商务合作
动脉网APP
可切换为仅中文
AbstractStaphylococcus aureus is one of the most common nosocomial biofilm-forming pathogens worldwide that has developed resistance mechanisms against majority of the antibiotics. Therefore, the search of novel antistaphylococcal agents with unexploited mechanisms of action, especially with antibiofilm activity, is of great interest.
摘要金黄色葡萄球菌(Staphylococcus aureus)是全球最常见的医院生物膜形成病原体之一,已对大多数抗生素产生耐药机制。因此,寻找具有未开发作用机制,特别是具有抗生物膜活性的新型抗葡萄球菌药物是非常有意义的。
Seryl-tRNA synthetase is recognized as a promising drug target for the development of antibacterials. We have carried out molecular docking of compounds with antistaphycoccal activity, which were earlier found by us using phenotypic screening, into synthetic site of S. aureus SerRS and found seven hit compounds with low inhibitory activity.
Seryl-tRNA合成酶被认为是开发抗菌药物的有希望的药物靶标。我们已经将我们早期使用表型筛选发现的具有抗链球菌活性的化合物分子对接到金黄色葡萄球菌SerRS的合成位点,发现了七种具有低抑制活性的命中化合物。
Further, we have performed search of S. aureus SerRS inhibitors among compounds which were previously tested by us for inhibitory activity toward S. aureus ThrRS, that belong to the same class of aminoacyl-tRNA synthetases. Among them six hits were identified. We have selected four compounds for antibacterial study and found that the most active compound 1-methyl-3-(1H-imidazol-1-methyl-2-yl)-5-nitro-1H-indazole has MIC values toward S.
此外,我们已经在我们先前测试的化合物中搜索了金黄色葡萄球菌SerRS抑制剂,这些化合物对金黄色葡萄球菌THRR具有抑制活性,这些化合物属于同一类氨酰基-tRNA合成酶。其中确定了六个命中。我们选择了四种化合物进行抗菌研究,发现最活跃的化合物1-甲基-3-(1H-咪唑-1-甲基-2-基)-5-硝基-1H-吲唑对S具有MIC值。
aureus multidrug-resistant clinical isolates ranging from 78.12 to 156.2 µg/ml. However, this compound precipitated during anti-biofilm study. Therefore, we used 3-[N’-(2-hydroxy-3-methoxybenzylidene)hydrazino]-6-methyl-4H-[1,2,4]triazin-5-one with better solubility (ClogS value = 2.9) among investigated compounds toward SerRS for anti-biofilm study.
金黄色葡萄球菌多药耐药临床分离株的范围为78.12至156.2µg/ml。然而,该化合物在抗生物膜研究期间沉淀。因此,我们使用了3-[N'-(2-羟基-3-甲氧基亚苄基)肼基]-6-甲基-4H-[1,2,4]三嗪-5-酮,具有更好的溶解度(ClogS值=2.9),用于抗生物膜研究。
It was found that this compound has a significant inhibitory effect on the growth of planktonic and biofilm culture of S. aureus 25923 with MIC value of 32 µg ml−1. At the same time, this compound does not reveal antibacterial activity toward Esherichia coli ATCC 47076. Therefore, this compound can be proposed as effective a.
发现该化合物对金黄色葡萄球菌25923的浮游和生物膜培养物的生长具有显着的抑制作用,MIC值为32μg·ml-1。同时,该化合物对大肠杆菌ATCC 47076没有抗菌活性。因此,该化合物可以被认为是有效的a。
Access through your institution
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
Buy or subscribe
购买或订阅
Subscribe to this journalReceive 12 print issues and online access251,40 € per yearonly 20,95 € per issueLearn moreBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout
订阅本期刊每年可收到12期印刷版和在线访问251,40欧元每期仅20,95欧元了解更多购买本文在Springer Link上购买即时访问全文PDFBuy NOW价格可能需要缴纳结帐时计算的当地税费
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8
图1图。图2。3图。4图。5图。。7图。8
ReferencesBerge A, Carlsén C, Petropoulos A, Gadler F, Rasmussen M. Staphylococcus aureus bacteraemia, cardiac implantable electronic device, and the risk of endocarditis: a retrospective population-based cohort study. Eur J Clin Microbiol Infect Dis. 2023;42:583–91.Article
参考文献Berge A,Carlsén C,Petropoulos A,Gadler F,Rasmussen金黄色葡萄球菌菌血症,心脏植入式电子设备和心内膜炎的风险:一项基于人群的回顾性队列研究。Eur J临床微生物感染Dis。2023年;42:583–91.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
García de la Mària C, et al. Emerging issues on Staphylococcus aureus endocarditis and the role in therapy of daptomycin plus fosfomycin. Expert Rev Anti Infect Ther. 2023;21:281–93.Article
García de la Mària C等。金黄色葡萄球菌心内膜炎的新问题以及达托霉素加磷霉素治疗中的作用。专家Rev Anti Infection Ther。2023年;21:281–93.文章
PubMed
PubMed
Google Scholar
谷歌学者
Tournaye E, Hollering P, De Roover D, Dossche K, Vercauteren SRW. Staphylococcus aureus sepsis and hemoptysis as messengers of a rather impractically located mycotic aneurysm. Acta Chir Belg. 2023;123:430–35.Article
图尔奈(Tournaye E),霍林(Holling)P,德鲁弗(De Roover)D,多舍克(Dossche K),弗考特伦(Vercauteren SRW)。金黄色葡萄球菌败血症和咯血是相当不切实际的霉菌性动脉瘤的信使。奇尔贝尔格学报。2023年;123:430–35.文章
PubMed
PubMed
Google Scholar
谷歌学者
Chen Y, et al. The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis. Front Immunol. 2023;14:1219895.Article
Chen Y,et al。金黄色葡萄球菌对先天性和适应性免疫的影响以及金黄色葡萄球菌诱导的骨髓炎的潜在免疫治疗。前免疫。2023年;14: 1219895条
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van Soest TM, et al. Community-acquired Staphylococcus aureus meningitis in adults. J Infect. 2023;86:239–44.Article
van Soest TM等人。成人社区获得性金黄色葡萄球菌脑膜炎。J感染。2023年;86:239-44.文章
PubMed
PubMed
Google Scholar
谷歌学者
Venkateswaran P, et al. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol. 2023;13:1159798.Article
Venkateswaran P等人,《重新审视ESKAPE病原体:毒力,抗性和针对群体感应的对抗策略》。前细胞感染微生物。2023年;13:
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gherardi G. Staphylococcus aureus Infection: Pathogenesis and antimicrobial resistance. Int J Mol Sci. 2023;24:8182.Article
。国际分子科学杂志。2023年;24:8182.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huynh TQ, et al. Genomic alterations involved in fluoroquinolone resistance development in Staphylococcus aureus. PLoS One. 2023;18:e0287973.Article
Huynh TQ等人。金黄色葡萄球菌氟喹诺酮耐药性发展中的基因组改变。PLoS One。2023年;18: e0287973。条款
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ippolito G, Leone S, Lauria FN, Nicastri E, Wenzel RP. Methicillin-resistant Staphylococcus aureus:the superbug. Int J Infect Dis. 2010;14:S7–S11.Article
Ippolito G,Leone S,Lauria FN,Nicastri E,Wenzel RP.耐甲氧西林金黄色葡萄球菌:超级细菌。Int J感染Dis。2010年;14: S7–S11.文章
PubMed
PubMed
Google Scholar
谷歌学者
Kaur DC, Chate SS. Study of antibiotic resistance pattern in methicillin-resistant Staphylococcus aureus with special reference to newer antibiotic. J Glob Infect Dis. 2015;7:78–84.Article
考尔DC,查特SS。耐甲氧西林金黄色葡萄球菌的抗生素耐药模式研究,特别是新抗生素。J Glob感染Dis。2015年;7: 78-84.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arunkumar V, Prabagaravarthanan R, Bhaskar M. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infections among patients admitted in critical care units in a tertiary care hospital. Int J Res Med Sci. 2017;5:2362–66.Article
Arunkumar V,Prabagaravarthan R,Bhaskar M.三级医院重症监护病房住院患者耐甲氧西林金黄色葡萄球菌(MRSA)感染的患病率。国际医学科学杂志。2017年;5: 2362-66.条
Google Scholar
谷歌学者
McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90:269–81.CAS
McGuinness WA,Malachowa N,DeLeo FR.金黄色葡萄球菌对万古霉素的耐药性。耶鲁J生物学杂志2017;90:269–81.CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
García-Angulo VA, et al. Isolation and first draft genome sequence of a linezolid-dependent Staphylococcus aureus clinical strain. Future Microbiol. 2020;15:1123–29.Article
García-Angulo VA等人。利奈唑胺依赖性金黄色葡萄球菌临床菌株的分离和基因组序列初稿。未来的微生物。2020年;15: 1123-29.文章
PubMed
PubMed
Google Scholar
谷歌学者
Yoo IY, Kang OK, Shim HJ, Huh HJ, Lee NY. Linezolid resistance in methicillin-resistant Staphylococcus aureus in Korea: high rate of false resistance to linezolid by the VITEK 2 system. Ann Lab Med. 2020;40:57–62.Article
Yoo IY,Kang OK,Shim HJ,Huh HJ,Lee NY。。安实验室医学2020;40:57–62.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy. 2023;43:816–32.Article
Tran NN,Morrisette T,Jorgensen SCJ,Orench Benvenutti JM,Kebriaei R.目前治疗金黄色葡萄球菌生物膜相关感染的疗法和挑战。药物治疗。2023年;43:816–32.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pang L, Weeks SD, Van Aerschot A. Aminoacyl-tRNA synthetases as valuable targets for antimicrobial drug discovery. Int J Mol Sci. 2021;22:1750.Article
Pang L,Weeks SD,Van Aerschot A.氨酰基-tRNA合成酶是抗菌药物发现的有价值的靶标。国际分子科学杂志。2021年;22:1750.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Francklyn CS, Mullen P. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem. 2019;294:5365–85.Article
Francklyn CS,Mullen P.氨酰基tRNA合成酶治疗的进展和挑战。生物化学杂志。2019年;294:5365–85.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zeng Y, Roy H, Patil PB, Ibba M, Chen S. Characterization of two seryl-tRNA synthetases in albomycin-producing Streptomyces sp. strain ATCC 700974. Antimicrob Agents Chemother. 2009;53:4619–27.Article
Zeng Y,Roy H,Patil PB,Ibba M,Chen S.产白霉素链霉菌菌株ATCC 700974中两种丝氨酸tRNA合成酶的表征。抗菌剂Chemother。2009年;53:4619–27.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Battenberg OA, Yang Y, Verhelst SH, Sieber SA. Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification. Mol Biosyst. 2013;9:343–51.Article
Battenberg OA,Yang Y,Verhelst SH,Sieber SA。金黄色葡萄球菌中4-羟基蓖麻毒素的靶标分析揭示了丝氨酸-tRNA合成酶的结合和共价修饰的抑制作用。摩尔生物系统。;9: 343-51.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cain R, et al. Structure-guided enhancement of selectivity of chemical probe inhibitors targeting bacterial seryl-tRNA synthetase. J Med Chem. 2019;62:9703–17.Article
Cain R等人。结构导向增强靶向细菌丝氨酸-tRNA合成酶的化学探针抑制剂的选择性。J医学化学。2019年;62:9703–17.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bodian DL, et al. Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry. 1993;32:2967–78.Article
Bodian DL等人。苯醌和氢醌对流感血凝素融合诱导构象变化的抑制作用。生物化学。1993年;32:2967–78.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput-Aided Mol Des. 2001;15:411–28.Article
Ewing TJ,Makino S,Skillman AG,Kuntz ID.DOCK 4.0:柔性分子数据库自动分子对接的搜索策略。J计算机辅助分子设计。2001年;15: 411-28.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ring CS, et al. Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci USA. 1993;90:3583–7.Article
Ring CS等人。使用蛋白质模型设计基于结构的抑制剂以开发抗寄生虫剂。;90:3583–7.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM. Structure-based discovery of inhibitors of thymidylate synthase. Science. 1993;259:1445–50.Article
Stoichet BK,Stroud RM,Santi DV,Kuntz ID,Perry KM。胸苷酸合酶抑制剂的基于结构的发现。科学。1993年;259:1445–50.文章
Google Scholar
谷歌学者
Yakovenko OY, Oliferenko A, Golub A, Bdzhola V, Yarmoluk S. The new method of distribution integrals evaluations for high throughput virtual screening. Ukr Bioorg Acta. 2007;1:52–62.
Yakovenko OY,Oliferenko A,Golub A,Bdzhola V,Yarmoluk S.高通量虚拟筛选的分布积分评估新方法。Ukr生物组织学报。2007年;1: 52-62岁。
Google Scholar
谷歌学者
Yakovenko O, Oliferenko AA, Bdzhola VG, Palyulin VA, Zefirov NS. Kirchhoff atomic charges fitted to multipole moments: implementation for a virtual scrrening system. J Comput Chem. 2008;29:1332–43.Article
Yakovenko O,Oliferenko AA,Bdzhola VG,Palyulin VA,Zefirov NS。适合多极矩的基尔霍夫原子电荷:虚拟scrrening系统的实现。J计算机化学。;29:1332-43.文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kovalenko OP, et al. Dual-target inhibitors of mycobacterial aminoacyl-tRNA synthetases among N-benzylidene-N’-thiazol-2-yl-hydrazines. Medchemcomm. 2019;10:2161–9.Article
Kovalenko OP等人。N-亚苄基-N'-噻唑-2-基肼中分枝杆菌氨酰基-tRNA合成酶的双靶点抑制剂。Medchemcomm公司。2019年;10: 2161-9.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Discovery Studio Visualizer 4.0. https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php, (accessed May 2019).Studier F. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005;41:207–34.Article .
Discovery Studio Visualizer 4.0。https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php,(2019年5月访问)。Studier F.在高密度摇动培养物中通过自动诱导产生蛋白质。蛋白质表达纯化。2005;41:207-34。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Volynets G, et al. Identification of novel antistaphylococcal hit compounds targeting sortase A. Molecules. 2021;26:7095.Article
Volynets G等人。针对分选酶A分子的新型抗葡萄球菌命中化合物的鉴定。2021年;26:7095.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rybak MY, et al. Rational design of hit compounds targeting Staphylococcus aureus threonyl-tRNA synthetase. ACS Omega. 2021;6:24910–8.Article
Rybak-MY等人。靶向金黄色葡萄球菌苏氨酸-tRNA合成酶的命中化合物的合理设计。ACS欧米茄。2021年;6: 24910–8.文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance, Version 1.0, December 2013. EUCAST; Växjö, Sweden: 2013.Download referencesAcknowledgementsThis work was supported by the NAS of the Ukraine grant № 0120U000079.
EUCAST临床和/或流行病学重要性耐药机制和特异性耐药检测指南,版本1.02013年12月。EUCAST;瑞典Växjö:2013。下载参考文献致谢这项工作得到了乌克兰国家科学院拨款第0120U000079号的支持。
The authors are thankful to Prof. David Roper (School of Life Sciences, University of Warwick, United Kingdom) for the gift of plasmid encoding S. aureus SerRS.Author informationAuthors and AffiliationsDepartment of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, UkraineGalyna P.
作者感谢David Roper教授(英国华威大学生命科学学院)赠送编码金黄色葡萄球菌SerRS的质粒。作者信息作者和附属机构乌克兰国家科学院分子生物学与遗传学研究所药物化学系,基辅Zabolotnogo St.,03143,UkraineGalyna P。
Volynets, Anatoliy O. Balanda, Oleksiy V. Borovykov, Andrii O. Prykhod’ko, Sergiy S. Lukashov, Taras H. Maiula, Larysa V. Pletnova & Sergiy M. YarmolukDepartment of Functional Genomics, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, UkraineOlga S. IunginDepartment of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, UkraineOlga I.
Volynets,Anatoliy O.Balanda,Oleksiy V.Borovykov,Andrii O.Prykhod'ko,Sergiy S.Lukashov,Taras H.Maiula,Larysa V.Pletnova&Sergiy M.Yarmoluk乌克兰国家科学院分子生物学与遗传学研究所功能基因组学系,乌克兰国家科学院,基辅扎博洛特诺戈街150号,03143,乌克兰国家科学院分子生物学与遗传学研究所蛋白质合成酶学系,乌克兰国家科学院,基辅扎博洛特诺戈街150号,03143,乌克兰国家科学院。
Gudzera & Michael A. TukaloLaboratory of Medical Microbiology with the Museum of Human Pathogenic Microorganisms, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases NAMS of Ukraine, 5 Amosova St., Kyiv, 03038, UkraineHanna V. VyshniakovaDepartment of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USAMariia Yu.
Gudzera&Michael A.TukaloLaboratory of Medical Microbiology with the Museum of Human病原微生物,L.V.Gromashevsky Institute of Epidemiology and Infectious Diseases NAMS of Ukraine,基辅阿莫索瓦街5号,03038,UkraineHanna V.VyshniakovaDepartment of Microbiology and Immunology,德克萨斯大学医学院,301 University Blvd.,Galveston,TX,77555,USAMaria Yu。
RybakBiofilm study group, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, UkraineOlena V. MoshynetsResearch and Development Department, Scientific Services Company Otava Ltd, 150 Zabolotnogo St., Kyiv, 03143, UkraineAndrii O. Prykhod’.
乌克兰国家科学院分子生物学和遗传学研究所RybakBiofilm研究小组,基辅Zabolotnogo街150号,03143,乌克兰国家科学院诉Moshynets研究与发展部,科学服务公司Otava Ltd,基辅Zabolotnogo街150号,03143,乌克兰国家科学院O.Prykhod。
PubMed Google ScholarOlga S. IunginView author publicationsYou can also search for this author in
PubMed Google ScholarOlga S.IunginView作者出版物您也可以在
PubMed Google ScholarOlga I. GudzeraView author publicationsYou can also search for this author in
PubMed谷歌学术期刊I.GudzeraView作者出版物您也可以在中搜索此作者。的信息。的研究报告。的研究报告中,对其进行了详细的描述。的研究。的研究。的研究。的研究。的研究报告。的研究报告。的研究报告,并在其中进行了详细的
PubMed Google ScholarHanna V. VyshniakovaView author publicationsYou can also search for this author in
PubMed Google ScholarHanna V.Vyshniakova查看作者出版您也可以在中搜索此作者
PubMed Google ScholarMariia Yu. RybakView author publicationsYou can also search for this author in
PubMed谷歌ScholarMariia Yu。RybakView作者出版物您也可以在
PubMed Google ScholarOlena V. MoshynetsView author publicationsYou can also search for this author in
PubMed Google ScholarOlena V.MoshynetsView作者出版物您也可以在
PubMed Google ScholarAnatoliy O. BalandaView author publicationsYou can also search for this author in
PubMed Google ScholarAnatoliy O.BalandaView作者出版物您也可以在
PubMed Google ScholarOleksiy V. BorovykovView author publicationsYou can also search for this author in
PubMed Google ScholarOleksiy V.BorovykovView作者出版物您也可以在
PubMed Google ScholarAndrii O. Prykhod’koView author publicationsYou can also search for this author in
PubMed Google ScholarSergiy S. LukashovView author publicationsYou can also search for this author in
PubMed Google ScholarSergiy S.LukashovView作者出版物您也可以在
PubMed Google ScholarTaras H. MaiulaView author publicationsYou can also search for this author in
PubMed Google ScholarTaras H.MaiulaView作者出版物您也可以在
PubMed Google ScholarLarysa V. PletnovaView author publicationsYou can also search for this author in
PubMed Google Scholarlysa V.PletnovaView作者出版物您也可以在
PubMed Google ScholarSergiy M. YarmolukView author publicationsYou can also search for this author in
PubMed Google ScholarSergiy M.YarmolukView作者出版物您也可以在
PubMed Google ScholarMichael A. TukaloView author publicationsYou can also search for this author in
PubMed Google Scholarmamichael A.TukaloView作者出版物您也可以在
PubMed Google ScholarCorresponding authorCorrespondence to
PubMed谷歌学者通讯社
Galyna P. Volynets.Ethics declarations
Galyna P.Volynets。道德宣言
Conflict of interest
利益冲突
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupporting InformationRights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleVolynets, G.P., Iungin, O.S., Gudzera, O.I.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息支持信息权利和许可Pringer Nature或其许可方(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Volynets,G.P.,Iungin,O.S.,Gudzera,O.I。
et al. Identification of novel antistaphylococcal hit compounds..
等。新型抗葡萄球菌命中化合物的鉴定。。
J Antibiot (2024). https://doi.org/10.1038/s41429-024-00752-0Download citationReceived: 18 March 2024Revised: 22 May 2024Accepted: 27 May 2024Published: 25 June 2024DOI: https://doi.org/10.1038/s41429-024-00752-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
J Antibiot(2024)。https://doi.org/10.1038/s41429-024-00752-0Download引文收到日期:2024年3月18日修订日期:2024年5月22日接受日期:2024年5月27日发布日期:2024年6月25日OI:https://doi.org/10.1038/s41429-024-00752-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供