EN
登录

血小板反应蛋白-4缺失不会加剧β-肌聚糖缺陷和层粘连蛋白α2链缺陷小鼠的肌营养不良

Thrombospondin-4 deletion does not exacerbate muscular dystrophy in β-sarcoglycan-deficient and laminin α2 chain-deficient mice

Nature 等信源发布 2024-06-26 02:49

可切换为仅中文


AbstractMuscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy.

摘要肌营养不良症是一组导致肌肉萎缩和肌肉功能丧失的遗传性疾病。鉴定减轻症状或增强原发性疾病严重程度的遗传修饰剂有助于了解疾病病理背后的机制,并有助于发现治疗的分子靶标。

Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases.

几种肌营养不良症是由肌营养不良蛋白糖蛋白粘附复合物(DGC)成分的遗传缺陷引起的。在Duchenne型肌营养不良症(肌营养不良蛋白缺乏症)和2F型肢带型肌营养不良症(LGMD2F,δ-糖聚糖缺乏症)的小鼠模型中,血小板反应蛋白-4的过表达已被证明可以减轻营养不良疾病,而血小板反应蛋白-4基因的缺失加剧了疾病。

Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, β-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD).

因此,血小板反应蛋白-4被认为是治疗涉及DGC的肌营养不良症的候选分子。我们已经研究了血小板反应蛋白-4是否可以作为其他DGC相关疾病的遗传修饰因子:2E型肢带型肌营养不良症(LGMD2E,β-糖聚糖缺乏症)和层粘连蛋白α2链缺陷型肌营养不良症(LAMA2-RD)。

Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7β1 and dystroglycan in double knockout muscles.

LGMD2E和LAMA2-RD小鼠模型中血小板反应蛋白-4基因的缺失分别不会导致营养不良表型的恶化。血小板反应蛋白-4的缺失不会增强肌膜损伤,也不会损害双敲除肌肉中跨膜受体整合素α7β1和肌营养不良蛋白聚糖的运输。

Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly..

我们的研究结果表明,血小板反应蛋白-4可能不是所有涉及DGC的肌营养不良症的相关治疗靶点。该数据还表明,LGMD2E和2F等非常相似的疾病之间的分子病理学可能存在显着差异。。

IntroductionMuscular dystrophy is a heterogeneous group of degenerative inherited disorders that lead to muscle function failure. Progressive muscle wasting, often starting from a young age, results in compromised mobility, breathing difficulties and feeding complications1. To this end, mutations in more than 60 genes have been implicated to cause muscular dystrophy, giving rise to broad clinical spectra of the disease2.

简介肌营养不良症是一组异质性退行性遗传疾病,导致肌肉功能衰竭。进行性肌肉消瘦通常从年轻开始,导致行动不便,呼吸困难和喂养并发症1。为此,有60多个基因的突变被认为会导致肌肉萎缩症,从而导致该疾病的广泛临床范围2。

Although U.S. Food and Drug Administration has approved the first gene therapy for some patients with Duchenne muscular dystrophy3, currently there are no specific cures available to these severe and complex disorders. Development of therapy is hindered by the fact that most muscular dystrophy subtypes are rare diseases2.The connection between the cytoskeleton, transmembrane receptor complexes and the extracellular matrix is important for muscle homeostasis and function.

尽管美国食品和药物管理局已批准对一些杜兴氏肌营养不良症患者进行首次基因治疗3,但目前尚无针对这些严重而复杂疾病的特异性治疗方法。大多数肌营养不良亚型是罕见疾病,这一事实阻碍了治疗的发展。细胞骨架,跨膜受体复合物和细胞外基质之间的联系对于肌肉稳态和功能很重要。

This is underscored by the fact that some muscular dystrophy variants are caused by mutations in genes that are a part of attachment networks4. The dystrophin-glycoprotein complex (DGC) constitutes a major adhesion complex in skeletal muscle. It is composed of intracellular components dystrophin, syntrophins and α-dystrobrevin that link cytoskeleton with transmembrane proteins dystroglycan (α- and β), sarcoglycans (α-, β-, δ-, γ- and ζ) and sarcospan4,5.

一些肌肉萎缩症变异是由作为附着网络一部分的基因突变引起的,这一事实突显了这一点4。肌营养不良蛋白糖蛋白复合物(DGC)构成骨骼肌中的主要粘附复合物。它由细胞内成分肌营养不良蛋白,syntrophins和α-dystrobrevin组成,它们将细胞骨架与跨膜蛋白dystroglycan(α-和β),肌聚糖(α-,β-,δ-,γ-和ζ)和肌聚糖4,5联系起来。

α-dystroglycan binds to several extracellular matrix ligands, including the laminin α2 subunit of the laminin-211 heterotrimer6,7.Mutations in the genes encoding the components of the DGC and the DGC ligand laminin α2 give rise to following muscle diseases: Duchenne/Becker muscular dystrophy (dystrophin mutation); limb-girdle muscular dystrophy (LGMD) type 2D, 2E, 2F and 2C (also called sarcoglycanopathies, caused by mutations in α-, β-.

α-肌营养不良蛋白聚糖与几种细胞外基质配体结合,包括层粘连蛋白211异源三聚体的层粘连蛋白α2亚基6,7。编码DGC和DGC配体层粘连蛋白α2成分的基因突变会引起以下肌肉疾病:杜兴氏/贝克尔肌营养不良症(肌营养不良蛋白突变);2D,2E,2F和2C型肢带型肌营养不良症(LGMD)(也称为肌聚糖病,由α-,β-突变引起)。

Data availability

数据可用性

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

在当前研究期间生成和分析的数据集可根据合理的要求从通讯作者处获得。

ReferencesMercuri, E., Bonnemann, C. G. & Muntoni, F. Muscular dystrophies. Lancet 394, 2025–2038. https://doi.org/10.1016/S0140-6736(19)32910-1 (2019).Article

参考文献Mercuri,E.,Bonnemann,C.G。&Muntoni,F。肌肉营养不良。柳叶刀3942052-2038。https://doi.org/10.1016/S0140-6736(19) 32910-1(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gawlik, K. I. At the crossroads of clinical and preclinical research for muscular dystrophy—Are we closer to effective treatment for patients?. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19051490 (2018).Article

Gawlik,K.I。在肌营养不良症临床和临床前研究的十字路口,我们是否更接近于对患者进行有效治疗?。Int.J.Mol.Sci。https://doi.org/10.3390/ijms19051490(2018年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hoy, S. M. Delandistrogene moxeparvovec: First approval. Drugs 83, 1323–1329. https://doi.org/10.1007/s40265-023-01929-x (2023).Article

Hoy,S.M.Delandistrogene moxeparvovec:首次批准。药物831323-1329。https://doi.org/10.1007/s40265-023-01929-x(2023年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Carmignac, V. & Durbeej, M. Cell-matrix interactions in muscle disease. J. Pathol. 226, 200–218. https://doi.org/10.1002/path.3020 (2012).Article

Carmignac,V。&Durbeej,M。肌肉疾病中的细胞-基质相互作用。J、 病理学。226200–218。https://doi.org/10.1002/path.3020(2012年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wilson, D. G. S., Tinker, A. & Iskratsch, T. The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun. Biol. 5, 1022. https://doi.org/10.1038/s42003-022-03980-y (2022).Article

Wilson,D.G.S.,Tinker,A。&Iskratsch,T。肌营养不良蛋白糖蛋白复合物在肌肉细胞机械转导中的作用。Commun公司。生物学51022。https://doi.org/10.1038/s42003-022-03980-y(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Talts, J. F., Andac, Z., Gohring, W., Brancaccio, A. & Timpl, R. Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins. EMBO J. 18, 863–870. https://doi.org/10.1093/emboj/18.4.863 (1999).Article .

Talts,J.F.,Andac,Z.,Gohring,W.,Brancaccio,A。&Timpl,R。层粘连蛋白α1和α2链的G结构域以及perlecan与肝素,硫酸酯,α-营养不良聚糖和几种细胞外基质蛋白的结合。EMBO J.18863–870。https://doi.org/10.1093/emboj/18.4.863(1999年)。。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sciandra, F., Gawlik, K. I., Brancaccio, A. & Durbeej, M. Dystroglycan: A possible mediator for reducing congenital muscular dystrophy?. Trends Biotechnol. 25, 262–268. https://doi.org/10.1016/j.tibtech.2007.04.002 (2007).Article

Sciandra,F.,Gawlik,K.I.,Brancaccio,A。&Durbeej,M。Dystroglycan:减少先天性肌营养不良症的可能介质?。趋势生物技术。25262-268。https://doi.org/10.1016/j.tibtech.2007.04.002(2007年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vainzof, M., Souza, L. S., Gurgel-Giannetti, J. & Zatz, M. Sarcoglycanopathies: An update. Neuromuscul. Disord. NMD 31, 1021–1027. https://doi.org/10.1016/j.nmd.2021.07.014 (2021).Article

Vainzof,M.,Souza,L.S.,Gurgel Giannetti,J.&Zatz,M。Sarcoglycanopathies:更新。神经肌肉。混乱。NMD 311021–1027。https://doi.org/10.1016/j.nmd.2021.07.014(2021年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kirschner, J. & Lochmuller, H. Sarcoglycanopathies. Handb. Clin. Neurol. 101, 41–46. https://doi.org/10.1016/B978-0-08-045031-5.00003-7 (2011).Article

Kirschner,J.和Lochmuller,H.Sarcoglycanopathies。手临床。Neurol。101, 41–46.https://doi.org/10.1016/B978-0-08-045031-5.00003-7(2011).文章

PubMed

PubMed

Google Scholar

谷歌学者

Guglieri, M. et al. Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Hum. Mutat. 29, 258–266. https://doi.org/10.1002/humu.20642 (2008).Article

Guglieri,M.等人。大量经基因诊断的意大利肢带型肌营养不良症患者的临床,分子和蛋白质相关性。嗯。变异。29258-266。https://doi.org/10.1002/humu.20642(2008年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Semplicini, C. et al. Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E. Neurology 84, 1772–1781. https://doi.org/10.1212/WNL.0000000000001519 (2015).Article

Semplicini,C。等人。2E型肢带型肌营养不良症的临床和遗传谱。神经病学841772-1781。https://doi.org/10.1212/WNL.0000000000001519(2015年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sandona, D. & Betto, R. Sarcoglycanopathies: Molecular pathogenesis and therapeutic prospects. Expert Rev. Mol. Med. 11, e28. https://doi.org/10.1017/S1462399409001203 (2009).Article

Sandona,D。&Betto,R。Sarcoglycanopathies:分子发病机制和治疗前景。专家Rev.Mol.Med。11,e28。https://doi.org/10.1017/S1462399409001203(2009年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Politano, L. et al. Evaluation of cardiac and respiratory involvement in sarcoglycanopathies. Neuromuscul. Disord. NMD 11, 178–185. https://doi.org/10.1016/s0960-8966(00)00174-7 (2001).Article

Politano,L。等人。评估肌聚糖病的心脏和呼吸系统受累。神经肌肉。混乱。NMD 11178-185。https://doi.org/10.1016/s0960-8966(00)00174-7(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zambon, A. A. & Muntoni, F. Congenital muscular dystrophies: What is new?. Neuromuscul. Disord. NMD 31, 931–942. https://doi.org/10.1016/j.nmd.2021.07.009 (2021).Article

Zambon,A.A。和Muntoni,F。先天性肌营养不良症:什么是新的?。神经肌肉。混乱。NMD 31931–942。https://doi.org/10.1016/j.nmd.2021.07.009(2021年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sarkozy, A., Foley, A. R., Zambon, A. A., Bonnemann, C. G. & Muntoni, F. LAMA2-related dystrophies: Clinical phenotypes, disease biomarkers, and clinical trial readiness. Front. Mol. Neurosci. 13, 123. https://doi.org/10.3389/fnmol.2020.00123 (2020).Article

Sarkozy,A.,Foley,A.R.,Zambon,A.A.,Bonnemann,C.G。&Muntoni,F.LAMA2相关营养不良:临床表型,疾病生物标志物和临床试验准备。正面。分子神经科学。13123页。https://doi.org/10.3389/fnmol.2020.00123(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lake, N. J. et al. Estimating the prevalence of LAMA2 congenital muscular dystrophy using population genetic databases. J. Neuromuscul. Dis. 10, 381–387. https://doi.org/10.3233/JND-221552 (2023).Article

Lake,N.J.等人使用群体遗传数据库估计LAMA2先天性肌营养不良症的患病率。J、 神经肌肉。Dis。10381-387。https://doi.org/10.3233/JND-221552(2023年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ge, L. et al. Congenital muscular dystrophies in China. Clin. Genet. 96, 207–215. https://doi.org/10.1111/cge.13560 (2019).Article

Ge,L。等。中国先天性肌营养不良症。临床。基因。96207-215。https://doi.org/10.1111/cge.13560(2019年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Voit, T. & Tome, F. M. S. The Congenital Muscular Dystrophies. Vol. 2. 1203–1238 (McGraw-Hill, 2004).Bönnemann, C. G. & Voermans, N. C. ECM-Related Myopathies and Muscular Dystrophies. Vol. 2. 979–994 (Academic Press, 2012).Oliveira, J., Parente Freixo, J., Santos, M. & Coelho, T. GeneReviews((R)) (eds.

Voit,T。&Tome,F.M.S。先天性肌营养不良症。第二卷。1203-1238(McGraw-Hill,2004)。Bönnemann,C.G。和Voermans,N.C。ECM相关的肌病和肌肉营养不良。第二卷。979-994(学术出版社,2012)。Oliveira,J.,Parente-Freixo,J.,Santos,M。&Coelho,T。GeneReviews((R))(编辑。

Adam, M. P. et al.) (1993).Zambon, A. A. et al. LAMA2-related muscular dystrophy: Natural history of a large pediatric cohort. Ann. Clin. Transl. Neurol. 7, 1870–1882. https://doi.org/10.1002/acn3.51172 (2020).Article .

Adam,M.P.等人)(1993)。Zambon,A.A.等人,《LAMA2相关性肌营养不良症:大型儿科队列的自然史》。安。克林。翻译。神经病学。71870-1882年。https://doi.org/10.1002/acn3.51172(2020年)。。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tan, D. et al. Natural history and genetic study of LAMA2-related muscular dystrophy in a large Chinese cohort. Orphanet. J. Rare Dis. 16, 319. https://doi.org/10.1186/s13023-021-01950-x (2021).Article

Tan,D.等人。中国大型队列中LAMA2相关性肌营养不良症的自然史和遗传学研究。孤儿网。J、 罕见疾病。16319年。https://doi.org/10.1186/s13023-021-01950-x(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Durbeej, M. & Campbell, K. P. Muscular dystrophies involving the dystrophin-glycoprotein complex: An overview of current mouse models. Curr. Opin. Genet. Dev. 12, 349–361 (2002).Article

Durbeej,M。&Campbell,K.P。涉及肌营养不良蛋白-糖蛋白复合物的肌营养不良症:当前小鼠模型的概述。货币。奥平。基因。Dev.12349–361(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ng, R. et al. Animal models of muscular dystrophy. Prog. Mol. Biol. Transl. Sci. 105, 83–111. https://doi.org/10.1016/B978-0-12-394596-9.00004-4 (2012).Article

Ng,R。等人。肌肉萎缩症的动物模型。程序。分子生物学。翻译。科学。105,83-111。https://doi.org/10.1016/B978-0-12-394596-9.00004-4(2012年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gawlik, K. I. & Durbeej, M. A family of laminin alpha2 chain-deficient mouse mutants: Advancing the research on LAMA2-CMD. Front. Mol. Neurosci. 13, 59. https://doi.org/10.3389/fnmol.2020.00059 (2020).Article

Gawlik,K.I。&Durbeej,M。层粘连蛋白α2链缺陷小鼠突变体家族:推进LAMA2-CMD的研究。正面。分子神经科学。13,59。https://doi.org/10.3389/fnmol.2020.00059(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Putten, M. et al. Mouse models for muscular dystrophies: An overview. Dis. Model Mech. https://doi.org/10.1242/dmm.043562 (2020).Article

van Putten,M。等人。肌肉营养不良的小鼠模型:概述。Dis。模型机械。https://doi.org/10.1242/dmm.043562(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Araishi, K. et al. Loss of the sarcoglycan complex and sarcospan leads to muscular dystrophy in beta-sarcoglycan-deficient mice. Hum. Mol. Genet. 8, 1589–1598. https://doi.org/10.1093/hmg/8.9.1589 (1999).Article

Araishi,K。等人。在缺乏β-糖聚糖的小鼠中,糖聚糖复合物和肌氨酸的丧失会导致肌肉萎缩症。嗯,摩尔·吉内特。81589-1598年。https://doi.org/10.1093/hmg/8.9.1589(1999年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Durbeej, M. et al. Disruption of the beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E. Mol. Cell 5, 141–151. https://doi.org/10.1016/s1097-2765(00)80410-4 (2000).Article

Durbeej,M。等人。β-糖聚糖基因的破坏揭示了2E型肢带型肌营养不良症的致病复杂性。分子细胞5141-151。https://doi.org/10.1016/s1097-2765(00)80410-4(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pozsgai, E. R., Griffin, D. A., Heller, K. N., Mendell, J. R. & Rodino-Klapac, L. R. Beta-sarcoglycan gene transfer decreases fibrosis and restores force in LGMD2E mice. Gene Ther. 23, 57–66. https://doi.org/10.1038/gt.2015.80 (2016).Article

Pozsgai,E.R.,Griffin,D.A.,Heller,K.N.,Mendell,J.R。&Rodino-Klapac,L.R。β-糖聚糖基因转移可减少LGMD2E小鼠的纤维化并恢复其力量。基因疗法。23,57-66。https://doi.org/10.1038/gt.2015.80(2016年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gawlik, K. I., Holmberg, J. & Durbeej, M. Loss of dystrophin and beta-sarcoglycan significantly exacerbates the phenotype of laminin alpha2 chain-deficient animals. Am. J. Pathol. 184, 740–752. https://doi.org/10.1016/j.ajpath.2013.11.017 (2014).Article

Gawlik,K.I.,Holmberg,J。&Durbeej,M。肌营养不良蛋白和β-糖聚糖的丧失显着加剧了层粘连蛋白α2链缺陷动物的表型。美国J.Pathol。184740–752。https://doi.org/10.1016/j.ajpath.2013.11.017(2014年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gawlik, K. I., Korner, Z., Oliveira, B. M. & Durbeej, M. Early skeletal muscle pathology and disease progress in the dy(3K)/dy(3K) mouse model of congenital muscular dystrophy with laminin alpha2 chain-deficiency. Sci. Rep. 9, 14324. https://doi.org/10.1038/s41598-019-50550-0 (2019).Article .

Gawlik,K.I.,Korner,Z.,Oliveira,B.M。&Durbeej,M。先天性肌营养不良伴层粘连蛋白α2链缺陷的dy(3K)/dy(3K)小鼠模型的早期骨骼肌病理学和疾病进展。科学。代表914324。https://doi.org/10.1038/s41598-019-50550-0(2019年)。。

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miyagoe, Y. et al. Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: A new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett. 415, 33–39 (1997).Article

Miyagoe,Y。等人。通过靶向破坏Lama2基因的层粘连蛋白alpha2链无效突变小鼠:缺乏黑素(层粘连蛋白2)的先天性肌营养不良症的新模型。FEBS Lett公司。415,33-39(1997)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Carmignac, V., Quere, R. & Durbeej, M. Proteasome inhibition improves the muscle of laminin alpha2 chain-deficient mice. Hum. Mol. Genet. 20, 541–552. https://doi.org/10.1093/hmg/ddq499 (2011).Article

Carmignac,V.,Quere,R。&Durbeej,M。蛋白酶体抑制改善了层粘连蛋白α2链缺陷小鼠的肌肉。嗯,摩尔·吉内特。20541-552。https://doi.org/10.1093/hmg/ddq499(2011年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Straub, V., Rafael, J. A., Chamberlain, J. S. & Campbell, K. P. Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J. Cell Biol. 139, 375–385. https://doi.org/10.1083/jcb.139.2.375 (1997).Article

Straub,V.,Rafael,J.A.,Chamberlain,J.S。&Campbell,K.P。肌肉萎缩症的动物模型显示出不同的肌膜破坏模式。J、 细胞生物学。139375–385。https://doi.org/10.1083/jcb.139.2.375(1997年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ervasti, J. M. & Campbell, K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809–823. https://doi.org/10.1083/jcb.122.4.809 (1993).Article

Ervasti,J.M。&Campbell,K.P。肌营养不良蛋白糖蛋白复合物作为层粘连蛋白和肌动蛋白之间的跨膜接头的作用。J、 细胞生物学。122809-823。https://doi.org/10.1083/jcb.122.4.809(1993年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702. https://doi.org/10.1038/355696a0 (1992).Article

Ibraghimov-Beskrovnaya,O.等人,《连接肌营养不良蛋白与细胞外基质的肌营养不良蛋白相关糖蛋白的一级结构》,《自然》355696-702。https://doi.org/10.1038/355696a0(1992年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Holt, K. H. & Campbell, K. P. Assembly of the sarcoglycan complex. Insights for muscular dystrophy. J. Biol. Chem. 273, 34667–34670. https://doi.org/10.1074/jbc.273.52.34667 (1998).Article

Holt,K.H。和Campbell,K.P。肌聚糖复合物的组装。肌营养不良症的见解。J、 生物。化学。27334667–34670。https://doi.org/10.1074/jbc.273.52.34667(1998年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Allen, D. G., Whitehead, N. P. & Froehner, S. C. Absence of dystrophin disrupts skeletal muscle signaling: Roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol. Rev. 96, 253–305. https://doi.org/10.1152/physrev.00007.2015 (2016).Article .

Allen,D.G.,Whitehead,N.P。&Froehner,S.C。肌营养不良蛋白的缺乏会破坏骨骼肌信号传导:Ca2+,活性氧和一氧化氮在肌营养不良症发展中的作用。生理学。修订版96253-305。https://doi.org/10.1152/physrev.00007.2015(2016年)。。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Blake, D. J., Weir, A., Newey, S. E. & Davies, K. E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82, 291–329. https://doi.org/10.1152/physrev.00028.2001 (2002).Article

Blake,D.J.,Weir,A.,Newey,S.E。和Davies,K.E。肌肉中肌营养不良蛋白和肌营养不良蛋白相关蛋白的功能和遗传学。生理学。版本82291-329。https://doi.org/10.1152/physrev.00028.2001(2002年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Holmberg, J. & Durbeej, M. Laminin-211 in skeletal muscle function. Cell Adhes. Migration 7, 111–121. https://doi.org/10.4161/cam.22618 (2013).Article

Holmberg,J。&Durbeej,M。层粘连蛋白-211在骨骼肌功能中的作用。细胞粘附。迁移7111-121。https://doi.org/10.4161/cam.22618(2013年)。文章

Google Scholar

谷歌学者

Fontes-Oliveira, C. C., Steinz, M., Schneiderat, P., Mulder, H. & Durbeej, M. Bioenergetic impairment in congenital muscular dystrophy type 1A and Leigh syndrome muscle cells. Sci. Rep. 7, 45272. https://doi.org/10.1038/srep45272 (2017).Article

Fontes-Oliveira,C.C.,Steinz,M.,Schneiderat,P.,Mulder,H。&Durbeej,M。先天性肌营养不良症1A型和Leigh综合征肌肉细胞的生物能损伤。科学。代表745272。https://doi.org/10.1038/srep45272(2017年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Capote, J. et al. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype. J. Cell Biol. 213, 275–288. https://doi.org/10.1083/jcb.201510086 (2016).Article

Capote,J。等人。骨桥蛋白消融通过将巨噬细胞转变为促再生表型来改善肌肉营养不良。J、 细胞生物学。213275-288。https://doi.org/10.1083/jcb.201510086(2016年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vanhoutte, D. et al. Thrombospondin expression in myofibers stabilizes muscle membranes. eLife https://doi.org/10.7554/eLife.17589 (2016).Article

Vanhoutte,D。等人。肌纤维中血小板反应蛋白的表达稳定了肌膜。埃利夫https://doi.org/10.7554/eLife.17589(2016年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quattrocelli, M. et al. Genetic modifiers of muscular dystrophy act on sarcolemmal resealing and recovery from injury. PLoS Genet. 13, e1007070. https://doi.org/10.1371/journal.pgen.1007070 (2017).Article

Quattrocelli,M。等人。肌营养不良症的遗传修饰剂对肌膜再密封和损伤恢复起作用。PLoS Genet。13,e1007070。https://doi.org/10.1371/journal.pgen.1007070(2017年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quattrocelli, M., Spencer, M. J. & McNally, E. M. Outside in: The matrix as a modifier of muscular dystrophy. Biochim. Biophys. Acta 1864, 572–579 https://doi.org/10.1016/j.bbamcr.2016.12.020 (2016)Stenina-Adognravi, O. Thrombospondins: Old players, new games. Curr. Opin. Lipidol. 24, 401–409.

Quattrocelli,M.,Spencer,M.J。&McNally,E.M。外向内:基质作为肌肉萎缩症的调节剂。生物化学。生物物理。Acta 1864572-579https://doi.org/10.1016/j.bbamcr.2016.12.020(2016)Stenina Adognravi,O.血小板反应蛋白:老玩家,新游戏。货币。奥平。利皮多尔。24401-409。

https://doi.org/10.1097/MOL.0b013e3283642912 (2013).Article .

https://doi.org/10.1097/MOL.0b013e3283642912 (2013).Article .

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stenina-Adognravi, O. Invoking the power of thrombospondins: Regulation of thrombospondins expression. Matrix Biol. J. Int. Soc. Matrix Biol. 37, 69–82. https://doi.org/10.1016/j.matbio.2014.02.001 (2014).Article

Stenina Adognravi,O。调用血小板反应蛋白的力量:调节血小板反应蛋白的表达。矩阵生物学。J、 国际社会矩阵生物学。37,69-82。https://doi.org/10.1016/j.matbio.2014.02.001(2014年)。文章

CAS

中科院

Google Scholar

谷歌学者

Frolova, E. G. et al. Control of organization and function of muscle and tendon by thrombospondin-4. Matrix Biol. J. Int. Soc. Matrix Biol. 37, 35–48. https://doi.org/10.1016/j.matbio.2014.02.003 (2014).Article

Frolova,E.G.等人。血小板反应蛋白-4对肌肉和肌腱组织和功能的控制。矩阵生物学。J、 国际社会矩阵生物学。37,35-48。https://doi.org/10.1016/j.matbio.2014.02.003(2014年)。文章

CAS

中科院

Google Scholar

谷歌学者

Brody, M. J. et al. Defective flux of thrombospondin-4 through the secretory pathway impairs cardiomyocyte membrane stability and causes cardiomyopathy. Mol. Cell Biol. https://doi.org/10.1128/MCB.00114-18 (2018).Article

Brody,M.J.等人。血小板反应蛋白-4通过分泌途径的通量缺陷会损害心肌细胞膜的稳定性并引起心肌病。分子细胞生物学。https://doi.org/10.1128/MCB.00114-18(2018年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morgan, J. E. et al. Necroptosis mediates myofibre death in dystrophin-deficient mice. Nat. Commun. 9, 3655. https://doi.org/10.1038/s41467-018-06057-9 (2018).Article

Morgan,J.E.等人。坏死性凋亡介导肌营养不良蛋白缺陷小鼠的肌纤维死亡。国家公社。93655页。https://doi.org/10.1038/s41467-018-06057-9(2018年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bencze, M., Periou, B., Baba-Amer, Y. & Authier, F. J. Immunolabelling myofiber degeneration in muscle biopsies. J. Vis. Exp. https://doi.org/10.3791/59754 (2019).Article

Bencze,M.,Periou,B.,Baba Amer,Y。&Authier,F.J。免疫标记肌肉活检中的肌纤维变性。J、 可见。实验。https://doi.org/10.3791/59754(2019年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Shimizu, Y. et al. Immunoglobulin G (IgG)-based imaging probe accumulates in M1 macrophage-infiltrated atherosclerotic plaques independent of IgG target molecule expression. Mol. Imaging Biol. 19, 531–539. https://doi.org/10.1007/s11307-016-1036-8 (2017).Article

Shimizu,Y。等人。基于免疫球蛋白G(IgG)的成像探针在M1巨噬细胞浸润的动脉粥样硬化斑块中积累,与IgG靶分子表达无关。分子成像生物学。19531-539。https://doi.org/10.1007/s11307-016-1036-8(2017年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hager, M. et al. Cib2 binds integrin alpha7Bbeta1D and is reduced in laminin alpha2 chain-deficient muscular dystrophy. J. Biol. Chem. 283, 24760–24769. https://doi.org/10.1074/jbc.M801166200 (2008).Article

Hager,M。等人,Cib2结合整合素α7bbeta1d,并在层粘连蛋白α2链缺陷型肌营养不良症中减少。J、 生物。化学。28324760–24769。https://doi.org/10.1074/jbc.M801166200(2008年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Oliveira, B. M. et al. Quantitative proteomic analysis reveals metabolic alterations, calcium dysregulation, and increased expression of extracellular matrix proteins in laminin α2 chain-deficient muscle. Mol. Cell Proteom. 13, 3001–3013. https://doi.org/10.1074/mcp.M113.032276 (2014).Article .

定量蛋白质组学分析揭示了层粘连蛋白α2链缺陷肌肉的代谢改变,钙失调和细胞外基质蛋白表达增加。分子细胞蛋白质组学。13001–3013。https://doi.org/10.1074/mcp.M113.032276(2014年)。。

CAS

中科院

Google Scholar

谷歌学者

Arber, S. & Caroni, P. Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J. Cell Biol. 131, 1083–1094. https://doi.org/10.1083/jcb.131.4.1083 (1995).Article

Arber,S。&Caroni,P。血小板反应蛋白-4是一种在发育中和成年神经系统中表达的细胞外基质蛋白,可促进神经突生长。J、 细胞生物学。1311083-1094年。https://doi.org/10.1083/jcb.131.4.1083(1995年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Stenina-Adognravi, O. & Plow, E. F. Thrombospondin-4 in tissue remodeling. Matrix Biol. Int. Soc. Matrix Biol. 75–76, 300–313. https://doi.org/10.1016/j.matbio.2017.11.006 (2019).Article

Stenina Adognravi,O。&Plow,E.F。血小板反应蛋白-4在组织重塑中的作用。矩阵生物学。国际社会矩阵生物学。75-76300-313。https://doi.org/10.1016/j.matbio.2017.11.006(2019年)。文章

CAS

中科院

Google Scholar

谷歌学者

Frolova, E. G. et al. Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. FASEB J. 26, 2363–2373. https://doi.org/10.1096/fj.11-190728 (2012).Article

血小板反应蛋白-4调节压力超负荷时心肌的纤维化和重塑。FASEB J.262363-2373。https://doi.org/10.1096/fj.11-190728(2012年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Palao, T. et al. Thrombospondin-4 mediates cardiovascular remodelling in angiotensin II-induced hypertension. Cardiovasc. Pathol. 35, 12–19. https://doi.org/10.1016/j.carpath.2018.03.003 (2018).Article

血小板反应蛋白-4介导血管紧张素II诱导的高血压的心血管重塑。心血管。病理学。35,12-19。https://doi.org/10.1016/j.carpath.2018.03.003(2018年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cingolani, O. H. et al. Thrombospondin-4 is required for stretch-mediated contractility augmentation in cardiac muscle. Circ. Res. 109, 1410–1414. https://doi.org/10.1161/CIRCRESAHA.111.256743 (2011).Article

Cingolani,O.H。等人。血小板反应蛋白-4是拉伸介导的心肌收缩增强所必需的。保监会。第1091410-1414号决议。https://doi.org/10.1161/CIRCRESAHA.111.256743(2011年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Klaas, M. et al. Thrombospondin-4 is a soluble dermal inflammatory signal that selectively promotes fibroblast migration and keratinocyte proliferation for skin regeneration and wound healing. Front. Cell Dev. Biol. 9, 745637. https://doi.org/10.3389/fcell.2021.745637 (2021).Article .

血小板反应蛋白-4是一种可溶性皮肤炎症信号,可选择性促进成纤维细胞迁移和角质形成细胞增殖,促进皮肤再生和伤口愈合。正面。细胞开发生物学。9745637页。https://doi.org/10.3389/fcell.2021.745637(2021年)。。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qian, W., Li, N., Cao, Q. & Fan, J. Thrombospondin-4 critically controls transforming growth factor beta1 induced hypertrophic scar formation. J. Cell Physiol. 234, 731–739. https://doi.org/10.1002/jcp.26877 (2018).Article

Qian,W.,Li,N.,Cao,Q。&Fan,J。血小板反应蛋白-4严格控制转化生长因子β1诱导的肥厚性瘢痕形成。J、 细胞生理学。234731-739。https://doi.org/10.1002/jcp.26877(2018年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vainzof, M. et al. The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Hum. Mol. Genet. 5, 1963–1969. https://doi.org/10.1093/hmg/5.12.1963 (1996).Article

Vainzof,M。等人。六种常染色体隐性肢带型肌营养不良症中的糖聚糖复合物。嗯,摩尔·吉内特。51963年至1969年。https://doi.org/10.1093/hmg/5.12.1963(1996年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, J. et al. The 16 kDa subunit of vacuolar H+-ATPase is a novel sarcoglycan-interacting protein. Biochim. Biophys. Acta 1772, 570–579. https://doi.org/10.1016/j.bbadis.2007.01.014 (2007).Article

Chen,J。等人。液泡H+-ATPase的16 kDa亚基是一种新型的糖聚糖相互作用蛋白。生物化学。生物物理。Acta 1772570–579。https://doi.org/10.1016/j.bbadis.2007.01.014(2007年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Betto, R. et al. Ecto-ATPase activity of alpha-sarcoglycan (adhalin). J. Biol. Chem. 274, 7907–7912. https://doi.org/10.1074/jbc.274.12.7907 (1999).Article

Betto,R。等人。α-糖聚糖(adhalin)的胞外ATPase活性。J、 生物。化学。2747907-7912。https://doi.org/10.1074/jbc.274.12.7907(1999年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sandona, D., Gastaldello, S., Martinello, T. & Betto, R. Characterization of the ATP-hydrolysing activity of alpha-sarcoglycan. Biochem. J. 381, 105–112. https://doi.org/10.1042/BJ20031644 (2004).Article

Sandona,D.,Gastaldello,S.,Martinello,T。&Betto,R。α-糖聚糖ATP水解活性的表征。生物化学。J、 381105-112。https://doi.org/10.1042/BJ20031644(2004年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stenina, O. I., Topol, E. J. & Plow, E. F. Thrombospondins, their polymorphisms, and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 27, 1886–1894. https://doi.org/10.1161/ATVBAHA.107.141713 (2007).Article

Stenina,O.I.,Topol,E.J。&Plow,E.F。血小板反应蛋白,它们的多态性和心血管疾病。动脉硬化。血栓。Vasc。生物学271886-1894。https://doi.org/10.1161/ATVBAHA.107.141713(2007年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kirk, J. A. & Cingolani, O. H. Thrombospondins in the transition from myocardial infarction to heart failure. J. Mol. Cell Cardiol. 90, 102–110. https://doi.org/10.1016/j.yjmcc.2015.12.009 (2016).Article

Kirk,J.A。&Cingolani,O.H。血小板反应蛋白在从心肌梗塞到心力衰竭的转变中。J、 分子细胞心脏病学。90102-110。https://doi.org/10.1016/j.yjmcc.2015.12.009(2016年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schips, T. G. et al. Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability. Nat. Commun. 10, 76. https://doi.org/10.1038/s41467-018-08026-8 (2019).Article

Schips,T.G.等人,血小板反应蛋白-3通过细胞内整合素抑制和肌膜不稳定性增强损伤诱导的心肌病。国家公社。10,76。https://doi.org/10.1038/s41467-018-08026-8(2019年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Frolova, E. G. et al. Thrombospondin-4 regulates vascular inflammation and atherogenesis. Circ. Res. 107, 1313–1325. https://doi.org/10.1161/CIRCRESAHA.110.232371 (2010).Article

血小板反应蛋白-4调节血管炎症和动脉粥样硬化形成。保监会。第1071313-1325号决议。https://doi.org/10.1161/CIRCRESAHA.110.232371(2010年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gawlik, K., Miyagoe-Suzuki, Y., Ekblom, P., Takeda, S. & Durbeej, M. Laminin alpha1 chain reduces muscular dystrophy in laminin alpha2 chain deficient mice. Hum. Mol. Genet. 13, 1775–1784. https://doi.org/10.1093/hmg/ddh190 (2004).Article

Gawlik,K.,Miyagoe-Suzuki,Y.,Ekblom,P.,Takeda,S。&Durbeej,M。层粘连蛋白α1链减少层粘连蛋白α2链缺陷小鼠的肌营养不良。嗯,摩尔·吉内特。131775年至1784年。https://doi.org/10.1093/hmg/ddh190(2004年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gawlik, K. I. et al. Laminin alpha1 chain mediated reduction of laminin alpha2 chain deficient muscular dystrophy involves integrin alpha7beta1 and dystroglycan. FEBS Lett. 580, 1759–1765. https://doi.org/10.1016/j.febslet.2006.02.027 (2006).Article

层粘连蛋白α1链介导的层粘连蛋白α2链缺陷型肌营养不良症的减少涉及整合素α7beta1和肌营养不良蛋白聚糖。FEBS Lett公司。5801759年至1765年。https://doi.org/10.1016/j.febslet.2006.02.027(2006年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by the Swedish Research Council, Region Skåne, the Crafoord Foundation, Greta and Johan Kock Foundation and Österlund Foundation. We thank Dr Catarina Rippe and Dr Karl Swärd for Thbs4 KO mice and Dr Oksana Zaushitsyna for technical assistance.

下载参考文献致谢这项工作得到了瑞典研究委员会,Skåne地区,Crafoord基金会,Greta和Johan Kock基金会以及Österlund基金会的支持。我们感谢Catarina Rippe博士和Karl Swärd博士提供的Thbs4 KO小鼠和Oksana Zaushitsyna博士的技术援助。

We also would like to thank Dr Johan Holmberg and Dr Francesca Sciandra for critical reading of the manuscript. KIG would like to thank Dr Madeleine Durbeej for support.FundingOpen access funding provided by Lund University.Author informationAuthors and AffiliationsMuscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, SwedenPaula Zarén & Kinga I.

我们还要感谢Johan Holmberg博士和Francesca Sciandra博士对稿件的批判性阅读。KIG要感谢Madeleine Durbeej博士的支持。基金隆德大学提供的开放获取资金。作者信息作者和附属机构隆德大学实验医学系生物学系,BMC C122184,隆德,斯维登保拉·扎伦和金加I。

GawlikAuthorsPaula ZarénView author publicationsYou can also search for this author in.

GawlikauthorspaulazarénView作者出版物您也可以在中搜索该作者。

PubMed Google ScholarKinga I. GawlikView author publicationsYou can also search for this author in

PubMed Google ScholarKinga I.GawlikView作者出版物您也可以在

PubMed Google ScholarContributionsKIG conceived and designed the study. PZ and KIG performed experiments, analyzed the data, generated figures, and wrote the manuscript. The authors approved the submitted version of the manuscript.Corresponding authorCorrespondence to

PubMed Google ScholarContributionsKIG构思并设计了这项研究。PZ和KIG进行了实验,分析了数据,生成了数字,并撰写了手稿。作者批准了稿件的提交版本。对应作者对应

Kinga I. Gawlik.Ethics declarations

金加·I·高利克。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Figures.Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充数字。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleZarén, P., Gawlik, K.I. Thrombospondin-4 deletion does not exacerbate muscular dystrophy in β-sarcoglycan-deficient and laminin α2 chain-deficient mice.

转载和许可本文引用本文Zarén,P.,Gawlik,K.I。血小板反应蛋白-4缺失不会加剧β-糖聚糖缺陷和层粘连蛋白α2链缺陷小鼠的肌营养不良。

Sci Rep 14, 14757 (2024). https://doi.org/10.1038/s41598-024-65473-8Download citationReceived: 26 February 2024Accepted: 20 June 2024Published: 26 June 2024DOI: https://doi.org/10.1038/s41598-024-65473-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1414757(2024)。https://doi.org/10.1038/s41598-024-65473-8Download引文接收日期:2024年2月26日接受日期:2024年6月20日发布日期:2024年6月26日OI:https://doi.org/10.1038/s41598-024-65473-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。