EN
登录

分子马达的DNA包装:从噬菌体到人类染色体

DNA packaging by molecular motors:from bacteriophage to human chromosomes

Nature 等信源发布 2024-06-17 21:37

可切换为仅中文


AbstractDense packaging of genomic DNA is crucial for organismal survival, as DNA length always far exceeds the dimensions of the cells that contain it. Organisms, therefore, use sophisticated machineries to package their genomes. These systems range across kingdoms from a single ultra-powerful rotary motor that spools the DNA into a bacteriophage head, to hundreds of thousands of relatively weak molecular motors that coordinate the compaction of mitotic chromosomes in eukaryotic cells.

基因组DNA的密集包装对于生物体的生存至关重要,因为DNA的长度总是远远超过含有它的细胞的尺寸。因此,生物体使用复杂的机器来包装它们的基因组。这些系统跨越各个王国,从一个将DNA卷绕成噬菌体头部的超强大旋转马达,到数十万个相对较弱的分子马达,它们协调真核细胞中有丝分裂染色体的压缩。

Recent technological advances, such as DNA proximity-based sequencing approaches, polymer modelling and in vitro reconstitution of DNA loop extrusion, have shed light on the biological mechanisms driving DNA organization in different systems. Here, we discuss DNA packaging in bacteriophage, bacteria and eukaryotic cells, which, despite their extreme variation in size, structure and genomic content, all rely on the action of molecular motors to package their genomes..

最近的技术进步,例如基于DNA接近度的测序方法,聚合物建模和DNA环挤出的体外重建,揭示了驱动不同系统中DNA组织的生物学机制。。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springer link上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Bacteriophages package their DNA using a single molecular motor.Fig. 2: Properties of DNA packaging and DNA interacting proteins across scales.Fig. 3: Organizational features of the bacterial genome are driven by DNA-associated proteins.Fig. 4: The eukaryotic genome is hierarchically organized by SMC proteins..

图1:噬菌体使用单个分子马达包装其DNA。图2:DNA包装和DNA相互作用蛋白跨尺度的特性。图3:细菌基因组的组织特征由DNA相关蛋白驱动。图4:真核基因组由SMC蛋白分层组织。。

ReferencesEarnshaw, W. C. & Harrison, S. C. DNA arrangement in isometric phage heads. Nature 268, 598–602 (1977). The study provides a detailed insight into bacteriophage DNA packaging geometry and how this could be achieved.Article

参考文献Earnshaw,W.C。和Harrison,S.C。等长噬菌体头部的DNA排列。自然268598-602(1977)。该研究提供了对噬菌体DNA包装几何形状以及如何实现这一点的详细见解。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rao, V. B., Fokine, A., Fang, Q. & Shao, Q. Bacteriophage T4 head: structure, assembly, and genome packaging. Viruses 15, 527 (2023).Article

Rao,V.B.,Fokine,A.,Fang,Q。&Shao,Q。噬菌体T4头:结构,组装和基因组包装。病毒15527(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Catalano, C. E. & Morais, M. C. Viral genome packaging machines: structure and enzymology. Enzymes 50, 369–413 (2021).Article

Catalano,C.E。和Morais,M.C。病毒基因组包装机:结构和酶学。酶50369-413(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rao, V. B., Fokine, A. & Fang, Q. The remarkable viral portal vertex: structure and a plausible model for mechanism. Curr. Opin. Virol. 51, 65–73 (2021).Article

Rao,V.B.,Fokine,A。&Fang,Q。显着的病毒门户顶点:结构和合理的机制模型。货币。奥平。维罗尔。51,65-73(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rao, V. B. & Feiss, M. Mechanisms of DNA packaging by large double-stranded DNA viruses. Annu. Rev. Virol. 2, 351–378 (2015).Article

Rao,V.B。&Feiss,M。大型双链DNA病毒的DNA包装机制。年。维罗尔牧师。2351-378(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jardine, P. J. Slow and steady wins the race: physical limits on the rate of viral DNA packaging. Curr. Opin. Virol. 36, 32–37 (2019).Article

Jardine,P.J。缓慢而稳定地赢得了比赛:病毒DNA包装速度的物理限制。货币。奥平。维罗尔。36,32-37(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tong, A. B. & Bustamante, C. Helical inchworming: a novel translocation mechanism for a ring ATPase. Biophys. Rev. 13, 885–888 (2021). The paper provides a model summary arising from a series of sophisticated single-molecule studies that dissected the mechanochemical properties of a bacteriophage motor.Article .

Tong,A.B。&Bustamante,C。螺旋蠕动:ring ATPase的新型易位机制。生物物理。第13885-888版(2021年)。本文提供了一系列复杂的单分子研究产生的模型总结,这些研究剖析了噬菌体马达的机械化学特性。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gahlmann, A. & Moerner, W. E. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat. Rev. Microbiol. 12, 9–22 (2014).Article

Gahlmann,A。&Moerner,W.E。通过单分子追踪和超分辨率成像探索细菌细胞生物学。自然修订版微生物学。12,9-22(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mäkelä, J. & Sherratt, D. SMC complexes organize the bacterial chromosome by lengthwise compaction. Curr. Genet. 66, 895–899 (2020).Article

Mäkelä,J。&Sherratt,D。SMC复合物通过纵向压缩来组织细菌染色体。货币。基因。66895-899(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dame, R. T., Rashid, F.-Z. M. & Grainger, D. C. Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat. Rev. Genet. 21, 227–242 (2020).Article

Dame,R.T.,Rashid,F.-Z.M。&Grainger,D.C。细菌中的染色体组织:对基因组结构和功能的机理见解。Genet自然Rev。21227-242(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Badrinarayanan, A., Le, T. B. K. & Laub, M. T. Bacterial chromosome organization and segregation. Annu. Rev. Cell Dev. Biol. 31, 171–199 (2015).Article

Badrinarayanan,A.,Le,T.B.K。&Laub,M.T。细菌染色体组织和分离。年。Rev.Cell Dev.Biol。31171-199(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yáñez-Cuna, F. O. & Koszul, R. Insights in bacterial genome folding. Curr. Opin. Struct. Biol. 82, 102679 (2023).Article

Yáñez Cuna,F.O。和Koszul,R。细菌基因组折叠的见解。货币。奥平。结构。生物学82102679(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Paulson, J. R., Hudson, D. F., Cisneros-Soberanis, F. & Earnshaw, W. C. Mitotic chromosomes. Semin. Cell Dev. Biol. 117, 7–29 (2021).Article

保尔森(Paulson,J.R.),哈德逊(Hudson),D.F。,西斯内罗斯·索巴尼斯(Cisneros-Soberanis),F。&Earnshaw,W.C。有丝分裂染色体。塞米。细胞开发生物学。117,7-29(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482 (2019).Article

Yatskevich,S.,Rhodes,J。&Nasmyth,K。通过SMC复合物组织染色体DNA。年。Genet牧师。53445-482(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Banigan, E. J. & Mirny, L. A. Loop extrusion: theory meets single-molecule experiments. Curr. Opin. Cell Biol. 64, 124–138 (2020).Article

Banigan,E.J。&Mirny,L.A。环挤出:理论满足单分子实验。货币。奥平。细胞生物学。64124-138(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Corsi, F., Rusch, E. & Goloborodko, A. Loop extrusion rules: the next generation. Curr. Opin. Genet. Dev. 81, 102061 (2023).Article

Corsi,F.,Rusch,E。和Goloborodko,A。循环挤出规则:下一代。货币。奥平。基因。德文81102061(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Davidson, I. F. & Peters, J.-M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).Article

Davidson,I.F.&Peters,J.-M。通过SMC复合物的环挤出进行基因组折叠。Nat。Rev。Mol。Cell Biol。22445-464(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, E., Barth, R. & Dekker, C. Looping the genome with SMC complexes. Annu. Rev. Biochem. 92, 15–41 (2023).Article

Kim,E.,Barth,R。&Dekker,C。用SMC复合物循环基因组。年。生物化学评论。92,15-41(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gall, J. G. Kinetics of deoxyribonuclease action on chromosomes. Nature 198, 36–38 (1963). The paper demonstrates that chromosomes are unineme using a specially designed microscope.Article

Gall,J.G。脱氧核糖核酸酶对染色体作用的动力学。《自然》198,36-38(1963)。本文用专门设计的显微镜证明了染色体是不完整的。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Baumann, C. G., Smith, S. B., Bloomfield, V. A. & Bustamante, C. Ionic effects on the elasticity of single DNA molecules. Proc. Natl Acad. Sci. USA 94, 6185–6190 (1997).Article

Baumann,C.G.,Smith,S.B.,Bloomfield,V.A。和Bustamante,C。离子对单个DNA分子弹性的影响。程序。国家科学院。。美国946185-6190(1997)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nelson, P. Biological Physics: Energy, Information, Life (W. H. Freeman, 2003).Garcia, H. G. et al. Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers 85, 115–130 (2007).Article

Nelson,P.《生物物理学:能量、信息、生命》(W.H.Freeman,2003)。Garcia,H.G.等人,《DNA紧密弯曲的生物学后果:大分子名人的另一种生活》。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pollard, T. D., Earnshaw, W. C., Lippincott-Schwartz, J. & Johnson, G. Cell Biology (Elsevier, 2023).Vafabakhsh, R. & Ha, T. Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. Science 337, 1097–1101 (2012). This single-molecule study shows that short naked DNA (<100 bp, well within the DNA persistence length) can efficiently form loops in vitro.Article .

Pollard,T.D.,Earnshaw,W.C.,Lippincott-Schwartz,J。&Johnson,G。细胞生物学(Elsevier,2023)。Vafabakhsh,R。&Ha,T。通过单分子环化揭示了长度小于100个碱基对的DNA的极端可弯曲性。科学3371097-1101(2012)。这项单分子研究表明,短裸DNA(<100bp,在DNA持久性长度内)可以在体外有效地形成环。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hahnfeldt, P., Hearst, J. E., Brenner, D. J., Sachs, R. K. & Hlatky, L. R. Polymer models for interphase chromosomes. Proc. Natl Acad. Sci. USA 90, 7854–7858 (1993).Article

Hahnfeldt,P.,Hearst,J.E.,Brenner,D.J.,Sachs,R.K。&Hlatky,L.R。间期染色体的聚合物模型。程序。国家科学院。。美国907854-7858(1993)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl Acad. Sci. USA 97, 127–132 (2000).Article

Cui,Y。&Bustamante,C。拉动单个染色质纤维揭示了维持其高阶结构的力。程序。国家科学院。。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bystricky, K., Heun, P., Gehlen, L., Langowski, J. & Gasser, S. M. Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. Proc. Natl Acad. Sci. USA 101, 16495–16500 (2004).Article

Bysticky,K.,Heun,P.,Gehlen,L.,Langowski,J。&Gasser,S.M。通过高分辨率成像技术分析出芽酵母中相间染色质的远程压缩和灵活性。程序。国家科学院。。美国10116495-16500(2004)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Phillips, R., Kondev, J., Theriot, J. & Garcia, H. Physical Biology of the Cell (Garland Science, 2012).Wennerström, H., Vallina Estrada, E., Danielsson, J. & Oliveberg, M. Colloidal stability of the living cell. Proc. Natl Acad. Sci. USA 117, 10113–10121 (2020).Article

Phillips,R.,Kondev,J.,Theriot,J。&Garcia,H。细胞的物理生物学(Garland Science,2012)。Wennerström,H.,Vallina Estrada,E.,Danielsson,J。&Oliveberg,m。活细胞的胶体稳定性。程序。国家科学院。。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lorch, Y., Kornberg, R. D. & Maier-Davis, B. Role of the histone tails in histone octamer transfer. Nucleic Acids Res. 51, 3671–3678 (2023).Article

Lorch,Y.,Kornberg,R.D。和Maier-Davis,B。组蛋白尾巴在组蛋白八聚体转移中的作用。核酸研究513671-3678(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, S., Rao, V. B. & Rossmann, M. G. Genome packaging in viruses. Curr. Opin. Struct. Biol. 20, 114–120 (2010).Article

Sun,S.,Rao,V.B。和Rossmann,M.G。病毒中的基因组包装。货币。奥平。结构。生物学20114-120(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnson, J. E. & Chiu, W. DNA packaging and delivery machines in tailed bacteriophages. Curr. Opin. Struct. Biol. 17, 237–243 (2007).Article

Johnson,J.E.&Chiu,W。尾部噬菌体中的DNA包装和递送机器。货币。奥平。结构。生物学17237-243(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kleinschmidt, A. K., Lang, D., Jacherts, D. & Zahn, R. K. Darstellung und längenmessungen des gesamten desoxyribonucleinsäure-inhaltes von T2-bakteriophagen. Biochim. Biophys. Acta 61, 857–864 (1962).CAS

Kleinschmidt,A.K.、Lang,D.、Jacherts,D.和Zahn,R.K.T2噬菌体总脱氧核糖核酸含量的图解和长度测量。生物芯片。生物物理学。Acta 61557–864(196)。CAS

PubMed

PubMed

Google Scholar

谷歌学者

North, A. C. & Rich, A. X-ray diffraction studies of bacterial viruses. Nature 191, 1242–1245 (1961).Article

North,A.C.&Rich,A。细菌病毒的X射线衍射研究。自然1911242-1245(1961)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Earnshaw, W., Casjens, S. & Harrison, S. C. Assembly of the head of bacteriophage P22: x-ray diffraction from heads, proheads and related structures. J. Mol. Biol. 104, 387–410 (1976).Article

Earnshaw,W.,Casjens,S。&Harrison,S.C。噬菌体P22头部的组装:头部,头部和相关结构的x射线衍射。J、 分子生物学。104387-410(1976)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Earnshaw, W. C. & Casjens, S. R. DNA packaging by the double-stranded DNA bacteriophages. Cell 21, 319–331 (1980).Article

。细胞21319-331(1980)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Molineux, I. J. & Panja, D. Popping the cork: mechanisms of phage genome ejection. Nat. Rev. Microbiol. 11, 194–204 (2013).Article

Molineux,I.J。和Panja,D。打开软木塞:噬菌体基因组喷射的机制。自然修订版微生物学。11194-204(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Livolant, F., Levelut, A. M., Doucet, J. & Benoit, J. P. The highly concentrated liquid-crystalline phase of DNA is columnar hexagonal. Nature 339, 724–726 (1989).Article

Livolant,F.,Levelut,A.M.,Doucet,J。&Benoit,J.P。DNA的高浓度液晶相是柱状六角形的。自然339724-726(1989)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Comolli, L. R. et al. Three-dimensional architecture of the bacteriophage φ29 packaged genome and elucidation of its packaging process. Virology 371, 267–277 (2008).Article

Comolli,L.R.等人。噬菌体φ29包装基因组的三维结构及其包装过程的阐明。病毒学371267-277(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cruz, B., Zhu, Z., Calderer, C., Arsuaga, J. & Vazquez, M. Quantitative study of the chiral organization of the phage genome induced by the packaging motor. Biophys. J. 118, 2103–2116 (2020).Article

Cruz,B.,Zhu,Z.,Calderer,C.,Arsuaga,J。&Vazquez,M。定量研究包装马达诱导的噬菌体基因组的手性组织。生物物理。J、 1182103-2116(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Earnshaw, W. C., King, J., Harrison, S. C. & Eiserling, F. A. The structural organization of DNA packaged within the heads of T4 wild-type, isometric and giant bacteriophages. Cell 14, 559–568 (1978).Article

Earnshaw,W.C.,King,J.,Harrison,S.C。和Eiserling,F.A。包装在T4野生型,等长和巨型噬菌体头部内的DNA的结构组织。细胞14559-568(1978)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Qiu, X. et al. Salt-dependent DNA-DNA spacings in intact bacteriophage λ reflect relative importance of DNA self-repulsion and bending energies. Phys. Rev. Lett. 106, 028102 (2011).Article

邱,X。等。完整噬菌体λ中的盐依赖性DNA-DNA间距反映了DNA自排斥和弯曲能的相对重要性。物理。Lett牧师。106028102(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ben-Shaul, A. Entropy, energy, and bending of DNA in viral capsids. Biophys. J. 104, L15–L17 (2013).Article

Ben Shaul,A。病毒衣壳中DNA的熵,能量和弯曲。生物物理。J、 。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gelbart, W. M. & Knobler, C. M. Virology. Pressurized viruses. Science 323, 1682–1683 (2009).Article

Gelbart,W.M。和Knobler,C.M。病毒学。加压病毒。科学3231682-1683(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rao, V. B. & Feiss, M. The bacteriophage DNA packaging motor. Annu. Rev. Genet. 42, 647–681 (2008).Article

。年。Genet牧师。42647-681(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Casjens, S. R. The DNA-packaging nanomotor of tailed bacteriophages. Nat. Rev. Microbiol. 9, 647–657 (2011).Article

Casjens,S.R。尾部噬菌体的DNA包装纳米马达。自然修订版微生物学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bazinet, C. & King, J. The DNA translocating vertex of dsDNA bacteriophage. Annu. Rev. Microbiol. 39, 109–129 (1985).Article

Bazinet,C。&King,J。dsDNA噬菌体的DNA易位顶点。年。微生物修订版。39109-129(1985)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Simpson, A. A. et al. Structure of the bacteriophage phi29 DNA packaging motor. Nature 408, 745–750 (2000).Article

Simpson,A.A.等人,《噬菌体phi29 DNA包装马达的结构》。自然408745-750(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Feiss, M. & Rao, V. B. The bacteriophage DNA packaging machine. Adv. Exp. Med. Biol. 726, 489–509 (2012).Article

Feiss,M。&Rao,V.B。噬菌体DNA包装机。高级实验医学生物学。726489-509(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Smith, D. E. et al. The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001). The study demonstrates the use of optical tweezers to perform force measurements on a bacteriophage motor while it is actively packaging DNA.Article

Smith,D.E.等人。噬菌体φ29门静脉马达可以包装DNA抵抗较大的内力。自然413748-752(2001)。这项研究表明,在噬菌体马达主动包装DNA时,使用光镊对其进行力测量。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rickgauer, J. P. et al. Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29. Biophys. J. 94, 159–167 (2008).Article

。生物物理。J、 94159-167(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fuller, D. N. et al. Ionic effects on viral DNA packaging and portal motor function in bacteriophage phi 29. Proc. Natl Acad. Sci. USA 104, 11245–11250 (2007).Article

Fuller,D.N.等人。离子对噬菌体phi 29中病毒DNA包装和门脉运动功能的影响。程序。国家科学院。。美国10411245–11250(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fuller, D. N., Raymer, D. M., Kottadiel, V. I., Rao, V. B. & Smith, D. E. Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. Proc. Natl Acad. Sci. USA 104, 16868–16873 (2007).Article

Fuller,D.N.,Raymer,D.M.,Kottadiel,V.I.,Rao,V.B。&Smith,D.E。单噬菌体T4 DNA包装马达表现出大的力产生,高速和动态可变性。程序。国家科学院。。美国10416868–16873(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miller, E. S. et al. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 67, 86–156 (2003).Article

Miller,E.S。等人。噬菌体T4基因组。微生物。分子生物学。第67版,第86-156页(2003年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meijer, W. J., Horcajadas, J. A. & Salas, M. φ29 family of phages. Microbiol. Mol. Biol. Rev. 65, 261–287 (2001).Article

Meijer,W.J.,Horcajadas,J.A。&Salas,M。φ29噬菌体家族。微生物。分子生物学。第65261-287版(2001年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chemla, Y. R. et al. Mechanism of force generation of a viral DNA packaging motor. Cell 122, 683–692 (2005).Article

。细胞122683-692(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Moffitt, J. R. et al. Intersubunit coordination in a homomeric ring ATPase. Nature 457, 446–450 (2009).Article

Moffitt,J.R.等人。同源环ATP酶中的亚基间配位。自然457446-450(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chistol, G. et al. High degree of coordination and division of labor among subunits in a homomeric ring ATPase. Cell 151, 1017–1028 (2012).Article

Chistol,G。等人。同源环ATP酶中亚基之间的高度协调和分工。细胞1511017-1028(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aathavan, K. et al. Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 461, 669–673 (2009).Article

Aathavan,K。等人。病毒DNA包装马达中的底物相互作用和滥交。Nature 461669–673(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, S. et al. A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell 157, 702–713 (2014).Article

Liu,S。等人。病毒包装马达改变其DNA旋转和步长,以在衣壳填充时保持亚基协调。细胞157702-713(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Robinow, C. & Kellenberger, E. The bacterial nucleoid revisited. Microbiol. Rev. 58, 211–232 (1994).Article

Robinow,C。&Kellenberger,E。重新审视了细菌类核。微生物。第58211-232版(1994年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reyes-Lamothe, R. & Sherratt, D. J. The bacterial cell cycle, chromosome inheritance and cell growth. Nat. Rev. Microbiol. 17, 467–478 (2019).Article

Reyes Lamothe,R。&Sherratt,D.J。细菌细胞周期,染色体遗传和细胞生长。自然修订版微生物学。17467-478(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X., Montero Llopis, P. & Rudner, D. Z. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 14, 191–203 (2013).Article

Wang,X.,Montero-Llopis,P。&Rudner,D.Z。细菌染色体的组织和分离。Genet自然Rev。14191-203(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Delius, H. & Worcel, A. Letter: Electron microscopic visualization of the folded chromosome of Escherichia coli. J. Mol. Biol. 82, 107–109 (1974).Article

Delius,H。&Worcel,A。Letter:大肠杆菌折叠染色体的电子显微镜可视化。J、 分子生物学。82107-109(1974)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kavenoff, R. & Ryder, O. A. Electron microscopy of membrane-associated folded chromosomes of Escherichia coli. Chromosoma 55, 13–25 (1976).Article

Kavenoff,R。&Ryder,O.A。大肠杆菌膜相关折叠染色体的电子显微镜。染色体55,13-25(1976)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kavenoff, R. & Bowen, B. C. Electron microscopy of membrane-free folded chromosomes from Escherichia coli. Chromosoma 59, 89–101 (1976).Article

Kavenoff,R。&Bowen,B.C。来自大肠杆菌的无膜折叠染色体的电子显微镜。染色体59,89-101(1976)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Niki, H., Yamaichi, Y. & Hiraga, S. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 14, 212–223 (2000). The research discovers specific macrodomains using FISH and their cell cycle-specific positioning.Article

Niki,H.,Yamaichi,Y。&Hiraga,S。大肠杆菌中染色体DNA的动态组织。Genes Dev.14212–223(2000)。该研究使用FISH及其细胞周期特异性定位来发现特定的大域。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Valens, M., Penaud, S., Rossignol, M., Cornet, F. & Boccard, F. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 23, 4330–4341 (2004).Article

。EMBO J.234330–4341(2004)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Espeli, O., Mercier, R. & Boccard, F. DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol. Microbiol. 68, 1418–1427 (2008).Article

Espeli,O.,Mercier,R。&Boccard,F。DNA动力学根据大肠杆菌染色体中的大域地形而变化。分子微生物。681418-1427(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Postow, L., Hardy, C. D., Arsuaga, J. & Cozzarelli, N. R. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 18, 1766–1779 (2004).Article

Postow,L.,Hardy,C.D.,Arsuaga,J。&Cozzarelli,N.R。大肠杆菌染色体的拓扑结构域结构。Genes Dev.181766–1779(2004)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mercier, R. et al. The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell 135, 475–485 (2008).Article

MatP/matS位点特异性系统将大肠杆菌染色体的末端区域组织成一个大结构域。细胞135475-485(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dupaigne, P. et al. Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. Mol. Cell 48, 560–571 (2012).Article

Dupaigne,P。等人。蛋白质介导的DNA桥接机制的分子基础,其在大肠杆菌染色体的缩合中起作用。分子细胞48560-571(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Viollier, P. H. et al. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl Acad. Sci. USA 101, 9257–9262 (2004).Article

Viollier,P.H.等人。细菌DNA复制过程中单个染色体基因座向特定亚细胞位置的快速连续移动。程序。国家科学院。。美国1019257–9262(2004)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Umbarger, M. A. et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 44, 252–264 (2011).Article

Umbarger,M.A。等人。细菌基因组的三维结构及其通过遗传扰动的改变。分子细胞44252-264(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Le, T. B. K., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342, 731–734 (2013). The study reveals the 3D spatial organization of the bacterial genome using Hi-C.Article

Le,T.B.K.,Imakaev,M.V.,Mirny,L.A。&Laub,M.T。细菌染色体空间组织的高分辨率作图。科学342731-734(2013)。该研究揭示了使用Hi-C.Article的细菌基因组的3D空间组织

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Higgins, N. P. RNA polymerase: chromosome domain boundary maker and regulator of supercoil density. Curr. Opin. Microbiol. 22, 138–143 (2014).Article

Higgins,N.P。RNA聚合酶:染色体结构域边界制造者和超螺旋密度调节剂。货币。奥平。微生物。22138-143(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deng, S., Stein, R. A. & Higgins, N. P. Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. Proc. Natl Acad. Sci. USA 101, 3398–3403 (2004).Article

Deng,S.,Stein,R.A。&Higgins,N.P。转录诱导的鼠伤寒沙门氏菌染色体超螺旋扩散障碍。程序。国家科学院。。美国1013398–3403(2004)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, S. H. et al. DNA sequence encodes the position of DNA supercoils. eLife 7, e36557 (2018).Article

Kim,S.H.等人。DNA序列编码DNA超螺旋的位置。eLife 7,e36557(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Loenhout, M. T. J., de Grunt, M. V. & Dekker, C. Dynamics of DNA supercoils. Science 338, 94–97 (2012).Article

van Loenhout,M.T.J.,de Grunt,M.V。&Dekker,C。DNA超螺旋的动力学。科学338,94-97(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Peter, B. J. et al. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol. 5, R87 (2004).Article

Peter,B.J.等人。大肠杆菌染色体超螺旋缺失的基因组转录反应。基因组生物学。5,R87(2004)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gilbert, N. & Allan, J. Supercoiling in DNA and chromatin. Curr. Opin. Genet. Dev. 25, 15–21 (2014).Article

Gilbert,N。&Allan,J。DNA和染色质的超螺旋。货币。奥平。基因。第25页,第15-21页(2014年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dorman, C. J. & Dorman, M. J. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys. Rev. 8, 209–220 (2016).Article

Dorman,C.J。&Dorman,M.J。DNA超螺旋是控制细菌基因表达的基本调控原则。生物物理。第8209–220版(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dorman, C. J. DNA supercoiling and transcription in bacteria: a two-way street. BMC Mol. Cell Biol. 20, 26 (2019).Article

Dorman,C.J。细菌中的DNA超螺旋和转录:双向街道。BMC分子细胞生物学。20,26(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fogg, J. M., Judge, A. K., Stricker, E., Chan, H. L. & Zechiedrich, L. Supercoiling and looping promote DNA base accessibility and coordination among distant sites. Nat. Commun. 12, 5683 (2021).Article

Fogg,J.M.,Judge,A.K.,Stricker,E.,Chan,H.L。&Zechiedrich,L。超螺旋和循环促进DNA碱基的可及性和远处位点之间的协调。国家公社。125683(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).Article

Liu,L.F。&Wang,J.C。转录过程中DNA模板的超螺旋。程序。国家科学院。。美国847024-7027(1987)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marko, J. F. & Neukirch, S. Competition between curls and plectonemes near the buckling transition of stretched supercoiled DNA. Phys. Rev. E 85, 011908 (2012).Article

Marko,J。F。&Neukirch,S。在拉伸的超螺旋DNA的屈曲转变附近卷曲和plectonemes之间的竞争。物理。修订版E 85011908(2012)。文章

Google Scholar

谷歌学者

Ma, J. & Wang, M. D. DNA supercoiling during transcription. Biophys. Rev. 8, 75–87 (2016).Article

Ma,J。&Wang,M.D。转录过程中的DNA超螺旋。生物物理。第8版,75–87(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).Article

Yu,J.,Xiao,J.,Ren,X.,Lao,K。&Xie,X.S。探测活细胞中的基因表达,一次一个蛋白质分子。科学3111600-1603(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Stracy, M. et al. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc. Natl Acad. Sci. USA 112, E4390–E4399 (2015).Article

Stracy,M。等人。活细胞超分辨率显微镜揭示了细菌类核中RNA聚合酶的组织。程序。国家科学院。。美国112,E4390–E4399(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, J. C. DNA topoisomerases. Annu. Rev. Biochem. 65, 635–692 (1996).Article

Wang,J.C。DNA拓扑异构酶。年。生物化学评论。65635-692(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zechiedrich, E. L. et al. Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J. Biol. Chem. 275, 8103–8113 (2000).Article

Zechiedrich,E.L.等人。拓扑异构酶在维持大肠杆菌中稳态DNA超螺旋中的作用。J、 生物。化学。2758103-8113(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vos, S. M., Tretter, E. M., Schmidt, B. H. & Berger, J. M. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol. 12, 827–841 (2011).Article

Vos,S.M.,Tretter,E.M.,Schmidt,B.H。&Berger,J.M。都纠结在一起:细胞如何指导,管理和利用拓扑异构酶功能。Nat。Rev。Mol。Cell Biol。12827-841(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gellert, M., Mizuuchi, K., O’Dea, M. H. & Nash, H. A. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl Acad. Sci. USA 73, 3872–3876 (1976).Article

Gellert,M.,Mizuuchi,K.,O'Dea,M.H。和Nash,H.A。DNA旋转酶:一种将超螺旋体转化为DNA的酶。程序。国家科学院。。美国733872-3876(1976)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stracy, M. et al. Single-molecule imaging of DNA gyrase activity in living Escherichia coli. Nucleic Acids Res. 47, 210–220 (2019).Article

Stracy,M.等人。活大肠杆菌中DNA促旋酶活性的单分子成像。核酸研究47210-220(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Riggs, A. D. DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 285–297 (1990).Article

DNA甲基化和晚期复制可能有助于细胞记忆,而I型DNA卷绕可能有助于染色体折叠和增强子功能。菲洛斯。事务处理。R、 社会责任。生物科学学士。326285-297(1990)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Guacci, V. et al. Structure and function of chromosomes in mitosis of budding yeast. Cold Spring Harb. Symp. Quant. Biol. 58, 677–685 (1993).Article

Guacci,V。等人。芽殖酵母有丝分裂中染色体的结构和功能。冷泉兔。症状。数量。生物学58677-685(1993)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Peterson, C. L. The SMC family: novel motor proteins for chromosome condensation? Cell 79, 389–392 (1994).Article

Peterson,C.L。SMC家族:用于染色体凝聚的新型运动蛋白?细胞79389-392(1994)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).Article

Nasmyth,K。传播基因组:在有丝分裂和减数分裂过程中连接,解析和分离姐妹染色单体。年。Genet牧师。35673-745(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Higashi, T. L. & Uhlmann, F. SMC complexes: lifting the lid on loop extrusion. Curr. Opin. Cell Biol. 74, 13–22 (2022).Article

Higashi,T.L。&Uhlmann,F。SMC复合物:在环挤出时打开盖子。货币。奥平。细胞生物学。74,13-22(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hoencamp, C. & Rowland, B. D. Genome control by SMC complexes. Nat. Rev. Mol. Cell Biol. 24, 633–650 (2023).Article

Hoencamp,C。&Rowland,B.D。通过SMC复合物进行基因组控制。Nat。Rev。Mol。Cell Biol。24633-650(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Alipour, E. & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212 (2012). The study provides a theoretical description on how DNA-binding proteins might form DNA-loop domains to compact the mitotic chromosome.Article

Alipour,E。&Marko,J.F。通过DNA环挤出酶自组织结构域。核酸研究4011202-11212(2012)。该研究为DNA结合蛋白如何形成DNA环结构域以压缩有丝分裂染色体提供了理论描述。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tang, M. et al. Establishment of dsDNA-dsDNA interactions by the condensin complex. Mol. Cell 83, 3787–3800.e9 (2023).Article

Tang,M.等人。通过凝聚素复合物建立dsDNA-dsDNA相互作用。分子细胞833787-3800.e9(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mäkelä, J. & Sherratt, D. J. Organization of the Escherichia coli chromosome by a MukBEF axial core. Mol. Cell 78, 250–260.e5 (2020). The research shows how SMC protein localization and its MatP-dependent displacement drives bacterial genome organization.Article

Mäkelä,J。&Sherratt,D.J。通过MukBEF轴向核心组织大肠杆菌染色体。摩尔电池78250–260.e5(2020)。该研究表明SMC蛋白定位及其依赖MatP的置换如何驱动细菌基因组组织。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lioy, V. S. et al. Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell 172, 771–783.e18 (2018).Article

Lioy,V.S.等人。通过类核相关蛋白和凝聚蛋白对大肠杆菌染色体进行多尺度结构分析。细胞172771-783.e18(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Badrinarayanan, A., Reyes-Lamothe, R., Uphoff, S., Leake, M. C. & Sherratt, D. J. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338, 528–531 (2012). The research has used single-molecule fluorescence microscopy to obtain a quantitative understanding of genome organization by SMC complexes in vivo.Article .

Badrinarayanan,A.,Reyes-Lamothe,R.,Uphoff,S.,Leake,M.C。&Sherratt,D.J。体内结构和细菌结构维持染色体蛋白的作用。科学338528-531(2012)。该研究使用单分子荧光显微镜来定量了解SMC复合物在体内的基因组组织。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zawadzki, P. et al. The localization and action of topoisomerase IV in Escherichia coli chromosome segregation is coordinated by the SMC complex, MukBEF. Cell Rep. 13, 2587–2596 (2015).Article

Zawadzki,P。等人。拓扑异构酶IV在大肠杆菌染色体分离中的定位和作用由SMC复合物MukBEF协调。Cell Rep.132587–2596(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hayama, R. & Marians, K. J. Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in Escherichia coli. Proc. Natl Acad. Sci. USA 107, 18826–18831 (2010).Article

Hayama,R。&Marians,K.J。大肠杆菌中凝聚素MukB和脱羧酶拓扑异构酶IV之间的物理和功能相互作用。程序。国家科学院。。美国10718826–18831(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ullsperger, C. & Cozzarelli, N. R. Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli. J. Biol. Chem. 271, 31549–31555 (1996).Article

Ullsperger,C。&Cozzarelli,N.R。对比来自大肠杆菌的拓扑异构酶IV和DNA旋转酶的酶活性。J、 生物。化学。27131549-31555(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sullivan, N. L., Marquis, K. A. & Rudner, D. Z. Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137, 697–707 (2009).Article

Sullivan,N.L.,Marquis,K.A。&Rudner,D.Z。通过ParB parS募集SMC组织起源区域并促进有效的染色体分离。细胞137697-707(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, X., Brandão, H. B., Le, T. B. K., Laub, M. T. & Rudner, D. Z. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355, 524–527 (2017).Article

Wang,X.,Brandão,H.B.,Le,T.B.K.,Laub,M.T。&Rudner,D.Z。枯草芽孢杆菌SMC复合物在从起点到终点旅行时并置染色体臂。科学355524-527(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sherratt, D. J. Chromosome stitch-up? Science 355, 460–461 (2017).Article

Sherratt,D.J。染色体缝合?科学355460-461(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X. et al. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev. 29, 1661–1675 (2015).Article

Wang,X。等人,Condensin促进枯草芽孢杆菌中DNA侧翼的并置。基因发展291661-1675(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Karaboja, X. et al. XerD unloads bacterial SMC complexes at the replication terminus. Mol. Cell 81, 756–766.e8 (2021).Article

Karaboja,X。等人,XerD在复制末端卸载细菌SMC复合物。分子细胞81756-766.e8(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brandão, H. B., Ren, Z., Karaboja, X., Mirny, L. A. & Wang, X. DNA-loop-extruding SMC complexes can traverse one another in vivo. Nat. Struct. Mol. Biol. 28, 642–651 (2021). The study shows that Hi-C and ChIP sequencing assays reveal that SMC complexes can bypass each other in vivo.Article .

Brandão,H.B.,Ren,Z.,Karaboja,X.,Mirny,L.A。&Wang,X。DNA环挤出SMC复合物可以在体内相互穿过。自然结构。分子生物学。28642-651(2021)。该研究表明,Hi-C和ChIP测序分析表明,SMC复合物可以在体内相互绕过。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heermann, D. W. Physical nuclear organization: loops and entropy. Curr. Opin. Cell Biol. 23, 332–337 (2011).Article

Heermann,D.W。物理核组织:循环和熵。货币。奥平。细胞生物学。23332-337(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009). This paper describes Hi-C as a method to obtain detailed understanding of the 3D spatial organization of whole genomes.Article

Lieberman-Aiden,E。等人。远程相互作用的综合图谱揭示了人类基因组的折叠原理。科学326289-293(2009)。本文将Hi-C描述为一种获得对整个基因组的3D空间组织的详细理解的方法。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).Article

Rao,S.S.P.等人。千碱基分辨率的人类基因组3D图谱揭示了染色质循环的原理。细胞1591665-1680(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659.e26 (2020).Article

Su,J.-H.,Zheng,P.,Kinrot,S.S.,Bintu,B。&Zhuang,X。染色质的3D组织和转录活性的基因组规模成像。细胞1821641-1659.e26(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012). This paper shows how TADs organize the genome and affect gene expression.Article

Nora,E.P.等人。X灭活中心调控景观的空间分区。。本文展示了TAD如何组织基因组并影响基因表达。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016). This research using polymer simulations shows that DNA loop extrusion and CTCF boundaries can form TADs and reproduce other Hi-C map features.Article

Fudenberg,G。等人。通过环挤出形成染色体结构域。。这项使用聚合物模拟的研究表明,DNA环挤出和CTCF边界可以形成TAD并重现其他Hi-C图谱特征。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gaszner, M. & Felsenfeld, G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat. Rev. Genet. 7, 703–713 (2006).Article

Gaszner,M。&Felsenfeld,G。绝缘子:利用转录和表观遗传机制。Genet自然Rev。7703-713(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).Article

Dixon,J.R.等人。通过染色质相互作用分析鉴定哺乳动物基因组中的拓扑结构域。《自然》485,376–380(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, S., Yu, N.-K. & Kaang, B.-K. CTCF as a multifunctional protein in genome regulation and gene expression. Exp. Mol. Med. 47, e166 (2015).Article

Kim,S.,Yu,N.-K。&Kaang,B.-K。CTCF作为基因组调控和基因表达中的多功能蛋白。实验分子医学47,e166(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).Article

Sanyal,A.,Lajoie,B.R.,Jain,G。&Dekker,J。基因启动子的远程相互作用景观。自然489109-113(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).Article

Dekker,J。&Mirny,L。3D基因组作为染色体通讯的调节剂。细胞1641110-1121(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).Article

Gabriele,M。等人。活细胞成像揭示CTCF和粘着蛋白介导的染色质环动力学。科学376496-501(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Davidson, I. F. et al. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 616, 822–827 (2023).Article

Davidson,I.F。等人,CTCF是一种DNA张力依赖性屏障,可阻止粘着蛋白介导的环挤出。自然616822-827(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Holzmann, J. et al. Absolute quantification of cohesin, CTCF and their regulators in human cells. eLife 8, e46269 (2019).Article

Holzmann,J.等人。人类细胞中粘着蛋白,CTCF及其调节剂的绝对定量。eLife 8,e46269(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).Article

Rao,S。S。P。等人。粘着蛋白损失消除了所有环结构域。细胞171305-320.e24(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).Article

Gibson,B.A.等人。通过内在和调节相分离组织染色质。细胞179470-484.e21(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Merkenschlager, M. & Nora, E. P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genom. Hum. Genet. 17, 17–43 (2016).Article

。年。Genom牧师。嗯,Genet。17,17-43(2016)。文章

CAS

中科院

Google Scholar

谷歌学者

Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018). The paper provides a single-molecule assay showing that condensin can extrude DNA loops in vitro.Article

Ganji,M.等人。凝聚素对DNA环挤出的实时成像。科学360102-105(2018)。本文提供了一种单分子测定法,表明凝聚素可以在体外挤出DNA环。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Samejima, K. et al. Rules of engagement for condensins and cohesins guide mitotic chromosome formation. Preprint at bioRxiv https://doi.org/10.1101/2024.04.18.590027 (2024). This study used Hi-C, light and electron microscopy of conditional knockout cell lines undergoing synchronous mitotic entry to develop polymer models of chromosomes, dissecting the interactions between extrusive and cohesive cohesin, condensin II and condensin I during mitotic chromosome formation, and determining the speed of condensing-mediated loop extrusion in vivo.Kong, M.

Samejima,K。等人。凝聚蛋白和内聚蛋白的接合规则指导有丝分裂染色体的形成。bioRxiv预印本https://doi.org/10.1101/2024.04.18.590027(2024年)。这项研究使用Hi-C,光学和电子显微镜对经历同步有丝分裂进入的条件性敲除细胞系进行了研究,以开发染色体的聚合物模型,剖析了有丝分裂染色体形成过程中挤出和内聚粘着蛋白,凝聚素II和凝聚素I之间的相互作用,并确定了凝聚介导的体内环挤出的速度。孔,M。

et al. Human condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA. Mol. Cell 79, 99–114.e9 (2020).Article .

人类凝集素I和II驱动核小体结合DNA的广泛ATP依赖性压缩。分子细胞79,99-114.e9(2020)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shaltiel, I. A. et al. A hold-and-feed mechanism drives directional DNA loop extrusion by condensin. Science 376, 1087–1094 (2022).Article

Shaltiel,I.A。等人,保持和进给机制通过凝聚素驱动定向DNA环挤出。科学3761087-1094(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Banigan, E. J. & Mirny, L. A. The interplay between asymmetric and symmetric DNA loop extrusion. eLife 9, e63528 (2020). This study conducted polymer simulations testing the chromosome-compaction abilities of one-sided and two-sided loop extruders, revealing that two-sided extruders are essential.Article .

Banigan,E.J。&Mirny,L.A。不对称和对称DNA环挤出之间的相互作用。eLife 9,e63528(2020)。这项研究进行了聚合物模拟,测试了单面和双面环形挤出机的染色体压缩能力,揭示了双面挤出机是必不可少的。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Banigan, E. J., van den Berg, A. A., Brandão, H. B., Marko, J. F. & Mirny, L. A. Chromosome organization by one-sided and two-sided loop extrusion. eLife 9, e53558 (2020).Article

。eLife 9,e53558(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).Article

Davidson,I.F.等人。人类粘着蛋白的DNA环挤出。科学3661338-1345(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).Article

Kim,Y.,Shi,Z.,Zhang,H.,Finkelstein,I.J。&Yu,H。人类粘着蛋白通过环挤出压缩DNA。科学3661345-1349(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Golfier, S., Quail, T., Kimura, H. & Brugués, J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. eLife 9, e53885 (2020).Article

Golfier,S.,Quail,T.,Kimura,H。&Brugues,J。Cohesin和condensin以细胞周期依赖性方式挤出DNA环。eLife 9,e53885(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pradhan, B. et al. The Smc5/6 complex is a DNA loop-extruding motor. Nature 616, 843–848 (2023).Article

Pradhan,B。等人。Smc5/6复合物是一种DNA环挤出马达。自然616843-848(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, E., Kerssemakers, J., Shaltiel, I. A., Haering, C. H. & Dekker, C. DNA-loop extruding condensin complexes can traverse one another. Nature 579, 438–442 (2020).Article

Kim,E.,Kerssemakers,J.,Shaltiel,I.A.,Haering,C.H。&Dekker,C。DNA环挤出凝聚素复合物可以彼此穿过。自然579438-442(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, E., Gonzalez, A. M., Pradhan, B., van der Torre, J. & Dekker, C. Condensin-driven loop extrusion on supercoiled DNA. Nat. Struct. Mol. Biol. 29, 719–727 (2022).Article

Kim,E.,Gonzalez,A.M.,Pradhan,B.,van der Torre,J。&Dekker,C。Condensin在超螺旋DNA上驱动的环挤出。自然结构。分子生物学。29719-727(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pradhan, B. et al. SMC complexes can traverse physical roadblocks bigger than their ring size. Cell Rep. 41, 111491 (2022). This research uses single-molecule assays to reveal that SMC complexes can extrude DNA loops in the presence of roadblocks exceeding their size.Article

Pradhan,B。等人。SMC复合物可以跨越比其环尺寸更大的物理障碍。Cell Rep.41111491(2022)。这项研究使用单分子测定来揭示SMC复合物可以在存在超过其大小的障碍的情况下挤出DNA环。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Batty, P. & Gerlich, D. W. Mitotic chromosome mechanics: how cells segregate their genome. Trends Cell Biol. 29, 717–726 (2019).Article

Batty,P。&Gerlich,D.W。有丝分裂染色体力学:细胞如何分离基因组。趋势细胞生物学。29717-726(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948–953 (2013).Article

Naumova,N。等人。有丝分裂染色体的组织。科学342948-953(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Paulson, J. R. & Laemmli, U. K. The structure of histone-depleted metaphase chromosomes. Cell 12, 817–828 (1977).Article

Paulson,J.R。&Laemmli,英国。组蛋白耗尽的中期染色体的结构。细胞12817-828(1977)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shintomi, K. et al. Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts. Science 356, 1284–1287 (2017).Article

Shintomi,K。等人。尽管非洲爪蟾卵提取物中的核小体耗尽,但有丝分裂染色体组装。科学3561284-1287(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Goloborodko, A., Marko, J. F. & Mirny, L. A. Chromosome compaction by active loop extrusion. Biophys. J. 110, 2162–2168 (2016).Article

Goloborodko,A.,Marko,J.F。&Mirny,L.A。通过主动环挤出进行染色体压缩。生物物理。J、 1102162-2168(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goloborodko, A., Imakaev, M. V., Marko, J. F. & Mirny, L. Compaction and segregation of sister chromatids via active loop extrusion. eLife 5, e14864 (2016).Article

Goloborodko,A.,Imakaev,M.V.,Marko,J.F。&Mirny,L。通过主动环挤出压实和分离姐妹染色单体。eLife 5,e14864(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018). This study reveals that mitotic chromosomes are organized by SMC complexes as series of nested helically arranged loops.Article

Gibcus,J.H.等人。有丝分裂染色体形成的途径。科学359,eaao6135(2018)。这项研究表明,有丝分裂染色体由SMC复合物组织为一系列嵌套的螺旋排列的环。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shintomi, K. & Hirano, T. The relative ratio of condensin I to II determines chromosome shapes. Genes Dev. 25, 1464–1469 (2011).Article

Shintomi,K。&Hirano,T。凝聚素I与II的相对比例决定了染色体的形状。基因发展251464-1469(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Walther, N. et al. A quantitative map of human condensins provides new insights into mitotic chromosome architecture. J. Cell Biol. 217, 2309–2328 (2018).Article

人类凝聚素的定量图谱为有丝分裂染色体结构提供了新的见解。J、 细胞生物学。2172309-2328(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Earnshaw, W. C. & Heck, M. M. Localization of topoisomerase II in mitotic chromosomes. J. Cell Biol. 100, 1716–1725 (1985).Article

Earnshaw,W.C。&Heck,M.M。拓扑异构酶II在有丝分裂染色体中的定位。J、 细胞生物学。1001716-1725(1985)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Samejima, K. et al. Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. J. Cell Biol. 199, 755–770 (2012).Article

Samejima,K。等人。有丝分裂染色体通过KIF4和凝聚素横向压缩,并通过拓扑异构酶IIα轴向压缩。J、 细胞生物学。199755-770(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bazett-Jones, D. P., Kimura, K. & Hirano, T. Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging. Mol. Cell 9, 1183–1190 (2002).Article

Bazett-Jones,D.P.,Kimura,K。&Hirano,T。通过电子光谱成像揭示了单个凝聚素复合物对DNA的有效超螺旋。摩尔细胞91183-1190(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Baxter, J. et al. Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes. Science 331, 1328–1332 (2011).Article

。科学3311328-1332(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nielsen, C. F., Zhang, T., Barisic, M., Kalitsis, P. & Hudson, D. F. Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. Proc. Natl Acad. Sci. USA 117, 12131–12142 (2020).Article

Nielsen,C.F.,Zhang,T.,Barisic,M.,Kalitsis,P。&Hudson,D.F。拓扑异构酶IIα对于维持有丝分裂染色体结构至关重要。程序。国家科学院。。美国1171231–12142(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mazumdar, M., Sundareshan, S. & Misteli, T. Human chromokinesin KIF4A functions in chromosome condensation and segregation. J. Cell Biol. 166, 613–620 (2004).Article

Mazumdar,M.,Sundareshan,S。&Misteli,T。人类发色团蛋白KIF4A在染色体凝聚和分离中起作用。J、 细胞生物学。166613-620(2004)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Takahashi, M., Wakai, T. & Hirota, T. Condensin I-mediated mitotic chromosome assembly requires association with chromokinesin KIF4A. Genes Dev. 30, 1931–1936 (2016).Article

Takahashi,M.,Wakai,T。&Hirota,T。Condensin I介导的有丝分裂染色体组装需要与发色蛋白KIF4A结合。Genes Dev.301931-1936(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).Article

Waizenegger,I.C.,Hauf,S.,Meinke,A。&Peters,J.M。两种不同的途径在前期从染色体臂和后期从着丝粒中去除哺乳动物粘着蛋白。细胞103399-410(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986–1997 (1998).Article

。基因发展12,1986-1997(1998)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Samejima, I. et al. Mapping the invisible chromatin transactions of prophase chromosome remodeling. Mol. Cell 82, 696–708.e4 (2022).Article

Samejima,I.等人绘制了前期染色体重塑的不可见染色质交易。分子细胞82696-708.e4(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Spicer, M. F. D. & Gerlich, D. W. The material properties of mitotic chromosomes. Curr. Opin. Struct. Biol. 81, 102617 (2023).Article

Spicer,M.F.D。和Gerlich,D.W。有丝分裂染色体的材料特性。货币。奥平。结构。生物学81102617(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Almeida, A. C. & Maiato, H. Chromokinesins. Curr. Biol. 28, R1131–R1135 (2018).Article

Almeida,A.C。和Maiato,H。Chromokinesins。货币。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sheng, L., Hao, S.-L., Yang, W.-X. & Sun, Y. The multiple functions of kinesin-4 family motor protein KIF4 and its clinical potential. Gene 678, 90–99 (2018).Article

Sheng,L.,Hao,S.-L.,Yang,W.-X.&Sun,Y。驱动蛋白-4家族运动蛋白KIF4的多种功能及其临床潜力。基因678,90-99(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Biggs, R., Liu, P. Z., Stephens, A. D. & Marko, J. F. Effects of altering histone posttranslational modifications on mitotic chromosome structure and mechanics. Mol. Biol. Cell 30, 820–827 (2019).Article

Biggs,R.,Liu,P.Z.,Stephens,A.D。&Marko,J.F。改变组蛋白翻译后修饰对有丝分裂染色体结构和力学的影响。分子生物学。细胞30820-827(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Keizer, V. I. P. et al. Live-cell micromanipulation of a genomic locus reveals interphase chromatin mechanics. Science 377, 489–495 (2022).Article

Keizer,V.I.P.等人。基因组基因座的活细胞显微操作揭示了相间染色质力学。科学377489-495(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Meijering, A. E. C. et al. Nonlinear mechanics of human mitotic chromosomes. Nature 605, 545–550 (2022).Article

Meijering,A.E.C.等人,《人类有丝分裂染色体的非线性力学》。自然605545-550(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yap, M. L. & Rossmann, M. G. Structure and function of bacteriophage T4. Future Microbiol. 9, 1319–1327 (2014).Article

Yap,M.L。和Rossmann,M.G。噬菌体T4的结构和功能。未来的微生物。91319-1327(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Campbell, P. L., Duda, R. L., Nassur, J., Conway, J. F. & Huet, A. Mobile loops and electrostatic interactions maintain the flexible tail tube of bacteriophage lambda. J. Mol. Biol. 432, 384–395 (2020).Article

Campbell,P.L.,Duda,R.L.,Nassur,J.,Conway,J.F。&Huet,A。移动环和静电相互作用维持噬菌体λ的柔性尾管。J、 分子生物学。432384-395(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vander Byl, C. & Kropinski, A. M. Sequence of the genome of Salmonella bacteriophage P22. J. Bacteriol. 182, 6472–6481 (2000).Article

。J、 细菌。1826472-6481(2000)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lokareddy, R. K. et al. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation. Nat. Commun. 8, 14310 (2017).Article

Lokareddy,R.K。等人。门静脉蛋白的功能类似于DNA传感器,将基因组包装与二十面体衣壳成熟相结合。国家公社。814310(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fuller, D. N. et al. Measurements of single DNA molecule packaging dynamics in bacteriophage lambda reveal high forces, high motor processivity, and capsid transformations. J. Mol. Biol. 373, 1113–1122 (2007).Article

Fuller,D.N.等人对噬菌体λ中单个DNA分子包装动力学的测量揭示了高作用力,高运动持续性和衣壳转化。J、 分子生物学。3731113-1122(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Helgeson, L. A. et al. Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments. Proc. Natl Acad. Sci. USA 115, 2740–2745 (2018).Article

Helgeson,L.A。等人。人类Ska复合物和Ndc80复合物相互作用形成承重组件,增强动粒-微管的附着。程序。国家科学院。。美国1152740-2745(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Belyy, V. et al. The mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war competition. Nat. Cell Biol. 18, 1018–1024 (2016).Article

在拔河比赛中,哺乳动物动力蛋白-动力蛋白复合物是驱动蛋白的有力对手。自然细胞生物学。181018-1024(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pease, P. J. et al. Sequence-directed DNA translocation by purified FtsK. Science 307, 586–590 (2005).Article

Pease,P.J.等人。通过纯化的FtsK进行序列定向DNA易位。科学307586-590(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Earnshaw, W. C. & Laemmli, U. K. Architecture of metaphase chromosomes and chromosome scaffolds. J. Cell Biol. 96, 84–93 (1983).Article

Earnshaw,W.C。&Laemmli,英国。中期染色体和染色体支架的结构。J、 细胞生物学。96,84-93(1983)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).Article

Ashkin,A。通过辐射压力加速和捕获粒子。物理。Lett牧师。24156-159(1970)。文章

CAS

中科院

Google Scholar

谷歌学者

Bustamante, C. J., Chemla, Y. R., Liu, S. & Wang, M. D. Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Prim. 1, 25 (2021).Article

Bustamante,C.J.,Chemla,Y.R.,Liu,S。&Wang,M.D。单分子生物物理学中的光镊。自然修订方法。1,25(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Heller, I., Hoekstra, T. P., King, G. A., Peterman, E. J. G. & Wuite, G. J. L. Optical tweezers analysis of DNA-protein complexes. Chem. Rev. 114, 3087–3119 (2014).Article

Heller,I.,Hoekstra,T.P.,King,G.A.,Peterman,E.J.G。&Wuite,G.J.L。DNA-蛋白质复合物的光镊分析。化学。版本1143087–3119(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).Article

Dekker,J.,Rippe,K.,Dekker,M。&Kleckner,N。捕获染色体构象。科学2951306-1311(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).Article

Nurk,S。等人。人类基因组的完整序列。科学376,44-53(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saitoh, N., Goldberg, I. G., Wood, E. R. & Earnshaw, W. C. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J. Cell Biol. 127, 303–318 (1994).Article

Saitoh,N.,Goldberg,I.G.,Wood,E.R。&Earnshaw,W.C.ScII:丰富的染色体支架蛋白是具有异常预测三级结构的推定ATP酶家族的成员。J、 细胞生物学。127303-318(1994)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, B.-G. et al. Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism. Nat. Struct. Mol. Biol. 27, 743–751 (2020).Article

Lee,B.-G.等人。全凝聚素的低温电磁结构揭示了亚基触发机制。自然结构。分子生物学。27743-751(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jeppsson, K., Kanno, T., Shirahige, K. & Sjögren, C. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 15, 601–614 (2014).Article

Jeppsson,K.,Kanno,T.,Shirahige,K。&Sjögren,C。染色体结构的维持:SMC复合物的定位和功能。Nat。Rev。Mol。Cell Biol。15601-614(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ryu, J.-K. et al. Condensin extrudes DNA loops in steps up to hundreds of base pairs that are generated by ATP binding events. Nucleic Acids Res. 50, 820–832 (2022).Article

Ryu,J.-K.等人,Condensin通过ATP结合事件产生数百个碱基对,逐步挤出DNA环。核酸研究50820-832(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Datta, S., Lecomte, L. & Haering, C. H. Structural insights into DNA loop extrusion by SMC protein complexes. Curr. Opin. Struct. Biol. 65, 102–109 (2020).Article

Datta,S.,Lecomte,L。&Haering,C.H。SMC蛋白复合物对DNA环挤出的结构见解。货币。奥平。结构。生物学65102-109(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dekker, C., Haering, C. H., Peters, J.-M. & Rowland, B. D. How do molecular motors fold the genome? Science 382, 646–648 (2023).Article

Dekker,C.,Haering,C.H.,Peters,J.-M.&Rowland,B.D。分子马达如何折叠基因组?科学382646-648(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bürmann, F. & Löwe, J. Structural biology of SMC complexes across the tree of life. Curr. Opin. Struct. Biol. 80, 102598 (2023).Article

Bürmann,F。&Löwe,J。生命树上SMC复合物的结构生物学。货币。奥平。结构。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oldenkamp, R. & Rowland, B. D. A walk through the SMC cycle: from catching DNAs to shaping the genome. Mol. Cell 82, 1616–1630 (2022).Article

Oldenkamp,R。&Rowland,B.D。走过SMC周期:从捕获DNA到塑造基因组。分子细胞821616-1630(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThe authors thank L. Di Pompeo for the help with preparing of the ribbon diagrams of the condensin holo complex (PBD: 6YVU, Box 3) and the P22 portal protein (PBD: 5JJ1, Fig. 1E); X. Wang and D. Rudner for sharing of the bacterial Hi-C interaction maps (Fig. 3d); J.

下载参考文献致谢作者感谢L.Di Pompeo帮助准备凝聚素全复合物(PBD:6YVU,方框3)和P22门静脉蛋白(PBD:5JJ1,图1E)的带状图;十、 Wang和D.Rudner共享细菌Hi-C相互作用图(图3d);J。

Gibcus, K. Samejima, S. Abraham and J. Dekker for sharing the improved DT40 Hi-C interaction maps before publication (Fig. 4b) and Johan for assembly of the Hi-C maps; R. Barth and C. Dekker for sharing of the raw condensin loop extrusion data (Fig. 4c); and A. Goloborodko for sharing details of his polymer modelling before publication (Fig. 4e–g).

Gibcus,K。Samejima,S。Abraham和J。Dekker在出版前共享改进的DT40 Hi-C相互作用图(图4b),Johan用于组装Hi-C图;R、 Barth和C.Dekker共享原始凝聚素环挤出数据(图4c);和A.Goloborodko在出版前分享了他的聚合物建模细节(图4e–g)。

The authors’ work is supported by a Sir Henry Wellcome Postdoctoral Fellowship (215925) to B.P. and a Wellcome Principal Research Fellowship (107022) to W.C.E.Author informationAuthors and AffiliationsWellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UKBram Prevo & William C. EarnshawAuthorsBram PrevoView author publicationsYou can also search for this author in.

作者的工作得到了B.P.的Henry Wellcome爵士博士后奖学金(215925)和W.C.E.的Wellcome首席研究奖学金(107022)的支持。作者信息作者和附属机构爱丁堡大学爱丁堡分校细胞生物学中心UKBram Prevo&William C.EarnshawAuthorsBram PrevoView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarWilliam C. EarnshawView author publicationsYou can also search for this author in

PubMed谷歌学者William C.EarnshawView作者出版物您也可以在

PubMed Google ScholarContributionsBoth authors contributed equally to all aspects of this manuscript.Corresponding authorsCorrespondence to

PubMed谷歌学术贡献两位作者对本手稿的各个方面都做出了同样的贡献。通讯作者通讯

Bram Prevo or William C. Earnshaw.Ethics declarations

布拉姆·普雷沃或威廉·恩肖。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Reviews Genetics thanks Javier Arsuaga and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

《自然评论》遗传学感谢Javier Arsuaga和另一位匿名审稿人对这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.GlossaryBurst phase

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。词汇爆发阶段

The time that a motor protein is active, during which ATP hydrolysis drives a series of conformational changes.

运动蛋白活跃的时间,在此期间ATP水解驱动一系列构象变化。

Chromatin immunoprecipitation

染色质免疫沉淀

(ChIP). A technique in which antibodies are used to pull down target proteins that are cross-linked to the DNA; sequencing is then used to identify associated (genomic) regions.

(芯片)。一种使用抗体下拉与DNA交联的靶蛋白的技术;。

Chromosome condensation

染色体凝聚

The re-organization of chromatin that accompanies the disassembly of interphase chromatin structures and formation of compact mitotic chromosomes.

染色质的重新组织,伴随着间期染色质结构的分解和紧密的有丝分裂染色体的形成。

Contour length

The length of a (DNA) polymer measured when the polymer is fully extended, a condition that never occurs in living cells.

当聚合物完全伸展时测量的(DNA)聚合物的长度,这种情况在活细胞中从未发生过。

Convergent orientation

收敛方向

Two CTCF binding sites facing each other so that continuous loop extrusion brings them together at the base of the chromatin loop.

两个CTCF结合位点彼此面对,因此连续的环挤压将它们聚集在染色质环的底部。

DNA compaction

DNA压缩

The reduction of the volume occupied by DNA or chromatin, which, in eukaryotes, might be expected to be driven by changes in histone post-translational modifications.

DNA或染色质所占体积的减少,在真核生物中,这可能是由组蛋白翻译后修饰的变化所驱动的。

DNA plectonemes

丛核细胞DNA

Extended structures in which the DNA double helix is wrapped around itself as a result of DNA supercoiling.

由于DNA超螺旋,DNA双螺旋被包裹在自身周围的扩展结构。

DNA supercoiling

DNA超螺旋

The over-winding or under-winding of DNA.

DNA的过度缠绕或欠缠绕。

Dwell phase

停留阶段

The time that a motor protein is waiting, and no ATP-driven conformational changes are occurring.

运动蛋白等待的时间,并且没有发生ATP驱动的构象变化。

Entropic repulsion

熵排斥

A force emerging from the fact that overlap of DNA loops is energetically unfavourable, preventing DNA entanglement.

DNA环的重叠在能量上是不利的,这一事实产生了一种力量,阻止了DNA纠缠。

Fluorescence in situ hybridization

荧光原位杂交

(FISH). A fluorescence-microscopy approach that uses fluorescent sequence-specific adapters to visualize the chromosome by base-pairing at a specific genomic location.

。一种荧光显微镜方法,使用荧光序列特异性衔接子通过在特定基因组位置的碱基配对来可视化染色体。

Fourier shell model

傅里叶壳模型

Spatial frequency analysis of the diffraction patterns to determine spherical shell spacing.

衍射图的空间频率分析,以确定球壳间距。

Lengthwise compaction

纵向压实

An overestimate of the true compaction ratio obtained by dividing the DNA contour length (its maximum linear extension) by the length of the major axis of the enclosing compartment.

高估了通过将DNA轮廓长度(其最大线性延伸)除以封闭隔室长轴的长度而获得的真实压实比。

Loop extrusion

环形拉伸

The SMC-driven formation of a DNA loop, which involves incorporation of adjacent DNA into a loop while keeping the two ends together at the base.

SMC驱动DNA环的形成,其涉及将相邻DNA掺入环中,同时将两端保持在一起。

Macrodomains

宏域

Megabase-sized chromosomal regions that are spatially isolated.

兆碱基大小的染色体区域在空间上是孤立的。

Molecular dynamics

分子动力学

A computational technique to capture the positioning of a set of molecules over time.

一种计算技术,用于捕捉一组分子随时间的定位。

Multiplexed error-robust fluorescence in situ hybridization

多重误差稳健荧光原位杂交

(MERFISH). A fluorescence-microscopy approach that builds up a structural map of the DNA, using the localization of large numbers of fluorescent sequence-specific adapters that are sequentially added, imaged and removed during the experiment.

(梅鱼)。一种荧光显微镜方法,使用大量荧光序列特异性衔接子的定位来构建DNA的结构图,这些衔接子在实验过程中依次添加,成像和去除。

Nucleoid

类核体

Region of the bacterial cell containing the chromosome composed of DNA and associated proteins.

细菌细胞中含有由DNA和相关蛋白组成的染色体的区域。

Phase separation

相分离

The emergence of two or more separate phases from a mixture such as oil and water, or the cytoplasm.

从油和水或细胞质等混合物中出现两个或多个独立相。

Stall force

失速力

The opposing force at which a motor protein stops moving or translocating cargo (in this case, DNA or chromatin).

运动蛋白停止移动或转移货物(在这种情况下是DNA或染色质)的相反力量。

Topologically associated domains

拓扑关联域

(TADs). Regions of clustered loops of 105–106 base pairs extruded by cohesin that are localized by cohesin binding to CCCTC-binding factor (CTCF) at genomic positions defined by convergent CTCF binding sites.

(TADs)。由内聚蛋白挤出的105-106个碱基对的簇状环区域,其通过内聚蛋白与CCCTC结合因子(CTCF)结合而定位在由会聚CTCF结合位点定义的基因组位置。

Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articlePrevo, B., Earnshaw, W.C.

权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Prevo,B.,Earnshaw,W.C。

DNA packaging by molecular motors: from bacteriophage to human chromosomes..

分子马达的DNA包装:从噬菌体到人类染色体。。

Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00740-yDownload citationAccepted: 29 April 2024Published: 17 June 2024DOI: https://doi.org/10.1038/s41576-024-00740-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Rev Genet(2024年)。https://doi.org/10.1038/s41576-024-00740-yDownloadhttps://doi.org/10.1038/s41576-024-00740-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供