商务合作
动脉网APP
可切换为仅中文
AbstractMicrobial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos.
摘要利用酰基辅酶A酰化芳香胺和肼的微生物NAT酶因其在异生素代谢中的作用而得到了很好的研究。一些同源物也与次级代谢有关,但NAT酶的这种功能尚不为人所知。对于这项比较研究,我们调查了测序的微生物基因组,以更新正式注释的NAT基因列表,添加了4000多个新序列(主要是细菌,但也有古细菌,真菌和原生生物),并描绘了NAT在微生物中的广泛但不普遍的分布。
Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field.
NAT序列在微生物基因簇内的定位并不罕见,这种关联在涉及次级代谢的所有主要类型的生物合成基因簇(BGC)中都很明显。。
We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function..
我们还表明,NAT序列可能与可能参与水平基因转移的细菌质粒相关。结合起来,我们的计算预测和MIBiG文献发现揭示了微生物NAT基因的非凡功能多样化,促使人们进一步研究它们在具有尚未表征功能的预测BGC中的作用。。
IntroductionIn the course of evolutionary time, microorganisms have developed immense metabolic potential and adaptability, and their capabilities have attracted scientific interest for useful biotechnological applications. Through xenobiotic metabolism, bacteria and fungi can detoxify, degrade or biotransform exogenous compounds of natural or synthetic origin, surviving and even thriving in adverse chemical environments that would be toxic to more complex organisms1.
引言在进化过程中,微生物具有巨大的代谢潜力和适应性,其能力吸引了有用的生物技术应用的科学兴趣。通过异生素代谢,细菌和真菌可以解毒,降解或生物转化天然或合成来源的外源化合物,在对更复杂的生物有毒的不利化学环境中生存甚至繁衍1。
Microbial xenobiotic metabolism involves a plethora of enzyme activities, and arylamine N-acetyltransferase (NAT, E.C. 2.3.1.5) is one of them2. Microbial NAT enzymes catalyze the N-acetylation of aromatic amines, leading to detoxification of many harmful by-products of industrial activity and farming (e.g.
微生物异生素代谢涉及过多的酶活性,芳胺N-乙酰转移酶(NAT,E.C.2.3.1.5)是其中之一。微生物NAT酶催化芳香胺的N-乙酰化,导致工业活动和农业的许多有害副产物的解毒(例如。
pharmaceuticals, dyes, pesticides, etc.)3,4,5,6,7,8. However, they can also bioactivate procarcinogenic N-hydroxyarylamines via O-acetylation (E.C. 2.3.1.118), an activity exploited by Ames and colleagues in the popular Salmonella mutagenicity test9. The study of Salmonella NAT was indeed groundbreaking, in that it additionally revealed the basic structure and catalytic mechanism of the enzyme family, which employs a cysteine-histidine-aspartate (Cys-His-Asp) protease-like catalytic triad to transfer an acetyl group from donor acetyl coenzyme A (CoA) to the amino group of the acceptor aromatic amine10,11.An unexpected discovery was reported for the (AMYMS)NAT3 (alias symbol RifF, GenBank ID: AFO74156.1) homologue of the actinobacterium Amycolatopsis mediterranei str.
药物,染料,农药等)3,4,5,6,7,8。然而,它们也可以通过O-乙酰化(E.C.2.3.1.118)对致癌的N-羟基芳胺进行生物活化,这是Ames及其同事在流行的沙门氏菌致突变性试验中利用的一种活性9。沙门氏菌NAT的研究确实是开创性的,因为它还揭示了酶家族的基本结构和催化机制,该酶家族使用半胱氨酸组氨酸天冬氨酸(Cys-His-Asp)蛋白酶样催化三联体将乙酰基从供体乙酰辅酶a(CoA)转移到受体芳香胺的氨基10,11。据报道,(AMYMS)NAT3(别名符号RifF,GenBank ID:AFO74156.1)同源物的意外发现了放线菌Amycolatopsis mediterranei str。
S699, implicating NAT not only in xenobiotic, but also in secondary metabolism. That particular homologue, which acts as an amide synthase, is encoded by a gene located at the end of the core biosynthetic gene cluster (BGC) driving producti.
S699,不仅涉及异生素,还涉及次级代谢。作为酰胺合酶的特定同源物由位于驱动产物I的核心生物合成基因簇(BGC)末端的基因编码。
Data availability
数据可用性
All data generated or analysed during this study are included in this published article (and its Supplementary Information files).
本研究期间生成或分析的所有数据均包含在本文(及其补充信息文件)中。
Abbreviations3,4-AHBA:
缩写3,4-AHBA:
3-Amino-4-hydroxybenzoic acid
3-氨基-4-羟基苯甲酸
3,5-AHBA:
3.5 AHBA:
3-Amino-5-hydroxybenzoic acid
3-氨基-5-羟基苯甲酸
antiSMASH:
抗SMASH:
Secondary metabolite analysis shell software
次生代谢物分析shell软件
BGC:
BGC:
Biosynthetic gene cluster
生物合成基因簇
CoA:
辅酶A:
Coenzyme A
辅酶A
EFI-EST:
EFI-EST:
EFI-enzyme similarity tool
EFI酶相似性工具
HGT:
HGT:
Horizontal gene transfer
水平基因转移
MIBiG:
MIBiG:
Minimum information about a biosynthetic gene cluster
关于生物合成基因簇的最小信息
NRPS:
NRPS:
Non-ribosomal peptide synthase
非核糖体肽合酶
ORF:
开放阅读框:
Open reading frame
打开阅读框
PKS:
PKS:
Polyketide synthase
聚酮合酶
SSN:
SSN:
Sequence similarity network
序列相似性网络
Referencesvan der Meer, J. R., de Vos, W. M., Harayama, S. & Zehnder, A. J. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56, 677–694 (1992).PubMed
参考文献Van der Meer,J.R.,de Vos,W.M.,Harayama,S。&Zehnder,A.J。遗传适应异生化合物的分子机制。微生物。修订版56677-694(1992)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Boukouvala, S. & Fakis, G. Arylamine N-acetyltransferases: What we learn from genes and genomes. Drug Metab. Rev. 37, 511–564 (2005).CAS
Boukouvala,S。&Fakis,G。芳胺N-乙酰转移酶:我们从基因和基因组中学到什么。药物代谢。第37511-564版(2005年)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Boukouvala, S. & Glenn, A. E. Arylamine N-acetyltransferases in eukaryotic microorganisms. In Arylamine N-acetyltransferases in Health and Disease (eds Laurieri, N. & Sim, E.) 255–281 (World Scientific, 2018). https://doi.org/10.1142/9789813232013_0010.Chapter
Boukouvala,S。&Glenn,A。E。真核微生物中的芳胺N-乙酰转移酶。健康和疾病中的芳胺N-乙酰转移酶(eds Laurieri,N。&Sim,E。)255-281(World Scientific,2018)。https://doi.org/10.1142/9789813232013_0010.Chapter
Google Scholar
谷歌学者
Garefalaki, V. et al. The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J. Microbiol. Biotechnol. 35, 174 (2019).PubMed
Garefalaki,V。等人。Tsukamurella paurometabola放线菌具有功能不同的芳胺N-乙酰转移酶(NAT)同源物。世界J.微生物。生物技术。35174(2019)。PubMed出版社
Google Scholar
谷歌学者
Garefalaki, V. et al. Comparative investigation of 15 xenobiotic-metabolizing N-acetyltransferase (NAT) homologs from bacteria. Appl. Environ. Microbiol. 87, e0081921 (2021).PubMed
Garefalaki,V。等人。细菌中15种异生素代谢N-乙酰转移酶(NAT)同源物的比较研究。应用。环境。微生物。87,e0081921(2021)。PubMed出版社
Google Scholar
谷歌学者
Karagianni, E. P. et al. Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family. Sci. Rep. 5, 12900 (2015).ADS
。科学。代表512900(2015)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martins, M. et al. An acetyltransferase conferring tolerance to toxic aromatic amine chemicals: Molecular and functional studies. J. Biol. Chem. 284, 18726–18733 (2009).CAS
Martins,M.等人。赋予对有毒芳香胺化学物质耐受性的乙酰转移酶:分子和功能研究。J、 生物。化学。28418726–18733(2009)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rodrigues-Lima, F. et al. Cloning, functional expression and characterization of Mesorhizobium loti arylamine N-acetyltransferases: Rhizobial symbiosis supplies leguminous plants with the xenobiotic N-acetylation pathway. Mol. Microbiol. 60, 505–512 (2006).CAS
。分子微生物。60505-512(2006)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ames, B. N., Gurney, E. G., Miller, J. A. & Bartsch, H. Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc. Natl. Acad. Sci. U. S. A. 69, 3128–3132 (1972).ADS
Ames,B.N.,Gurney,E.G.,Miller,J.A。&Bartsch,H。致癌物作为移码诱变剂:2-乙酰氨基芴和其他芳香胺致癌物的代谢物和衍生物。程序。纳特尔。阿卡德。科学。U、 《美国判例汇编》第693128-3132页(1972年)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Watanabe, M., Sofuni, T. & Nohmi, T. Involvement of Cys69 residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for S. typhimurium and higher organisms.
Watanabe,M.,Sofuni,T。&Nohmi,T。Cys69残基参与鼠伤寒沙门氏菌N-羟基芳胺O-乙酰转移酶的催化机制。氨基酸水平的序列相似性表明乙酰转移酶对鼠伤寒沙门氏菌和高等生物的共同催化机制。
J. Biol. Chem. 267, 8429–8436 (1992).CAS .
J.生物学。化学。267, 8429-8436 (1992).CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Sinclair, J. C., Sandy, J., Delgoda, R., Sim, E. & Noble, M. E. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat. Struct. Biol. 7, 560–564 (2000).CAS
Sinclair,J.C.,Sandy,J.,Delgoda,R.,Sim,E。&Noble,M.E。芳胺N-乙酰转移酶的结构揭示了催化三联体。自然结构。生物学7560-564(2000)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stratmann, A. et al. Intermediates of rifamycin polyketide synthase produced by an Amycolatopsis mediterranei mutant with inactivated rifF gene. Microbiology 145(Pt 1), 3365–3375 (1999).CAS
Stratmann,A。等人。由具有失活的rifF基因的地中海拟青霉突变体产生的利福霉素聚酮合酶的中间体。微生物学145(Pt 1),3365-3375(1999)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
August, P. R. et al. Biosynthesis of the ansamycin antibiotic rifamycin: Deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem. Biol. 5, 69–79 (1998).CAS
August,P.R.等人。安沙霉素抗生素利福霉素的生物合成:从地中海拟青霉S699的rif生物合成基因簇的分子分析中推断。化学。生物学5,69-79(1998)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tyc, O., Song, C., Dickschat, J. S., Vos, M. & Garbeva, P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280–292 (2017).CAS
。25280-292(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Keller, N. P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2019).CAS
Keller,N.P。真菌次级代谢:调节,功能和药物发现。自然修订版微生物学。17167-180(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).CAS
Newman,D.J.&Cragg,G.M。1981年至2014年天然产物作为新药来源。J、 《自然产品》79629-661(2016)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Keller, N. P. Translating biosynthetic gene clusters into fungal armor and weaponry. Nat. Chem. Biol. 11, 671–677 (2015).CAS
Keller,N.P。将生物合成基因簇转化为真菌装甲和武器。自然化学。生物学11671-677(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Glenn, A. E. et al. Two horizontally transferred xenobiotic resistance gene clusters associated with detoxification of benzoxazolinones by fusarium species. PLoS One 11, e0147486 (2016).PubMed
Glenn,A.E.等人。两个水平转移的异生素抗性基因簇与镰刀菌对苯并恶唑啉酮的解毒作用有关。PLoS One 11,e0147486(2016)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jensen, P. R. Natural products and the gene cluster revolution. Trends Microbiol. 24, 968–977 (2016).CAS
Jensen,P.R。天然产物与基因簇革命。趋势微生物。24968-977(2016)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Anderton, M. C. et al. Characterization of the putative operon containing arylamine N-acetyltransferase (nat) in Mycobacterium bovis BCG. Mol. Microbiol. 59, 181–192 (2006).CAS
Anderton,M.C.等人。牛分枝杆菌BCG中假定的含操纵子的芳胺N-乙酰转移酶(nat)的表征。分子微生物。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Van der Geize, R. et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl. Acad. Sci. U. S. A. 104, 1947–1952 (2007).ADS
Van der Geize,R。等人。编码土壤放线菌中胆固醇分解代谢的基因簇提供了对巨噬细胞中结核分枝杆菌存活的深入了解。程序。纳特尔。阿卡德。科学。U、 S.A.1041947–1952(2007)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Evangelopoulos, D. & Bhakta, S. Arylamine N-acetyltransferase in mycobacteria. In Arylamine N-acetyltransferases in Health and Disease (eds Laurieri, N. & Sim, E.) 303–324 (World Scientific, 2018). https://doi.org/10.1142/9789813232013_0012.Chapter
Evangelopoulos,D。&Bhakta,S。分枝杆菌中的芳胺N-乙酰转移酶。在健康和疾病中的芳胺N-乙酰转移酶中(eds Laurieri,N。&Sim,E。)303-324(World Scientific,2018)。https://doi.org/10.1142/9789813232013_0012.Chapter
Google Scholar
谷歌学者
Glenn, A. E. & Bacon, C. W. FDB2 encodes a member of the arylamine N-acetyltransferase family and is necessary for biotransformation of benzoxazolinones by Fusarium verticillioides. J. Appl. Microbiol. 107, 657–671 (2009).CAS
Glenn,A.E。&Bacon,C.W。FDB2编码芳胺N-乙酰转移酶家族的成员,是轮枝镰刀菌生物转化苯并恶唑啉酮所必需的。J、 应用。微生物。107657-671(2009)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009).CAS
Hertweck,C。聚酮化合物多样性的生物合成逻辑。。化学。国际英语。484688-4716(2009)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Walsh, C. T. & Fischbach, M. A. Natural products version 2.0: Connecting genes to molecules. J. Am. Chem. Soc. 132, 2469–2493 (2010).CAS
Walsh,C.T。&Fischbach,M.A。天然产物2.0版:将基因连接到分子。J、 美国化学。Soc.1322469–2493(2010)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kawamura, A. et al. Eukaryotic arylamine N-acetyltransferase. Investigation of substrate specificity by high-throughput screening. Biochem. Pharmacol. 69, 347–359 (2005).CAS
Kawamura,A。等人。真核芳胺N-乙酰转移酶。通过高通量筛选研究底物特异性。生物化学。药理学。69347-359(2005)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lack, N. A. et al. Temperature stability of proteins essential for the intracellular survival of Mycobacterium tuberculosis. Biochem. J. 418, 369–378 (2009).CAS
Lack,N.A.等人。结核分枝杆菌细胞内存活所必需的蛋白质的温度稳定性。生物化学。J、 418369-378(2009)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tsirka, T. et al. Comparative analysis of xenobiotic metabolising N-acetyltransferases from ten non-human primates as in vitro models of human homologues. Sci. Rep. 8, 9759 (2018).ADS
Tsirka,T。等人。来自十种非人灵长类动物的异生素代谢N-乙酰转移酶的比较分析,作为人类同源物的体外模型。科学。Rep.89759(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Karagianni, E.-P. et al. Fusarium verticillioides NAT1 (FDB2) N-malonyltransferase is structurally, functionally and phylogenetically distinct from its N-acetyltransferase (NAT) homologues. FEBS J. 290, 2412–2436 (2023).CAS
Karagianni,E.-P。等人。轮枝镰刀菌NAT1(FDB2)N-丙二酰转移酶在结构,功能和系统发育上不同于其N-乙酰转移酶(NAT)同源物。FEBS J.2902412–2436(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cronan, J. E. & Thomas, J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol. 459, 395–433 (2009).CAS
Cronan,J.E。&Thomas,J。细菌脂肪酸合成及其与聚酮合成途径的关系。方法酶法。459395-433(2009)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ziemert, N. et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl. Acad. Sci. U. S. A. 111, E1130–E1139 (2014).CAS
海洋放线菌Salinispora属次生代谢的多样性和进化。程序。纳特尔。阿卡德。科学。U、 《美国判例汇编》111,E1130–E1139(2014)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vagena, E., Fakis, G. & Boukouvala, S. Arylamine N-acetyltransferases in prokaryotic and eukaryotic genomes: a survey of public databases. Curr. Drug Metab. 9, 628–660 (2008).CAS
Vagena,E.,Fakis,G。&Boukouvala,S。原核和真核基因组中的芳胺N-乙酰转移酶:公共数据库的调查。货币。药物代谢。9628-660(2008)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Glenn, A. E., Karagianni, E. P., Ulndreaj, A. & Boukouvala, S. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family. FEBS Lett. 584, 3158–3164 (2010).CAS
Glenn,A.E.,Karagianni,E.P.,Ulndreaj,A。&Boukouvala,S。异生素代谢芳胺N-乙酰转移酶家族的比较基因组学和系统发育研究。FEBS Lett公司。5843158–3164(2010)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Medema, M. H. et al. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).CAS
Medema,M.H.等人,《antiSMASH:细菌和真菌基因组序列中次级代谢产物生物合成基因簇的快速鉴定,注释和分析》。核酸研究39,W339–W346(2011)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, G., Chater, K. F., Chandra, G., Niu, G. & Tan, H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol. Mol. Biol. Rev. 77, 112–143 (2013).CAS
Liu,G.,Chater,K.F.,Chandra,G.,Niu,G。&Tan,H。链霉菌中抗生素生物合成的分子调控。微生物。分子生物学。修订版77112–143(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bérdy, J. Bioactive microbial metabolites. J. Antibiot. (Tokyo) 58, 1–26 (2005).PubMed
Bérdy,J。生物活性微生物代谢物。J、 抗生素。(东京)58,1–26(2005)。PubMed出版社
Google Scholar
谷歌学者
Floss, H. G. & Yu, T. W. Lessons from the rifamycin biosynthetic gene cluster. Curr. Opin. Chem. Biol. 3, 592–597 (1999).CAS
Floss,H.G。&Yu,T.W。利福霉素生物合成基因簇的教训。货币。奥平。化学。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kubiak, X. et al. Xenobiotic-metabolizing enzymes in Bacillus anthracis: Molecular and functional analysis of a truncated arylamine N-acetyltransferase isozyme. Br. J. Pharmacol. 174, 2174–2182 (2017).CAS
Kubiak,X。等人。炭疽芽孢杆菌中的异生素代谢酶:截短的芳胺N-乙酰转移酶同工酶的分子和功能分析。。1742174-2182(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kubiak, X. et al. Structural and biochemical characterization of an active arylamine N-acetyltransferase possessing a non-canonical Cys-His-Glu catalytic triad. J. Biol. Chem. 288, 22493–22505 (2013).CAS
Kubiak,X。等人。具有非经典Cys-His-Glu催化三联体的活性芳胺N-乙酰转移酶的结构和生化表征。J、 生物。化学。28822493–22505(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pluvinage, B. et al. Cloning and molecular characterization of three arylamine N-acetyltransferase genes from Bacillus anthracis: Identification of unusual enzymatic properties and their contribution to sulfamethoxazole resistance. Biochemistry 46, 7069–7078 (2007).CAS
Pluvinage,B.等人。炭疽芽孢杆菌三个芳胺N-乙酰转移酶基因的克隆和分子表征:异常酶性质的鉴定及其对磺胺甲恶唑抗性的贡献。生物化学467069-7078(2007)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mushtaq, A., Payton, M. & Sim, E. The COOH terminus of arylamine N-acetyltransferase from Salmonella typhimurium controls enzymic activity. J. Biol. Chem. 277, 12175–12181 (2002).CAS
Mushtaq,A.,Payton,M。&Sim,E。来自鼠伤寒沙门氏菌的芳胺N-乙酰转移酶的COOH末端控制酶活性。J、 生物。化学。27712175-12181(2002)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sinclair, J. & Sim, E. A fragment consisting of the first 204 amino-terminal amino acids of human arylamine N-acetyltransferase one (NAT1) and the first transacetylation step of catalysis. Biochem. Pharmacol. 53, 11–16 (1997).CAS
Sinclair,J。&Sim,E。由人芳胺N-乙酰转移酶一(NAT1)的前204个氨基末端氨基酸和催化的第一个转乙酰化步骤组成的片段。生物化学。药理学。53,11-16(1997)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Helfrich, E. J. N., Lin, G.-M., Voigt, C. A. & Clardy, J. Bacterial terpene biosynthesis: Challenges and opportunities for pathway engineering. Beilstein J. Org. Chem. 15, 2889–2906 (2019).CAS
Helfrich,E.J.N.,Lin,G.-M.,Voigt,C.A。&Clardy,J。细菌萜烯生物合成:途径工程的挑战和机遇。Beilstein J.Org。Chem。152889-2906(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sim, E., Abuhammad, A. & Ryan, A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br. J. Pharmacol. 171, 2705–2725 (2014).CAS
Sim,E.,Abuhammad,A。&Ryan,A。芳胺N-乙酰转移酶:从药物代谢和药物遗传学到药物发现。。1712705-2725(2014)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Conway, L. P. et al. Unexpected acetylation of endogenous aliphatic amines by arylamine N-acetyltransferase NAT2. Angew. Chem. Int. Ed. Engl. 59, 14342–14346 (2020).CAS
Conway,L.P.等人。芳胺N-乙酰转移酶NAT2对内源性脂肪胺的意外乙酰化。。化学。国际英语。5914342-14346(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nakazawa, T. et al. Overexpressing transcriptional regulator in Aspergillus oryzae activates a silent biosynthetic pathway to produce a novel polyketide. Chembiochem 13, 855–861 (2012).CAS
Nakazawa,T。等人。在米曲霉中过表达转录调节因子激活沉默生物合成途径以产生新型聚酮化合物。化学生物化学13855-861(2012)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stanke, M. & Morgenstern, B. AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).CAS
Stanke,M。&Morgenstern,B。AUGUSTUS:真核生物基因预测的网络服务器,允许用户定义的约束。核酸研究33,W465–W467(2005)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Galata, V., Fehlmann, T., Backes, C. & Keller, A. PLSDB: A resource of complete bacterial plasmids. Nucleic Acids Res. 47, D195–D202 (2019).CAS
Galata,V.,Fehlmann,T.,Backes,C。&Keller,A。PLSDB:完整细菌质粒的资源。核酸研究47,D195-D202(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).CAS
Frost,L.S.,Leplae,R.,Summers,A.O。和Toussaint,A。移动遗传元素:开源进化的代理人。自然修订版微生物学。3722-732(2005)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ruiz, B. et al. Production of microbial secondary metabolites: Regulation by the carbon source. Crit. Rev. Microbiol. 36, 146–167 (2010).CAS
Ruiz,B.等人。微生物次级代谢产物的产生:碳源的调节。暴击。微生物修订版。36146-167(2010)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Top, E. M. & Springael, D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr. Opin. Biotechnol. 14, 262–269 (2003).CAS
Top,E.M。&Springael,D。移动遗传元素在细菌适应异生有机化合物中的作用。货币。奥平。生物技术。14262-269(2003)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sohng, J. K., Oh, T. J., Lee, J. J. & Kim, C. G. Identification of a gene cluster of biosynthetic genes of rubradirin substructures in S. achromogenes var. rubradiris NRRL3061. Mol. Cells 7, 674–681 (1997).CAS
Sohng,J.K.,Oh,T.J.,Lee,J.J。&Kim,C.G。鉴定S.achromogenes var.rubradris NRRL3061中rubradrin亚结构生物合成基因的基因簇。分子细胞7674-681(1997)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Robinson, L. J., Verrett, J. N., Sorout, N. & Stavrinides, J. A broad-spectrum antibacterial natural product from the cystic fibrosis isolate, Pantoea agglomerans Tx10. Microbiol. Res. 237, 126479 (2020).CAS
Robinson,L.J.,Verrett,J.N.,Sorout,N。&Stavrinides,J。一种来自囊性纤维化分离株Pantoea aglomerans Tx10的广谱抗菌天然产物。微生物。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schupp, T., Toupet, C., Engel, N. & Goff, S. Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei. FEMS Microbiol. Lett. 159, 201–207 (1998).CAS
Schupp,T.,Toupet,C.,Engel,N。&Goff,S。来自Amycolatopsis mediterranei的推定利福霉素聚酮合酶基因簇的克隆和序列分析。FEMS微生物。利特。159201-207(1998)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pompeo, F., Mushtaq, A. & Sim, E. Expression and purification of the rifamycin amide synthase, RifF, an enzyme homologous to the prokaryotic arylamine N-acetyltransferases. Protein Expr. Purif. 24, 138–151 (2002).CAS
Pompeo,F.,Mushtaq,A。&Sim,E。利福霉素酰胺合酶RifF的表达和纯化,RifF是一种与原核芳胺N-乙酰转移酶同源的酶。蛋白质表达。普里夫。24138-151(2002)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Terlouw, B. R. et al. MIBiG 3.0: A community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603–D610 (2023).CAS
Terlouw,B.R.等人,《MIBiG 3.0:一项由社区驱动的注释实验验证的生物合成基因簇的努力》。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kim, T. K., Hewavitharana, A. K., Shaw, P. N. & Fuerst, J. A. Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl. Environ. Microbiol. 72, 2118–2125 (2006).ADS
Kim,T.K.,Hewavitharana,A.K.,Shaw,P.N。和Fuerst,J.A。通过系统发育预测在海绵放线菌中发现了利福霉素抗生素的新来源。应用。环境。微生物。722118-2125(2006)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wilson, M. C., Gulder, T. A. M., Mahmud, T. & Moore, B. S. Shared biosynthesis of the saliniketals and rifamycins in Salinispora arenicola is controlled by the sare1259-encoded cytochrome P450. J. Am. Chem. Soc. 132, 12757–12765 (2010).CAS
Wilson,M.C.,Gulder,T.A.M.,Mahmud,T。&Moore,B.S。Salinispora arenicola中saliniketals和利福霉素的共享生物合成受sare1259编码的细胞色素P450控制。J、 美国化学。Soc.13212757–12765(2010)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Floss, H. G., Yu, T.-W. & Arakawa, K. The biosynthesis of 3-amino-5-hydroxybenzoic acid (AHBA), the precursor of mC7N units in ansamycin and mitomycin antibiotics: A review. J. Antibiot. (Tokyo) 64, 35–44 (2011).CAS
Floss,H.G.,Yu,T.-W.&Arakawa,K。安萨霉素和丝裂霉素抗生素中mC7N单元前体3-氨基-5-羟基苯甲酸(AHBA)的生物合成:综述。J、 抗生素。(东京)64,35-44(2011)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kang, Q., Shen, Y. & Bai, L. Biosynthesis of 3,5-AHBA-derived natural products. Nat. Prod. Rep. 29, 243–263 (2012).CAS
Kang,Q.,Shen,Y。&Bai,L。3,5-AHBA衍生天然产物的生物合成。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Westwood, I. M. & Sim, E. Kinetic characterisation of arylamine N-acetyltransferase from Pseudomonas aeruginosa. BMC Biochem. 8, 3 (2007).PubMed
Westwood,I.M。&Sim,E。铜绿假单胞菌芳胺N-乙酰转移酶的动力学表征。BMC生物化学。8,3(2007)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Eichner, S. et al. Broad substrate specificity of the amide synthase in S. hygroscopicus—new 20-membered macrolactones derived from geldanamycin. J. Am. Chem. Soc. 134, 1673–1679 (2012).CAS
Eichner,S。等人。吸水链球菌酰胺合酶的广泛底物特异性来自格尔德霉素的新的20元大内酯。J、 美国化学。Soc.1341673–1679(2012)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, T. W. et al. Direct evidence that the rifamycin polyketide synthase assembles polyketide chains processively. Proc. Natl. Acad. Sci. U. S. A. 96, 9051–9056 (1999).ADS
Yu,T.W.等人直接证明利福霉素聚酮合酶在过程中组装聚酮链。程序。纳特尔。阿卡德。科学。U、 《美国判例汇编》969051-9056(1999)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, Y., Kang, Q., Shen, Y., Su, W. & Bai, L. Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS Mol. Biosyst. 7, 2459–2469 (2011).CAS
Wu,Y.,Kang,Q.,Shen,Y.,Su,W。&Bai,L。链霉菌CS Mol.Biosyst中萘霉素生物合成基因簇的克隆和功能分析。72459-2469(2011)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xu, Z. et al. Biosynthetic code for divergolide assembly in a bacterial mangrove endophyte. Chembiochem 15, 1274–1279 (2014).CAS
Xu,Z.等人。细菌红树林内生菌中divergolide组装的生物合成代码。化学生物化学151274-1279(2014)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, S. et al. Biosynthesis of hygrocins, antitumor naphthoquinone ansamycins produced by Streptomyces sp. LZ35. Chembiochem 15, 94–102 (2014).ADS
Li,S.等人。由链霉菌LZ35产生的潮霉素,抗肿瘤萘醌安沙霉素的生物合成。化学生物化学15,94-102(2014)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Castro, J. F. et al. Identification and heterologous expression of the chaxamycin biosynthesis gene cluster from Streptomyces leeuwenhoekii. Appl. Environ. Microbiol. 81, 5820–5831 (2015).ADS
Castro,J.F.等人。leeuwenhoekii链霉菌chaxamycin生物合成基因簇的鉴定和异源表达。应用。环境。微生物。815820-5831(2015)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiao, Y. S. et al. Rifamorpholines A-E, potential antibiotics from locust-associated actinobacteria Amycolatopsis sp. Hca4. Org. Biomol. Chem. 15, 3909–3916 (2017).CAS
Xiao,Y。S。等人。利福吗啉A-E,蝗虫相关放线菌Amycolatopsis sp。Hca4的潜在抗生素。生物组织。化学。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, Y. et al. Functional analysis of cytochrome P450s involved in Streptovaricin biosynthesis and generation of anti-MRSA analogues. ACS Chem. Biol. 12, 2589–2597 (2017).CAS
Liu,Y。等人。参与链霉素生物合成和抗MRSA类似物产生的细胞色素P450的功能分析。ACS化学。生物学122589-2597(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Peek, J. et al. Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nat. Commun. 9, 4147 (2018).ADS
Peek,J。等人。利福霉素同系物康乐霉素通过独特的机制对利福平耐药细菌具有活性。国家公社。94147(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, C.-G. et al. Biosynthesis of rubradirin as an ansamycin antibiotic from Streptomyces achromogenes var. rubradiris NRRL3061. Arch. Microbiol. 189, 463–473 (2008).CAS
Kim,C.-G.等人。从无色链霉菌(Streptomyces achromogenes var.rubradiris)NRRL3061中生物合成红曲霉素作为安沙霉素抗生素。拱门。微生物。189463-473(2008)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yu, T.-W. et al. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc. Natl. Acad. Sci. U. S. A. 99, 7968–7973 (2002).ADS
Yu,T.-W.等人。来自Actinosynnema pretiosum的美登素类抗肿瘤剂安萨米霉素的生物合成基因簇。程序。纳特尔。阿卡德。科学。U、 S.A.997968–7973(2002)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ning, X., Wang, X., Wu, Y., Kang, Q. & Bai, L. Identification and engineering of post-PKS modification bottlenecks for ansamitocin P-3 titer improvement in Actinosynnema pretiosum subsp. pretiosum ATCC 31280. Biotechnol. J. 12, 1700484 (2017).
Ning,X.,Wang,X.,Wu,Y.,Kang,Q。&Bai,L。在Actinosynnema pretiosum subsp中,安萨米霉素P-3滴度提高的PKS后修饰瓶颈的鉴定和工程化。pretiosum ATCC 31280。生物技术。J、 121700484(2017)。
Google Scholar
谷歌学者
Zhang, M.-Q. et al. Optimizing natural products by biosynthetic engineering: Discovery of nonquinone Hsp90 inhibitors. J. Med. Chem. 51, 5494–5497 (2008).CAS
Zhang,M.-Q.等人。通过生物合成工程优化天然产物:非醌Hsp90抑制剂的发现。J、 医学化学。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rascher, A. et al. Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol. Lett. 218, 223–230 (2003).CAS
Rascher,A.等人。吸水链霉菌NRRL 3602中格尔德霉素产生基因簇的克隆和表征。FEMS微生物。利特。218223-230(2003)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shin, J.-C. et al. Characterization of tailoring genes involved in the modification of geldanamycin polyketide in Streptomyces hygroscopicus JCM4427. J. Microbiol. Biotechnol. 18, 1101–1108 (2008).CAS
Shin,J.-C.等人。吸水链霉菌JCM4427中格尔德霉素聚酮化合物修饰相关剪裁基因的表征。J、 微生物。生物技术。181101-1108(2008)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
He, W., Lei, J., Liu, Y. & Wang, Y. The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Arch. Microbiol. 189, 501–510 (2008).CAS
He,W.,Lei,J.,Liu,Y。&Wang,Y。LuxR家族成员GdmRI和GdmRII是吸水链霉菌17997中格尔德霉素生物合成的正调节剂。拱门。微生物。189501-510(2008)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, J., Li, W., Wang, H. & Lu, C. Pentaketide ansamycin microansamycins A-I from Micromonospora sp. reveal diverse post-PKS modifications. Org. Lett. 20, 1058–1061 (2018).CAS
来自小单孢菌属的Wang,J.,Li,W.,Wang,H。&Lu,C。Pentaketide ansamycin microansamycins A-I揭示了多种PKS后修饰。组织Lett。201058-1061(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, X., Wu, X. & Shen, Y. Identification of the bacterial maytansinoid gene cluster asc provides insights into the post-PKS modifications of ansacarbamitocin biosynthesis. Org. Lett. 21, 5823–5826 (2019).CAS
Li,X.,Wu,X。&Shen,Y。细菌美登素基因簇asc的鉴定提供了对安沙卡巴霉素生物合成的PKS后修饰的见解。组织Lett。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rui, Z. et al. Biochemical and genetic insights into asukamycin biosynthesis. J. Biol. Chem. 285, 24915–24924 (2010).CAS
Rui,Z.等人。华硕霉素生物合成的生化和遗传学见解。J、 生物。化学。28524915–24924(2010)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Petříčková, K. et al. Biosynthesis of colabomycin E, a new manumycin-family metabolite, involves an unusual chain-length factor. Chembiochem 15, 1334–1345 (2014).PubMed
Petříčková,K.等人。新的manumycin家族代谢物colabomycin E的生物合成涉及一个不寻常的链长因子。化学生物化学151334-1345(2014)。PubMed出版社
Google Scholar
谷歌学者
Dong, L.-B. et al. Biosynthesis of thiocarboxylic acid-containing natural products. Nat. Commun. 9, 2362 (2018).ADS
Dong,L.-B.等人。含硫代羧酸天然产物的生物合成。国家公社。92362(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Smanski, M. J. et al. Dedicated ent-kaurene and ent-atiserene synthases for platensimycin and platencin biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 108, 13498–13503 (2011).ADS
Smanski,M.J.等人专门用于铂霉素和铂霉素生物合成的ent-kaurene和ent-atiserene合酶。程序。纳特尔。阿卡德。科学。U、 S.A.10813498–13503(2011)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zheng, C.-J. et al. PtmC catalyzes the final step of thioplatensimycin, thioplatencin, and thioplatensilin biosynthesis and expands the scope of arylamine N-acetyltransferases. ACS Chem. Biol. 16, 96–105 (2021).ADS
Zheng,C.-J.等人,PtmC催化硫铂霉素,硫铂霉素和硫铂霉素生物合成的最后一步,并扩大了芳胺N-乙酰转移酶的范围。ACS化学。生物学16,96-105(2021)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rodríguez Estévez, M., Myronovskyi, M., Gummerlich, N., Nadmid, S. & Luzhetskyy, A. Heterologous expression of the nybomycin gene cluster from the marine strain Streptomyces albus subsp. chlorinus NRRL B-24108. Mar. Drugs 16, 435 (2018).PubMed
Rodríguez-Estévez,M.,Myronovskyi,M.,Gummerlich,N.,Nadmid,S。&Luzhetskyy,A.来自海洋菌株白色链霉菌亚种的nybomycin基因簇的异源表达。chlorinus NRRL B-24108。3月药物16435(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Braesel, J., Lee, J.-H., Arnould, B., Murphy, B. T. & Eustáquio, A. S. Diazaquinomycin biosynthetic gene clusters from marine and freshwater actinomycetes. J. Nat. Prod. 82, 937–946 (2019).CAS
Braesel,J.,Lee,J.-H.,Arnould,B.,Murphy,B.T。&Eustáquio,A.S。来自海洋和淡水放线菌的二氮喹霉素生物合成基因簇。J、 《自然产品》82937-946(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, X. et al. A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism. Chembiochem 8, 239–248 (2007).CAS
Wu,X。等人。参与初级和次级代谢的糖磷酸环化酶超家族的比较分析。化学生物化学8239-248(2007)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, X., Flatt, P. M., Xu, H. & Mahmud, T. Biosynthetic gene cluster of cetoniacytone A, an unusual aminocyclitol from the endosymbiotic bacterium Actinomyces sp. Lu 9419. Chembiochem 10, 304–314 (2009).CAS
Wu,X.,Flatt,P.M.,Xu,H。&Mahmud,T。cetoniacytone A的生物合成基因簇,一种来自内共生细菌放线菌属Lu 9419的不寻常的氨基环醇。化学生物化学10304-314(2009)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, X. et al. Bioinformatics-guided connection of a biosynthetic gene cluster to the antitumor antibiotic gilvusmycin. Acta Biochim. Biophys. Sin. (Shanghai) 50, 516–518 (2018).CAS
。生物化学学报。生物物理。罪恶。(上海)50516-518(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sandmann, A., Sasse, F. & Müller, R. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem. Biol. 11, 1071–1079 (2004).CAS
Sandmann,A.,Sasse,F。&Müller,R。鉴定和分析微管溶酶的核心生物合成机制,微管溶酶是一种具有潜在抗癌活性的有效细胞毒素。化学。生物学111071-1079(2004)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tsutsumi, H. et al. Unprecedented cyclization catalyzed by a cytochrome P450 in benzastatin biosynthesis. J. Am. Chem. Soc. 140, 6631–6639 (2018).CAS
Tsutsumi,H.等人。细胞色素P450在苯扎他丁生物合成中催化的前所未有的环化。J、 美国化学。Soc.1406631–6639(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gould, S. J., Hong, S. T. & Carney, J. R. Cloning and heterologous expression of genes from the kinamycin biosynthetic pathway of Streptomyces murayamaensis. J. Antibiot. (Tokyo) 51, 50–57 (1998).CAS
Gould,S.J.,Hong,S.T。&Carney,J.R。克隆和异源表达来自村山链霉菌激肽生物合成途径的基因。J、 抗生素。(东京)51,50-57(1998)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gao, G. et al. Formation of an angular aromatic polyketide from a linear anthrene precursor via oxidative rearrangement. Cell Chem. Biol. 24, 881-891.e4 (2017).CAS
Gao,G.等人。通过氧化重排从线性蒽前体形成角芳香聚酮化合物。细胞化学。生物学24881-891.e4(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Suzuki, H., Ohnishi, Y. & Horinouchi, S. Arylamine N-acetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus. J. Bacteriol. 189, 2155–2159 (2007).CAS
Suzuki,H.,Ohnishi,Y。&Horinouchi,S。芳胺N-乙酰转移酶负责灰链霉菌中2-氨基酚的乙酰化。J、 细菌。1892155-2159(2007)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Suzuki, H., Furusho, Y., Higashi, T., Ohnishi, Y. & Horinouchi, S. A novel o-aminophenol oxidase responsible for formation of the phenoxazinone chromophore of grixazone. J. Biol. Chem. 281, 824–833 (2006).CAS
Suzuki,H.,Furusho,Y.,Higashi,T.,Ohnishi,Y。&Horinouchi,S。一种新型的邻氨基酚氧化酶,负责形成grixazone的吩恶嗪酮发色团。J、 生物。化学。281824-833(2006)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hein, D. W., Boukouvala, S., Grant, D. M., Minchin, R. F. & Sim, E. Changes in consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenet. Genom. 18, 367–368 (2008).CAS
Hein,D.W.,Boukouvala,S.,Grant,D.M.,Minchin,R.F。&Sim,E。共有芳胺N-乙酰转移酶基因命名法的变化。Pharmacogenet。基因组。18367-368(2008)。中科院
Google Scholar
谷歌学者
Laurieri, N. & Sim, E. Arylamine N-Acetyltransferases in Health and Disease (World Scientific, 2018). https://doi.org/10.1142/10763.Book
Laurieri,N。&Sim,E。芳胺N-乙酰转移酶在健康和疾病中的作用(World Scientific,2018)。https://doi.org/10.1142/10763.Book
Google Scholar
谷歌学者
Boukouvala, S. Arylamine N-acetyltransferase nomenclature. In Arylamine N-acetyltransferases in Health and Disease (eds Laurieri, N. & Sim, E.) (World Scientific, 2018). https://doi.org/10.1142/9789813232013_0016.Chapter
Boukouvala,S。芳胺N-乙酰转移酶命名法。健康和疾病中的芳胺N-乙酰转移酶(eds Laurieri,N。&Sim,E。)(World Scientific,2018)。https://doi.org/10.1142/9789813232013_0016.Chapter
Google Scholar
谷歌学者
Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98 (1999).CAS
Hall,T.A.BioEdit:适用于Windows 95/98/NT的用户友好的生物序列比对编辑器和分析程序。核酸研讨会系列41,95-98(1999)。中科院
Google Scholar
谷歌学者
Okonechnikov, K., Golosova, O. & Fursov, M. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012).CAS
Okonechnikov,K.,Golosova,O.和Fursov,M.Unipro UGENE:一个统一的生物信息学工具包。生物信息学281166–1167(2012)。CAS
PubMed
PubMed
Google Scholar
谷歌学者
Weber, T. et al. antiSMASH 3.0: A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237–W243 (2015).CAS
Weber,T.等人,《antiSMASH 3.0:生物合成基因簇基因组挖掘的综合资源》。核酸研究43,W237–W243(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Blin, K. et al. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).CAS
Blin,K.等人,《antiSMASH 5.0:次级代谢产物基因组挖掘管道的更新》。核酸研究47,W81-W87(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Blin, K. et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).CAS
Blin,K.等人,《antiSMASH 7.0:检测、调节、化学结构和可视化的新预测和改进预测》。核酸研究51,W46-W50(2023)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kautsar, S. A. et al. MIBiG 2.0: A repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).PubMed
Kautsar,S.A.等人。MIBiG 2.0:已知功能的生物合成基因簇的存储库。。PubMed出版社
Google Scholar
谷歌学者
Medema, M. H., Takano, E. & Breitling, R. Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol. Biol. Evol. 30, 1218–1223 (2013).CAS
Medema,M.H.,Takano,E。&Breitling,R。用MultiGeneBlast检测基因簇水平的序列同源性。分子生物学。进化。301218-1223(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Veltri, D., Wight, M. M. & Crouch, J. A. SimpleSynteny: A web-based tool for visualization of microsynteny across multiple species. Nucleic Acids Res. 44, W41–W45 (2016).CAS
Veltri,D.,Wight,M。M。和Crouch,J。A。SimpleSynteny:一种基于网络的工具,用于跨多个物种的微同步可视化。核酸研究44,W41-W45(2016)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. In Current Protocols in Bioinformatics, Chapter 2, Unit 2.3 (2002).Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239 (2020).CAS .
Thompson,J.D.,Gibson,T.J。&Higgins,D.G。使用ClustalW和ClustalX进行多序列比对。在《生物信息学当前协议》第2章第2.3单元(2002年)中。Stecher,G.,Tamura,K。&Kumar,S。macOS的分子进化遗传学分析(MEGA)。分子生物学。进化。371237-1239(2020)。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS
Kumar,S.,Stecher,G.,Li,M.,Knyaz,C。和Tamura,K。MEGA X:跨计算平台的分子进化遗传学分析。分子生物学。进化。351547-1549(2018)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).CAS
Saitou,N。&Nei,M。邻居连接方法:重建系统发育树的新方法。分子生物学。进化。4406-425(1987)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).ADS
Felsenstein,J。来自DNA序列的进化树:最大似然方法。J、 分子进化。17368-376(1981)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed
Felsenstein,J。系统发育的置信度限制:使用自举的方法。进化39783-791(1985)。PubMed出版社
Google Scholar
谷歌学者
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz239 (2019).Article
Letunic,I。&Bork,P。交互式生命树(iTOL)v4:最新更新和新发展。核酸研究。https://doi.org/10.1093/nar/gkz239(2019年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: Leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).CAS
Zallot,R.,Oberg,N。&Gerlt,J.A。基因组酶学工具的EFI网络资源:利用蛋白质,基因组和宏基因组数据库来发现新的酶和代谢途径。生物化学584169-4182(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS
Shannon,P。等。Cytoscape:用于生物分子相互作用网络集成模型的软件环境。基因组研究132498-2504(2003)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Langille, M. G. I. & Brinkman, F. S. L. IslandViewer: An integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25, 664–665 (2009).CAS
Langille,M.G.I。和Brinkman,F.S.L。IslandViewer:用于计算识别和可视化基因组岛屿的集成界面。生物信息学25664-665(2009)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bertelli, C. et al. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45, W30–W35 (2017).CAS
Bertelli,C.等人,《IslandViewer 4:大规模数据集基因组岛的扩展预测》。核酸研究45,W30–W35(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe research project was partly supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers” (Project Number: 3712), providing funding to work performed by D.B., D.T., S.Z.
下载参考文献致谢该研究项目得到了希腊研究与创新基金会(H.F.R.I.)在“第二次呼吁H.F.R.I.研究项目支持教师和研究人员”(项目编号:3712)下的部分支持,为D.B.,D.T.,S.Z.的工作提供资金。
and S.B. For her part of work, E.K. was recipient of a Ph.D. scholarship (2016-2019) co-financed by Greece and the European Union (European Social Fund-ESF) through Operational Program “Human Resources Development, Education and Lifelong Learning” in the context of project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).
而S.B.在她的部分工作中,E.K.获得了由希腊和欧盟(欧洲社会基金ESF)共同资助的博士奖学金(2016-2019),该奖学金是通过国家奖学金基金会(National Scholarss Foundation)(MIS-5000432)实施的“人力资源开发、教育和终身学习”运营计划获得的。
We thank former students Marina Avramidou, Athina Eleftheraki, Christina Vagena-Pantoula, Maria-Giusy Papavergi, Charalampos Ioannidis and Vasiliki Garefalaki for assistance.Author informationAuthors and AffiliationsDepartment of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, GreeceSotiria Boukouvala, Evanthia Kontomina, Ioannis Olbasalis, Dionysios Patriarcheas, Dimosthenis Tzimotoudis, Konstantina Arvaniti, Aggelos Manolias, Maria-Aggeliki Tsatiri, Dimitra Basdani & Sokratis ZekkasAuthorsSotiria BoukouvalaView author publicationsYou can also search for this author in.
我们感谢前学生Marina Avramidou、Athina Eleftheraki、Christina Vagena Pantoula、Maria Giusy Papavergi、Charalampos Ioannidis和Vasiliki Garefalaki的帮助。。
PubMed Google ScholarEvanthia KontominaView author publicationsYou can also search for this author in
PubMed Google Scholararevanthia KontominaView作者出版物您也可以在
PubMed Google ScholarIoannis OlbasalisView author publicationsYou can also search for this author in
PubMed Google Scholariaannis OlbasalisView作者出版物您也可以在
PubMed Google ScholarDionysios PatriarcheasView author publicationsYou can also search for this author in
PubMed Google ScholarDionysios家长会查看作者出版物您也可以在
PubMed Google ScholarDimosthenis TzimotoudisView author publicationsYou can also search for this author in
PubMed Google ScholarDimosthenis TzimotoudisView作者出版物您也可以在
PubMed Google ScholarKonstantina ArvanitiView author publicationsYou can also search for this author in
PubMed Google ScholarKonstantina ArvanitiView作者出版物您也可以在
PubMed Google ScholarAggelos ManoliasView author publicationsYou can also search for this author in
PubMed Google ScholarAggelos ManoliasView作者出版物您也可以在
PubMed Google ScholarMaria-Aggeliki TsatiriView author publicationsYou can also search for this author in
PubMed Google ScholarMaria Aggeliki TsatiriView作者出版物您也可以在
PubMed Google ScholarDimitra BasdaniView author publicationsYou can also search for this author in
PubMed Google ScholarDimitra BasdaniView作者出版物您也可以在
PubMed Google ScholarSokratis ZekkasView author publicationsYou can also search for this author in
PubMed Google ScholarSokratis ZekkasView作者出版物您也可以在
PubMed Google ScholarContributionsS.B. conceptualized the study, supervised the team and wrote the manuscript with help from E.K. and other co-authors. E.K., I.O., D.P., D.T., K.A., A.M., M.A.T., D.B. and S.Z. implemented various aspects of the research with equal contributions, and they are featured in the chronological order of their participation in the project.
PubMed谷歌学术贡献。B、 在E.K.和其他合著者的帮助下,对研究进行了概念化,监督了团队并撰写了手稿。E、 K.,I.O.,D.P.,D.T.,K.A.,A.M.,M.A.T.,D.B.和S.Z.以相同的贡献实施了研究的各个方面,并且按照他们参与项目的时间顺序排列。
All authors reviewed the manuscript.Corresponding authorCorrespondence to.
所有作者都审阅了手稿。对应作者对应。
Sotiria Boukouvala.Ethics declarations
索蒂里亚·布库瓦拉。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information 1.Supplementary Information 2.Supplementary Information 3.Supplementary Information 4.Supplementary Information 5.Supplementary Information 6.Supplementary Information 7.Supplementary Information 8.Supplementary Information 9.Rights and permissions.
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息1。补充信息2。补充信息3。补充信息4。补充信息5。补充信息6。补充信息7。补充信息8。补充信息9。权利和权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
。
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleBoukouvala, S., Kontomina, E., Olbasalis, I. et al. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism.
转载和许可本文引用本文Boukouvala,S.,Kontomina,E.,Olbasalis,I。等人对NAT基因家族的基因组和功能差异的见解,以服务于微生物次级代谢。
Sci Rep 14, 14905 (2024). https://doi.org/10.1038/s41598-024-65342-4Download citationReceived: 14 January 2024Accepted: 19 June 2024Published: 28 June 2024DOI: https://doi.org/10.1038/s41598-024-65342-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1414905(2024)。https://doi.org/10.1038/s41598-024-65342-4Download引文接收日期:2024年1月14日接受日期:2024年6月19日发布日期:2024年6月28日OI:https://doi.org/10.1038/s41598-024-65342-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。