EN
登录

NIMH对心理健康神经影像学未来发展方向的展望

NIMH perspectives on future directions in neuroimaging for mental health

Nature 等信源发布 2024-06-19 01:44

可切换为仅中文


AbstractNIMH’s mission is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery, and cure. New imaging techniques hold great promise for improving our understanding of the pathophysiology of mental illnesses, stratifying patients for treatment selection, and developing a personalized medicine approach.

。新的成像技术有望提高我们对精神疾病病理生理学的理解,对患者进行治疗选择分层,并开发个性化医疗方法。

Here, we highlight emerging and promising new technologies that are likely to be vital in helping NIMH accomplish its mission, the potential for utilizing multimodal approaches to study mental illness, and considerations for data analytics and data sharing..

在这里,我们重点介绍了新兴和有前途的新技术,这些技术可能对帮助NIMH完成其使命至关重要,利用多模式方法研究精神疾病的潜力,以及数据分析和数据共享的考虑因素。。

IntroductionThe mission of the National Institute of Mental Health (NIMH) is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery, and cure. Neuroimaging technologies have the potential to be pivotal in improving our understanding of mental illness pathophysiology, identifying brain targets for interventions, and predicting of treatment response, all with the goal of developing a personalized medicine approach.

简介国家心理健康研究所(NIMH)的使命是通过基础和临床研究改变对精神疾病的理解和治疗,为预防,康复和治疗铺平道路。神经成像技术有可能在提高我们对精神疾病病理生理学的理解,确定干预的大脑目标以及预测治疗反应方面发挥关键作用,所有这些都是为了开发个性化医疗方法。

Research studies that employ novel neuroimaging technologies are part of NIMH’s basic and translational research agenda and priorities (https://www.nimh.nih.gov/about/strategic-planning-reports, https://www.nimh.nih.gov/funding/opportunities-announcements). This paper highlights emerging positron emission tomography (PET) and magnetic resonance (MR) technologies as well as advances in imaging approaches in model systems in studies of mental health and illness.

采用新型神经影像技术的研究是NIMH基础和转化研究议程和优先事项的一部分(https://www.nimh.nih.gov/about/strategic-planning-reports,https://www.nimh.nih.gov/funding/opportunities-announcements)。本文重点介绍了新兴的正电子发射断层扫描(PET)和磁共振(MR)技术,以及心理健康和疾病研究中模型系统成像方法的进展。

These technologies have great potential for advancing the field via investigating neural and molecular systems in vivo and for accelerating the discovery of biomarkers for mental illness risk, trajectories, and treatments aligned with NIMH’s mission.PET imagingRecent advances in PET hardware, data analytics, and tracer development have expanded the range of relevant biological targets, enabling focused assessment of neuroinflammation, synaptic function, endocannabinoid system, mitochondrial function, and dopaminergic function.

这些技术通过在体内研究神经和分子系统以及加速发现与NIMH任务一致的精神疾病风险,轨迹和治疗的生物标志物,在推进该领域方面具有巨大潜力。PET成像PET硬件,数据分析和示踪剂开发的最新进展扩大了相关生物靶标的范围,从而能够重点评估神经炎症,突触功能,内源性大麻素系统,线粒体功能和多巴胺能功能。

Evidence suggests that neuroinflammation, the activation of glial cells that maintain homeostasis and are the first line of defense against infection and damage [1], may play a critical role in the pathophysiology of different mental disorders [2]. While previous findings with the 18 kDa transloca.

有证据表明,神经炎症,即维持体内平衡的神经胶质细胞的激活,是抵抗感染和损伤的第一道防线,可能在不同精神障碍的病理生理学中起关键作用。而以前的发现是18 kDa的transloca。

ReferencesJain P, Chaney AM, Carlson ML, Jackson IM, Rao A, James ML. Neuroinflammation PET imaging: current opinion and future directions. J Nucl Med. 2020;61:1107–12.CAS

参考文献Jain P,Chaney AM,Carlson ML,Jackson IM,Rao A,James ML。神经炎症PET成像:当前观点和未来方向。J Nucl Med。2020;61:1107–12.CAS

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry. 2020;7:1064–74.PubMed Central

梅耶JH,塞文卡S,金MJ,克雷斯尔WC,亨特ID,因尼斯RB。精神疾病中的神经炎症:PET成像和有希望的新靶点。柳叶刀精神病学。2020年;7: 1064–74.PubMed Central

Google Scholar

谷歌学者

Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic vesicle glycoprotein 2A: features and functions. Front Neurosci. 2022;16:864514.PubMed Central

Rossi R,Arjmand S,Bærentzen SL,Gjedde A,Landau AM。突触囊泡糖蛋白2A:特征和功能。前神经科学。2022年;16: 864514.PubMed中心

Google Scholar

谷歌学者

Carson RE, Naganawa M, Toyonaga T, Koohsari S, Yang Y, Chen MK, et al. Imaging of synaptic density in neurodegenerative disorders. J Nucl Med. 2022;63:60S–7S.CAS

Carson RE,Naganawa M,Toyonaga T,Koohsari S,Yang Y,Chen MK等。神经退行性疾病中突触密度的成像。J Nucl Med。2022;63:60秒至7秒。中科院

Google Scholar

谷歌学者

Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, et al. Positron emission tomography imaging of the endocannabinoid system: opportunities and challenges in radiotracer development. J Med Chem. 2021;64:123–49.CAS

侯L,荣J,海德尔A,小笠原D,瓦洛C,Schafroth MA等。内源性大麻素系统的正电子发射断层扫描成像:放射性示踪剂开发的机遇和挑战。J医学化学。2021年;64:123–49.CAS

Google Scholar

谷歌学者

Kato Y, Yokokura M, Iwabuchi T, Murayama C, Harada T, Goto T, et al. Lower availability of mitochondrial complex I in anterior cingulate cortex in autism: a positron emission tomography study. Am J Psychiatry. 2023;180:277–84.

Kato Y,Yokokura M,Iwabuchi T,Murayama C,Harada T,Goto T等。自闭症前扣带皮层线粒体复合物I的可用性较低:正电子发射断层扫描研究。Am J精神病学。2023年;180:277-84。

Google Scholar

谷歌学者

Rao N, Northoff G, Tagore A, Rusjan P, Kenk M, Wilson A, et al. Impaired prefrontal cortical dopamine release in schizophrenia during a cognitive task: a [11C]FLB 457 positron emission tomography study. Schizophr Bull. 2019;45:670–9.

Rao N,Northoff G,Tagore A,Rusjan P,Kenk M,Wilson A等。认知任务期间精神分裂症前额叶皮质多巴胺释放受损:FLB 457正电子发射断层扫描研究。精神分裂症公牛。2019年;45:670-9。

Google Scholar

谷歌学者

Vachha B, Huang SY. MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond. Eur Radio Exp. 2021;5:35.

Vachha B,Huang SY。具有超高场强和高性能梯度的MRI:7 T及以上临床神经影像学的挑战和机遇。欧元无线电出口2021年;5: 35岁。

Google Scholar

谷歌学者

Okada T, Fujimoto K, Fushimi Y, Akasaka T, Thuy D, Shima A, et al. Neuroimaging at 7 Tesla: a pictorial narrative review. Quant Imaging Med Surg. 2022;12:3406–35.PubMed Central

冈田T,藤本K,福西米Y,赤坂T,苏伊D,岛A等。7特斯拉的神经影像学:图片叙事评论。Quant Imaging Med Surg。2022;12: 3406–35.PubMed Central

Google Scholar

谷歌学者

Lavigne KM, Kanagasabai K, Palaniyappan L. Ultra-high field neuroimaging in psychosis: a narrative review. Front Psychiatry. 2022;13:994372.PubMed Central

Lavigne KM,Kanagasabai K,Palaniyappan L.精神病的超高场神经影像学:叙述性评论。前沿精神病学。2022年;13:

Google Scholar

谷歌学者

Bridgen P, Tomi-Tricot R, Uus A, Cromb D, Quirke M, Almalbis J, et al. High resolution and contrast 7 tesla MR brain imaging of the neonate. Front Radio. 2023;3:1327075.

。前收音机。2023年;3: 1327075页。

Google Scholar

谷歌学者

Yamada K, Yoshimura J, Watanabe M, Suzuki K. Application of 7 tesla magnetic resonance imaging for pediatric neurological disorders: early clinical experience. J Clin Imaging Sci. 2021;11:65.PubMed Central

Yamada K,Yoshimura J,Watanabe M,Suzuki K.7特斯拉磁共振成像在小儿神经系统疾病中的应用:早期临床经验。J临床成像科学。2021年;11: 65.PubMed中心

Google Scholar

谷歌学者

De Asis-Cruz J, Limperopoulos C. Harnessing the power of advanced fetal neuroimaging to understand in utero footprints for later neuropsychiatric disorders. Biol Psychiatry. 2023;93:867–79.

De Asis Cruz J,Limperopoulos C.利用先进的胎儿神经影像学的力量来了解子宫内的足迹,以治疗后来的神经精神疾病。生物精神病学。2023年;93:867-79。

Google Scholar

谷歌学者

Kraguljac NV, Guerreri M, Strickland MJ, Zhang H. Neurite orientation dispersion and density imaging in psychiatric disorders: a systematic literature review and a technical note. Biol Psychiatry Glob Open Sci. 2023;3:10–21.

Kraguljac NV,Guerreri M,Strickland MJ,Zhang H.精神疾病中的神经突定向分散和密度成像:系统文献综述和技术说明。生物精神病学全球开放科学。2023年;3: 10-21岁。

Google Scholar

谷歌学者

Carreira Figueiredo I, Borgan F, Pasternak O, Turkheimer FE, Howes OD. White-matter free-water diffusion MRI in schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology. 2022;47:1413–20.PubMed Central

卡雷拉·菲格雷多(CarreiraFigueiredo I),博根(BorganF),帕斯捷尔纳克(Pasternak O),特克海默(Turkheimer FE),豪斯(Howes OD)。精神分裂症的无白质水扩散MRI:系统评价和荟萃分析。神经精神药理学。2022年;47:1413–20.PubMed Central

Google Scholar

谷歌学者

Pasternak O, Westin CF, Bouix S, Seidman LJ, Goldstein JM, Woo TU, et al. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci. 2012;32:17365–72.CAS

Pasternak O,Westin CF,Bouix S,Seidman LJ,Goldstein JM,Woo TU等。细胞外体积过大揭示了精神分裂症发作的神经退行性模式。J神经科学。2012年;32:17365–72.CAS

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med. 2009;62:717–30.

Pasternak O,Sochen N,Gur Y,Intrator N,Assaf Y.扩散MRI的自由水消除和映射。Magn Reson Med。2009;62:717-30。

Google Scholar

谷歌学者

Koolschijn RS, Clarke WT, Ip IB, Emir UE, Barron HC. Event-related functional magnetic resonance spectroscopy. Neuroimage. 2023;276:120194.CAS

Koolschijn RS,Clarke WT,Ip IB,Emir UE,Barron HC。事件相关功能磁共振波谱。神经影像。2023年;276:120194.CAS

Google Scholar

谷歌学者

Setsompop K, Feinberg DA, Polimeni JR. Rapid brain MRI acquisition techniques at ultra-high fields. NMR Biomed. 2016;29:1198–221.PubMed Central

Setsompop K,Feinberg DA,Polimeni JR。超高场快速脑MRI采集技术。NMR生物医学。2016年;29:1198–221。PubMed Central

Google Scholar

谷歌学者

Zhong Z, Sun K, Karaman MM, Zhou XJ. Magnetic resonance imaging with submillisecond temporal resolution. Magn Reson Med. 2021;85:2434–44.

钟Z,孙K,卡拉曼MM,周XJ。亚毫秒时间分辨率的磁共振成像。Magn Reson Med。2021年;85:2434年至44年。

Google Scholar

谷歌学者

Feinberg DA, Beckett A, Vu AT, Stockmann J, Huber L, Ma S, et al. Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla. Nat Methods. 2023;20:2048–57.CAS

Feinberg DA,Beckett A,Vu AT,Stockmann J,Huber L,Ma S等。设计用于7特斯拉超高分辨率人脑成像的下一代MRI扫描仪。Nat方法。2023年;20: 2048-57.CAS

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Warbrick T. Simultaneous EEG-fMRI: what have we learned and what does the future hold? Sensors 2022.;22:2262.Hall EL, Robson SE, Morris PG, Brookes MJ. The relationship between MEG and fMRI. Neuroimage. 2014;102:80–91.

Warbrick T.同步脑电图功能磁共振成像:我们学到了什么,未来会怎样?传感器2022。;22:2262。霍尔EL,罗布森SE,莫里斯PG,布鲁克斯MJ。脑磁图与功能磁共振成像的关系。神经影像学。2014年;102:80-91。

Google Scholar

谷歌学者

Tulay EE, Metin B, Tarhan N, Arıkan MK. Multimodal neuroimaging: basic concepts and classification of neuropsychiatric diseases. Clin EEG Neurosci. 2019;50:20–33.

Tulay EE,Metin B,Tarhan N,Arıkan MK.多模式神经影像学:神经精神疾病的基本概念和分类。临床脑电图神经科学。2019年;50:20-33。

Google Scholar

谷歌学者

Wehrl HF, Hossain M, Lankes K, Liu CC, Bezrukov I, Martirosian P, et al. Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med. 2013;19:1184–9.CAS

Wehrl HF,Hossain M,Lankes K,Liu CC,Bezrukov I,Martirosian P等。同时PET-MRI显示大脑在代谢,血流动力学和多个时间尺度上处于激活和静止状态。Nat Med。2013;19: 1184-9.CAS

Google Scholar

谷歌学者

Kim TD, Hong G, Kim J, Yoon S. Cognitive enhancement in neurological and psychiatric disorders using Transcranial Magnetic Stimulation (TMS): a review of modalities, potential mechanisms and future implications. Exp Neurobiol. 2019;28:1–16.PubMed Central

Kim TD,Hong G,Kim J,Yoon S.使用经颅磁刺激(TMS)在神经和精神疾病中的认知增强:对模式,潜在机制和未来意义的回顾。Exp Neurobiol。2019年;28:1–16.PubMed Central

Google Scholar

谷歌学者

Kim TH, Zhang Y, Lecoq J, Jung JC, Li J, Zeng H, et al. Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell Rep. 2016;17:3385–94.CAS

Kim TH,Zhang Y,Lecoq J,Jung JC,Li J,Zeng H等。对活小鼠皮层中估计100万个神经元的长期光学访问。Cell Rep.2016;17: 3385–94.CAS

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Doran PR, Fomin-Thunemann N, Tang RP, Balog D, Zimmerman B, Kilic K, et al, Widefield in vivo imaging system with two fluorescence and two reflectance channels, a single sCMOS detector, and shielded illumination. BioRxiv [Preprint]. 2024. https://doi.org/10.1101/2023.11.07.566086.Chao TH, Lee B, Hsu LM, Cerri DH, Zhang WT, Wang TW, et al.

Doran PR,Fomin Thunemann N,Tang RP,Balog D,Zimmerman B,Kilic K等,具有两个荧光和两个反射通道的宽场体内成像系统,单个sCMOS检测器和屏蔽照明。BioRxiv[预印本]。2024https://doi.org/10.1101/2023.11.07.566086.ChaoTH,Lee B,Hsu LM,Cerri DH,Zhang WT,Wang TW等。

Neuronal dynamics of the default mode network and anterior insular cortex: Intrinsic properties and modulation by salient stimuli. Sci Adv. 2023;9:eade5732.PubMed Central .

默认模式网络和前岛叶皮层的神经元动力学:内在特性和显着刺激的调节。Sci Adv.2023;9: eade5732.PubMed Central。

Google Scholar

谷歌学者

Menon V, Cerri D, Lee B, Yuan R, Lee SH, Shih YI. Optogenetic stimulation of anterior insular cortex neurons in male rats reveals causal mechanisms underlying suppression of the default mode network by the salience network. Nat Commun. 2023;14:866.CAS

梅农五世,塞里D,李B,袁R,李SH,施毅。雄性大鼠前岛叶皮层神经元的光遗传刺激揭示了显着网络抑制默认模式网络的因果机制。2023年;14: 866.CAS

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li M, Liu F, Jiang H, Lee TS, Tang S. Long-term two-photon imaging in awake macaque monkey. Neuron. 2017;93:1049–57.e3.CAS

Li M,Liu F,Jiang H,Lee TS,Tang S.清醒猕猴的长期双光子成像。神经元。2017年;93:1049–57.e3.CAS

Google Scholar

谷歌学者

Ebina T, Masamizu Y, Tanaka YR, Watakabe A, Hirakawa R, Hirayama Y, et al. Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks. Nat Commun. 2018;9:1879.PubMed Central

Ebina T,Masamizu Y,Tanaka YR,Watakabe A,Hirakawa R,Hirayama Y等。上肢运动任务期间狨猴运动皮层神经元活动的双光子成像。纳特公社。2018年;9: 1879年。PubMed Central

Google Scholar

谷歌学者

Trautmann EM, O’Shea DJ, Sun X, Marshel JH, Crow A, Hsueh B, et al. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nat Commun. 2021;12:3689.CAS

Trautmann EM,O'Shea DJ,Sun X,Marshel JH,Crow A,Hsueh B等。恒河猴运动皮层中的树突钙信号驱动光学脑-计算机接口。纳特公社。2021年;12: 3689.CAS

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu M, Amey RC, Backer RA, Simon JP, Forbes CE. Behavioral studies using large-scale brain networks - methods and validations. Front Hum Neurosci. 2022;16:875201.PubMed Central

刘敏,艾美RC,贝克尔RA,西蒙JP,福布斯CE。使用大规模大脑网络的行为研究-方法和验证。前嗡嗡声神经科学。2022年;16: 875201.PubMed中心

Google Scholar

谷歌学者

Schumer MC, Bertocci MA, Aslam HA, Graur S, Bebko G, Stiffler RS, et al. Patterns of neural network functional connectivity associated with mania/hypomania and depression risk in 3 independent young adult samples. JAMA Psychiatry. 2024;81:167–77.

Schumer MC,Bertocci MA,Aslam HA,Graur S,Bebko G,Stiffler RS等。3个独立的年轻成人样本中与躁狂/轻躁狂和抑郁风险相关的神经网络功能连接模式。JAMA精神病学。2024年;81:167-77。

Google Scholar

谷歌学者

Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–60.CAS

Marek S,Tervo Clemmens B,Calabro FJ,Montez DF,Kay BP,Hatoum AS等。可重复的全脑关联研究需要数千个人。自然。2022年;603:654–60.CAS

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krystal AD, Pizzagalli DA, Mathew SJ, Sanacora G, Keefe R, Song A, et al. The first implementation of the NIMH FAST-FAIL approach to psychiatric drug development. Nat Rev Drug Discov. 2018;18:82–4.PubMed Central

。Nat Rev Drug Discov公司。2018年;18: 82-4.PubMed Central

Google Scholar

谷歌学者

Krystal AD, Pizzagalli DA, Smoski M, Mathew SJ, Nurnberger J Jr, Lisanby SH, et al. A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating kappa-opioid antagonism as a treatment for anhedonia. Nat Med. 2020;26:760–8.CAS

Krystal AD,Pizzagalli DA,Smoski M,Mathew SJ,Nurnberger J Jr,Lisanby SH等。一项随机机制验证试验,应用“快速失败”方法评估κ阿片拮抗作用作为快感缺失的治疗方法。Nat Med。2020;26:760–8.CAS

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pizzagalli DA, Smoski M, Ang YS, Whitton AE, Sanacora G, Mathew SJ, et al. Selective kappa-opioid antagonism ameliorates anhedonic behavior: evidence from the Fast-fail Trial in Mood and Anxiety Spectrum Disorders (FAST-MAS). Neuropsychopharmacology. 2020;45:1656–63.CAS

。神经精神药理学。2020年;45:1656-63.CAS

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.CAS

Drysdale AT,Grosenick L,Downar J,Dunlop K,Mansouri F,Meng Y等。静息状态连通性生物标志物定义了抑郁症的神经生理学亚型。Nat Med。2017;23:28–38.CAS

Google Scholar

谷歌学者

Deng ZD, Luber B, Balderston NL, Velez Afanador M, Noh MM, Thomas J, et al. Device-based modulation of neurocircuits as a therapeutic for psychiatric disorders. Annu Rev Pharm Toxicol. 2020;60:591–614.CAS

Deng ZD,Luber B,Balderston NL,Velez-Afanador M,Noh MM,Thomas J等。基于设备的神经回路调节作为精神疾病的治疗方法。Annu Rev Pharm Toxicol公司。2020年;60:591–614.CAS

Google Scholar

谷歌学者

Deng ZD, Argyelan M, Miller J, Quinn DK, Lloyd M, Jones TR, et al. Electroconvulsive therapy, electric field, neuroplasticity, and clinical outcomes. Mol Psychiatry. 2022;27:1676–82.CAS

Deng ZD,Argyelan M,Miller J,Quinn DK,Lloyd M,Jones TR等。电惊厥疗法,电场,神经可塑性和临床结果。摩尔精神病学。2022年;27:1676-82.CAS

Google Scholar

谷歌学者

Cole EJ, Phillips AL, Bentzley BS, Stimpson KH, Nejad R, Barmak F, et al. Stanford Neuromodulation Therapy (SNT): a double-blind randomized controlled trial. Am J Psychiatry. 2022;179:132–141.

Cole EJ,Phillips AL,Bentzley BS,Stimpson KH,Nejad R,Barmak F等。斯坦福神经调节疗法(SNT):一项双盲随机对照试验。Am J精神病学。2022年;179:132-141。

Google Scholar

谷歌学者

Download referencesFundingOpen access funding provided by the National Institutes of Health.Author informationAuthors and AffiliationsNational Institute of Mental Health, National Institutes of Health, Rockville, MD, USAS. Andrea Wijtenburg, Laura M. Rowland, Aleksandra Vicentic, Andrew F.

下载National Institutes of Health提供的referencesFundingOpen access资助。作者信息作者和附属机构美国国立卫生研究院国家心理健康研究所,美国马里兰州罗克维尔。安德里亚·维滕堡(AndreaWijtenburg),劳拉·M·罗兰(LauraM.Rowland),亚历山德拉·维琴奇(AleksandraVicentic),安德鲁·F。

Rossi, Linda S. Brady, Joshua A. Gordon & Sarah H. LisanbyAuthorsS. Andrea WijtenburgView author publicationsYou can also search for this author in.

罗西(Rossi)、琳达·S·布雷迪(LindaS.Brady)、约书亚·A·戈登(JoshuaA.Gordon)和莎拉·H·莉桑比(SarahH.LisanByAuthors)。Andrea WijtenburgView作者出版物您也可以在中搜索此作者。

PubMed Google ScholarLaura M. RowlandView author publicationsYou can also search for this author in

PubMed Google ScholarLaura M.RowlandView作者出版物您也可以在

PubMed Google ScholarAleksandra VicenticView author publicationsYou can also search for this author in

PubMed Google ScholarAndrew F. RossiView author publicationsYou can also search for this author in

PubMed Google ScholarAndrew F.RossiView作者出版物您也可以在

PubMed Google ScholarLinda S. BradyView author publicationsYou can also search for this author in

PubMed Google ScholarLinda S.BradyView作者出版物您也可以在

PubMed Google ScholarJoshua A. GordonView author publicationsYou can also search for this author in

PubMed谷歌学者Joshua A.GordonView作者出版物您也可以在

PubMed Google ScholarSarah H. LisanbyView author publicationsYou can also search for this author in

PubMed Google ScholarSarah H.LisanbyView作者出版物您也可以在

PubMed Google ScholarContributionsAll authors wrote, revised, and approved the manuscript for publication.Corresponding authorCorrespondence to

PubMed谷歌学术贡献所有作者都撰写,修订并批准了手稿的出版。对应作者对应

S. Andrea Wijtenburg.Ethics declarations

S、 Andrea Wijtenburg。道德宣言

Competing interests

相互竞争的利益

Dr. Lisanby is inventor on patents and patent applications on electrical and magnetic brain stimulation therapy systems held by the NIH and Columbia University, with no remuneration. The opinions expressed in this article are the author’s own and do not reflect the views of the National Institutes of Health, the Department of Health and Human Services, or the United States government.

Lisanby博士是美国国立卫生研究院(NIH)和哥伦比亚大学(Columbia University)拥有的脑电刺激和磁刺激治疗系统专利和专利申请的发明人,无报酬。本文中表达的观点是作者自己的观点,并不反映美国国立卫生研究院、卫生与公众服务部或美国政府的观点。

The remaining authors have nothing to disclose..

其余作者没有什么要披露的。。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleWijtenburg, S.A., Rowland, L.M., Vicentic, A. et al. NIMH perspectives on future directions in neuroimaging for mental health.

转载和许可本文引用本文Wijtenburg,S.A.,Rowland,L.M.,Vicentic,A。等人。NIMH对心理健康神经影像未来方向的展望。

Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01900-8Download citationReceived: 01 March 2024Revised: 31 May 2024Accepted: 02 June 2024Published: 19 June 2024DOI: https://doi.org/10.1038/s41386-024-01900-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

神经精神药理学。(2024年)。https://doi.org/10.1038/s41386-024-01900-8Download引文接收日期:2024年3月1日修订日期:2024年5月31日接受日期:2024年6月2日发布日期:2024年6月19日OI:https://doi.org/10.1038/s41386-024-01900-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供