosci. 30, 15915–15926 (2010).Article
van den Heuvel,M.P.,Mandl,R.C.,Stam,C.J.,Kahn,R.S。&Hulshoff Pol,H.E。精神分裂症中异常的额叶和颞叶复杂网络结构:图论分析。J、 神经科学。3015915-15926(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Micheloyannis, S. Graph-based network analysis in schizophrenia. World J. Psychiatry 2, 1–12 (2012).Article
Micheloyannis,S。精神分裂症中基于图形的网络分析。世界J.精神病学2,1-12(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alexander-Bloch, A., Giedd, J. N. & Bullmore, E. Imaging structural co-variance between human brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013).Article
Alexander Bloch,A.,Giedd,J.N。和Bullmore,E。成像人脑区域之间的结构协方差。神经科学杂志。14322-336(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shen, K. et al. Exploring the limits of network topology estimation using diffusion-based tractography and tracer studies in the macaque cortex. NeuroImage 191, 81–92 (2019).Article
Shen,K.等人。在猕猴皮层中使用基于扩散的纤维束成像和示踪剂研究探索网络拓扑估计的局限性。神经影像191,81-92(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Seidlitz, J. et al. Morphometric Similarity Networks Detect Microscale Cortical Organization and Predict Inter-Individual Cognitive Variation. Neuron 97, 231–247e237 (2018).Article
Seidlitz,J。等人。形态测量相似性网络检测微尺度皮层组织并预测个体间认知变异。神经元97231–247e237(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Barbas, H. General cortical and special prefrontal connections: principles from structure to function. Annu. Rev. Neurosci. 38, 269–289 (2015).Article
Barbas,H。一般皮层和特殊前额叶连接:从结构到功能的原则。年。神经科学牧师。38269-289(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Goulas, A., Uylings, H. B. & Hilgetag, C. C. Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse. Brain Struct. Funct. 222, 1281–1295 (2017).Article
Goulas,A.,Uylings,H.B。&Hilgetag,C.C。小鼠同侧和对侧皮质-皮质连接的原理。大脑结构。函数。2221281-1295(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Vandekar, S. N. et al. Subject-level measurement of local cortical coupling. NeuroImage 133, 88–97 (2016).Article
Vandekar,S.N.等人。局部皮质耦合的受试者水平测量。神经影像133,88-97(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Whitaker, K. J. et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc. Natl Acad. Sci. 113, 9105–9110 (2016).Article
Whitaker,K.J。等人。青春期与人脑连接体中枢的基因组模式整合有关。程序。国家科学院。。1139105-9110(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sabuncu, M. R. et al. Morphometricity as a measure of the neuroanatomical signature of a trait. Proc. Natl Acad. Sci. 113, E5749–E5756 (2016).Article
Sabuncu,M.R.等人。形态测量学作为性状神经解剖学特征的量度。程序。国家科学院。。113,E5749–E5756(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Morgan, S. E. et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc. Natl Acad. Sci. USA 116, 9604–9609 (2019).Article
Morgan,S.E.等人。精神病异常形态相似性的皮质模式与精神分裂症相关基因的大脑表达有关。程序。国家科学院。。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alnæs, D. et al. Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk. JAMA Psychiatry 76, 739–748 (2019).Article
Alnæs,D.等人。精神分裂症的大脑异质性及其与多基因风险的关系。JAMA精神病学76739-748(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wolfers, T. et al. Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models. JAMA Psychiatry 75, 1146–1155 (2018).Article
Wolfers,T.等人。使用规范模型绘制精神分裂症和双相情感障碍的异质表型。JAMA精神病学751146-1155(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lv, J. et al. Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort. Mol. Psychiatry 26, 3512–3523 (2021).Article
Lv,J.等人。大型横断面精神分裂症队列中大脑结构规范模型的个体偏差。摩尔精神病学263512-3523(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kasai, K. et al. Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am. J. Psychiatry 160, 156–164 (2003).Article
Kasai,K。等人。首发精神分裂症患者左颞上回灰质体积的逐渐减少。《美国精神病学杂志》160156-164(2003)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Plaze, M. et al. Left superior temporal gyrus activation during sentence perception negatively correlates with auditory hallucination severity in schizophrenia patients. Schizophr. Res. 87, 109–115 (2006).Article
Plaze,M。等人。精神分裂症患者句子感知期间左颞上回激活与幻听严重程度呈负相关。精神分裂症。第87109-115号决议(2006年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Shenton, M. E. et al. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N. Engl. J. Med 327, 604–612 (1992).Article
Shenton,M.E.等人。精神分裂症患者左颞叶异常和思维障碍。定量磁共振成像研究。N、 英语。J、 Med 327604-612(1992)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kubicki, M. et al. Stochastic tractography study of Inferior Frontal Gyrus anatomical connectivity in schizophrenia. NeuroImage 55, 1657–1664 (2011).Article
。神经影像551657-1664(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Iwashiro, N. et al. Localized gray matter volume reductions in the pars triangularis of the inferior frontal gyrus in individuals at clinical high-risk for psychosis and first episode for schizophrenia. Schizophr. Res 137, 124–131 (2012).Article
Iwashiro,N.等人。临床上精神病高危人群和首发精神分裂症患者额下回三角部局部灰质体积减少。精神分裂症。第137124-131号决议(2012年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hof, P. R. et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol. Psychiatry 53, 1075–1085 (2003).Article
Hof,P.R.等人,《精神分裂症额上回少突胶质细胞的丢失和空间分布的改变》。生物学精神病学531075-1085(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tully, L. M., Lincoln, S. H., Liyanage-Don, N. & Hooker, C. I. Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia. Schizophr. Res. 152, 358–364 (2014).Article
Tully,L.M.,Lincoln,S.H.,Liyanage Don,N。和Hooker,C.I。认知控制受损介导了额上回皮质厚度与精神分裂症角色功能之间的关系。精神分裂症。第152358-364号决议(2014年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y. et al. Abnormal topological organization of structural brain networks in schizophrenia. Schizophr. Res 141, 109–118 (2012).Article
Zhang,Y。等。精神分裂症结构性脑网络的异常拓扑组织。精神分裂症。第141109-118号决议(2012年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dietsche, B., Kircher, T. & Falkenberg, I. Structural brain changes in schizophrenia at different stages of the illness: A selective review of longitudinal magnetic resonance imaging studies. Aust. N. Z. J. Psychiatry 51, 500–508 (2017).Article
Dietsche,B.,Kircher,T。&Falkenberg,I。精神分裂症在疾病不同阶段的大脑结构变化:纵向磁共振成像研究的选择性回顾。奥斯特。N、 Z.J.精神病学51500-508(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lesh, T. A. et al. A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia. JAMA Psychiatry 72, 226–234 (2015).Article
Lesh,T.A.等人,《抗精神病药物对首发精神分裂症患者大脑结构和功能影响的多模式分析》。JAMA精神病学72226-234(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Emsley, R. et al. Antipsychotic treatment effects and structural MRI brain changes in schizophrenia. Psychol. Med 53, 2050–2059 (2023).Article
。心理学。医学532050-2059(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, L. et al. SchizConnect: Mediating neuroimaging databases on schizophrenia and related disorders for large-scale integration. Neuroimage 124, 1155–1167 (2016).Article
Wang,L。等。SchizConnect:调解精神分裂症和相关疾病的神经影像数据库以进行大规模整合。神经影像1241155-1167(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Aine, C. J. et al. Multimodal neuroimaging in schizophrenia: Description and dissemination. Neuroinformatics 15, 343–364 (2017).Article
Aine,C.J.等。精神分裂症的多模式神经影像学:描述和传播。神经信息学15343-364(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gorgolewski, K. J., Durnez, J. & Poldrack, R. A. Preprocessed consortium for neuropsychiatric phenomics dataset. F1000Res 6, 1262 (2017).Article
Gorgolewski,K.J.,Durnez,J。&Poldrack,R.A。神经精神病学表型数据集预处理联盟。F1000Res61262(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Poldrack, R. A. et al. A phenome-wide examination of neural and cognitive function. Sci. Data 3, 160110 (2016).Article
Poldrack,R.A.等人。神经和认知功能的全基因组检查。。数据3160110(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kay, S. R., Fiszbein, A. & Opler, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).Article
Kay,S.R.,Fiszbein,A。&Opler,L.A。精神分裂症的阳性和阴性综合征量表(PANSS)。精神分裂症。公牛。13261-276(1987)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Andreasen, N. C. The scale for the assessment of positive symptoms (SAPS). University of Iowa, Iowa City (1984).Andreasen, N. C. The Scale for the Assessment of Negative Symptoms (SANS): Conceptual and Theoretical Foundations. Br. J. Psychiatry 155, 49–52 (1989).Article
Andreasen,N.C。阳性症状评估量表(SAPS)。爱荷华州爱荷华州大学(1984年)。Andreasen,N.C。阴性症状评估量表(SANS):概念和理论基础。Br.J.精神病学155,49-52(1989)。文章
Google Scholar
谷歌学者
van Erp, T. G. M. et al. Converting positive and negative symptom scores between PANSS and SAPS/SANS. Schizophr. Res. 152, 289–294 (2014).Article
van Erp,T.G.M.等人。在PANSS和SAPS/SANS之间转换阳性和阴性症状评分。精神分裂症。第152289-294号决议(2014年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Leucht, S., Samara, M., Heres, S. & Davis, J. M. Dose Equivalents for Antipsychotic Drugs: The DDD Method. Schizophr. Bull. 42, S90–S94 (2016).Article
。精神分裂症。公牛。42,S90–S94(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cetin Karayumak, S. et al. Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters. Neuroimage 184, 180–200 (2019).Article
Cetin-Karayumak,S.等人。回顾性协调使用不同采集参数采集的多点扩散MRI数据。神经影像184180-200(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mirzaalian, H. et al. Multi-site harmonization of diffusion MRI data in a registration framework. Brain Imaging Behav. 12, 284–295 (2018).Article
Mirzaalian,H。等人。在配准框架中扩散MRI数据的多点协调。脑成像行为。12284-295(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).Article
Dale,A.M.,Fischl,B。&Sereno,M.I。基于皮质表面的分析。一、 分割和曲面重建。神经影像9179-194(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).Article
Avants,B.B.等人。大脑图像配准中蚂蚁相似性度量性能的可重复评估。神经影像542033-2044(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Reveley, C. et al. Diffusion MRI anisotropy in the cerebral cortex is determined by unmyelinated tissue features. Nat. Commun. 13, 6702 (2022).Article
Reveley,C.等人。大脑皮层的扩散MRI各向异性由无髓鞘组织特征决定。国家公社。136702(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ganepola, T. et al. Using diffusion MRI to discriminate areas of cortical grey matter. Neuroimage 182, 456–468 (2018).Article
Ganepola,T.等人使用扩散MRI来区分皮质灰质区域。神经影像182456-468(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Leuze, C. W. et al. Layer-specific intracortical connectivity revealed with diffusion MRI. Cereb. Cortex 24, 328–339 (2014).Article
。皮质24328–339(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bastiani, M. et al. Automatic Segmentation of Human Cortical Layer-Complexes and Architectural Areas Using Ex vivo Diffusion MRI and Its Validation. Front Neurosci. 10, 487 (2016).Article
Bastiani,M.等人。使用离体扩散MRI及其验证自动分割人类皮质层复合物和结构区域。前神经科学。10487(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Henf, J., Grothe, M. J., Brueggen, K., Teipel, S. & Dyrba, M. Mean diffusivity in cortical gray matter in Alzheimer’s disease: The importance of partial volume correction. Neuroimage Clin. 17, 579–586 (2018).Article
Henf,J.,Grothe,M.J.,Brueggen,K.,Teipel,S。&Dyrba,M。阿尔茨海默病皮质灰质的平均扩散率:部分体积校正的重要性。神经影像临床。17579-586(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Solana, E. et al. Regional grey matter microstructural changes and volume loss according to disease duration in multiple sclerosis patients. Sci. Rep. 11, 16805 (2021).Article
Solana,E.等人。多发性硬化症患者根据疾病持续时间的局部灰质微观结构变化和体积损失。。代表1116805(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, J. S. et al. Increased diffusivity in gray matter in recent onset schizophrenia is associated with clinical symptoms and social cognition. Schizophr. Res. 176, 144–150 (2016).Article
Lee,J.S.等人。新近发作的精神分裂症中灰质扩散率的增加与临床症状和社会认知有关。精神分裂症。第176144-150号决议(2016年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Romero-Garcia, R., Atienza, M., Clemmensen, L. H. & Cantero, J. L. Effects of network resolution on topological properties of human neocortex. Neuroimage 59, 3522–3532 (2012).Article
Romero-Garcia,R.,Atienza,M.,Clemmensen,L.H。&Cantero,J.L。网络分辨率对人类新皮层拓扑特性的影响。神经影像593522-3532(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Fortin, J.-P. et al. Harmonization of cortical thickness measurements across scanners and sites. NeuroImage 167, 104–120 (2018).Article
。神经影像167104-120(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).Article
Yeo,B.T.等人。通过内在功能连接性估计的人类大脑皮层组织。J、 。1061125-1165(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Váša, F. et al. Adolescent Tuning of Association Cortex in Human Structural Brain Networks. Cereb. Cortex 28, 281–294 (2017).Article
Váša,F.等人。人类结构性大脑网络中关联皮层的青少年调整。塞雷布。皮质28281-294(2017)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zalesky, A., Fornito, A. & Bullmore, E. T. Network-based statistic: Identifying differences in brain networks. NeuroImage 53, 1197–1207 (2010).Article
Zalesky,A.,Fornito,A。&Bullmore,E.T。基于网络的统计:识别大脑网络的差异。神经影像531197-1207(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, W. et al. Brain gray matter network organization in psychotic disorders. Neuropsychopharmacology 45, 666–674 (2020).Article
Zhang,W。等。精神病性疾病中的脑灰质网络组织。神经精神药理学45666-674(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).Article
Watts,D.J.&Strogatz,S.H.“小世界”网络的集体动力学。自然393440-442(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Christensen, A. P. NetworkToolbox: Methods and measures for brain, cognitive, and psychometric network analysis in R. R J. 422–439 https://doi.org/10.32614/RJ-2018-065 (2018).Download referencesAcknowledgementsThe data used in research were obtained from the Collaborative Informatics and Neuroimaging Suite Data Exchange tool (http://coins.mrn.org/dx), Neuromorphometry by Computer Algorithm Chicago dataset (http://nunda.northwestern.edu/nunda/data/projects/NMorphCH), and the Open fMRI database (https://openneuro.org/datasets/ds000030/versions/00016).
Christensen,A.P。NetworkToolbox:R.R J.422-439中大脑,认知和心理测量网络分析的方法和措施https://doi.org/10.32614/RJ-2018-065(2018年)。下载参考文献致谢研究中使用的数据来自协作信息学和神经影像套件数据交换工具(http://coins.mrn.org/dx),通过计算机算法芝加哥数据集进行神经形态测量(http://nunda.northwestern.edu/nunda/data/projects/NMorphCH),以及开放的功能磁共振成像数据库(https://openneuro.org/datasets/ds000030/versions/00016)。
Moreover, investigators from each study site contributed to the design and implementation of the projects and provided the data. SWJ was supported by a National Research Foundation of Korea grant (NRF-2021R1F1A11057227). JL was supported by National Research Foundation of Korea grants (NRF-2012R1A1006514 and NRF-2017R1D1A1B03032707) and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI22C0108).Author informationAuthors and AffiliationsDepartment of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of KoreaSung Woo Joo, Woohyeok Choi, Sun Min Kim & Jungsun LeeDepartment of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of KoreaYoung Tak JoDepartment of Psychiatry, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of KoreaSo Young YooBrain Laboratory, Department of Psychiatry, University of California San Diego, School of Medicine, San Diego, California, USASoohyun JoeAuthorsSung Woo JooView author publicationsYou can also search for this autho.
此外,每个研究地点的调查人员都为项目的设计和实施做出了贡献,并提供了数据。SWJ得到了韩国国家研究基金会的资助(NRF-2021R1F1A11057227)。JL得到了韩国国家研究基金会拨款(NRF-2012R1A11006514和NRF-2017R1D1A1B03032707)和韩国健康技术研发项目的支持,该项目由韩国卫生与福利部资助的韩国健康产业发展研究所(KHIDI)资助(资助号:HI22C0108)。。
PubMed Google ScholarYoung Tak JoView author publicationsYou can also search for this author in
PubMed Google ScholarYoung Tak JoView作者出版物您也可以在
PubMed Google ScholarWoohyeok ChoiView author publicationsYou can also search for this author in
PubMed Google ScholarWoohyeok ChoiView作者出版物您也可以在
PubMed Google ScholarSun Min KimView author publicationsYou can also search for this author in
PubMed Google ScholarSun Min KimView作者出版物您也可以在
PubMed Google ScholarSo Young YooView author publicationsYou can also search for this author in
PubMed Google ScholarSo Young YooView作者出版物您也可以在
PubMed Google ScholarSoohyun JoeView author publicationsYou can also search for this author in
PubMed Google ScholarSoohyun JoeView作者出版物您也可以在
PubMed Google ScholarJungsun LeeView author publicationsYou can also search for this author in
PubMed Google ScholarJungsun LeeView作者出版物您也可以在
PubMed Google ScholarContributionsS.W.J.: Conceptualization, Formal analysis, Funding acquisition, Methodology, Visualization, and Writing – original draft. Y.T.J.: Methodology and Writing – review & editing. W.C.: Data curation. S.M.K.: Writing – review & editing. S.Y.Y.: Writing – review & editing.
PubMed谷歌学术贡献。W、 J.:概念化,形式分析,资金获取,方法论,可视化和写作-原稿。Y、 T.J.:方法论和写作-评论和编辑。W、 C.:数据管理。S、 M.K.:写作-评论和编辑。S、 Y.Y.:写作-评论和编辑。
S.J.: Supervision. Jungsun Lee: Conceptualization, Funding acquisition, Methodology, Supervision, Writing – review & editing.Corresponding authorCorrespondence to.
S、 J.:监督。Lee Jungsun:概念化,资金获取,方法论,监督,写作-评论和编辑。对应作者对应。
Jungsun Lee.Ethics declarations
李正善。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary MaterialRights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充材料权利和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleJoo, S.W., Jo, Y.T., Choi, W. et al. Topological abnormalities of the morphometric similarity network of the cerebral cortex in schizophrenia.
转载和许可本文引用本文Joo,S.W.,Jo,Y.T.,Choi,W。等人。精神分裂症大脑皮层形态相似性网络的拓扑异常。
Schizophr 10, 57 (2024). https://doi.org/10.1038/s41537-024-00477-xDownload citationReceived: 23 February 2024Accepted: 30 May 2024Published: 17 June 2024DOI: https://doi.org/10.1038/s41537-024-00477-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
。https://doi.org/10.1038/s41537-024-00477-xDownload引文接收日期:2024年2月23日接受日期:2024年5月30日发布日期:2024年6月17日OI:https://doi.org/10.1038/s41537-024-00477-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供