商务合作
动脉网APP
可切换为仅中文
AbstractRecent substantial evidence implicating commensal bacteria in human diseases has given rise to a new domain in biomedical research: microbiome medicine. This emerging field aims to understand and leverage the human microbiota and derivative molecules for disease prevention and treatment. Despite the complex and hierarchical organization of this ecosystem, most research over the years has relied on 16S amplicon sequencing, a legacy of bacterial phylogeny and taxonomy.
摘要最近有大量证据表明共生细菌与人类疾病有关,这引发了生物医学研究的一个新领域:微生物组医学。这一新兴领域旨在了解和利用人类微生物群和衍生分子进行疾病预防和治疗。尽管这个生态系统的组织复杂且层次分明,但多年来大多数研究都依赖于16S扩增子测序,这是细菌系统发育和分类学的遗产。
Although advanced sequencing technologies have enabled cost-effective analysis of entire microbiota, translating the relatively short nucleotide information into the functional and taxonomic organization of the microbiome has posed challenges until recently. In the last decade, genome-resolved metagenomics, which aims to reconstruct microbial genomes directly from whole-metagenome sequencing data, has made significant strides and continues to unveil the mysteries of various human-associated microbial communities.
尽管先进的测序技术已经能够对整个微生物群进行具有成本效益的分析,但将相对较短的核苷酸信息转化为微生物组的功能和分类学组织直到最近才提出挑战。。
There has been a rapid increase in the volume of whole metagenome sequencing data and in the compilation of novel metagenome-assembled genomes and protein sequences in public depositories. This review provides an overview of the capabilities and methods of genome-resolved metagenomics for studying the human microbiome, with a focus on investigating the prokaryotic microbiota of the human gut.
全宏基因组测序数据的数量以及公共保存库中新的宏基因组组装基因组和蛋白质序列的汇编迅速增加。本综述概述了基因组解析宏基因组学研究人类微生物组的能力和方法,重点是研究人类肠道的原核微生物群。
Just as decoding the human genome and its variations marked the beginning of the genomic medicine era, unraveling the genomes of commensal microbes and their sequence variations is ushering us into the era of microbiome medicine. Genome-resolved metagenomics stands as a pivotal tool in this transition and can accelerate our journey toward achieving these scientific and medical milestones..
正如解码人类基因组及其变异标志着基因组医学时代的开始一样,解开共生微生物的基因组及其序列变异将我们带入微生物组医学时代。基因组解析宏基因组学是这一转变的关键工具,可以加速我们实现这些科学和医学里程碑的旅程。。
IntroductionThe human body is home to a multitude of symbiotic microbial cells that outnumber the host’s own cells and exert a significant influence on human physiology. As evidence regarding the role of commensal microbes in human diseases has accumulated, microbiome medicine has emerged as a new field in biomedical research.
引言人体是大量共生微生物细胞的家园,其数量超过宿主自身的细胞,并对人体生理产生重大影响。随着共生微生物在人类疾病中作用的证据积累,微生物组医学已成为生物医学研究的一个新领域。
This field seeks to harness human microbiota and derived molecules for the prevention and treatment of diseases. Achieving this goal requires a comprehensive understanding of the taxonomic and functional organization of the human microbiome.Historically, microbial community research has been a domain within microbial ecology that was initially focused on environmental microbes.
该领域旨在利用人类微生物群和衍生分子来预防和治疗疾病。实现这一目标需要全面了解人类微生物组的分类学和功能组织。从历史上看,微生物群落研究一直是微生物生态学中的一个领域,最初专注于环境微生物。
However, the discovery of vast microbial communities within the human body has expanded the scope of this field. For many years, human microbiome research has adopted methodologies based on bacterial phylogeny and taxonomy, particularly 16S rRNA gene sequence analysis1, which is adequate for revealing differences in taxonomic composition between diseased microbiomes and their healthy counterparts.
然而,人体内大量微生物群落的发现扩大了这一领域的范围。多年来,人类微生物组研究采用了基于细菌系统发育和分类学的方法,特别是16S rRNA基因序列分析1,这足以揭示患病微生物组与其健康对应物之间分类学组成的差异。
However, the limited taxonomic resolution of 16S rRNA sequences2 and their inherent inability to perform functional analysis pose obstacles to further advancements, including identifying the functional elements of the microbiome that directly influence host physiology. This situation is reminiscent of human genetics prior to the availability of the human reference genome.
然而,16S rRNA序列2的有限分类学分辨率及其固有的无法进行功能分析对进一步的进展构成了障碍,包括鉴定直接影响宿主生理学的微生物组的功能元件。这种情况让人想起人类参考基因组可用之前的人类遗传学。
The absence of a comprehensive human genome map meant that the search for disease genes was based on sparse genomic landmarks, leading to the identification of only broad chromosomal regions associated with diseases. This approach often requires years of subsequent studies to precisely locate the genes responsibl.
缺乏全面的人类基因组图谱意味着对疾病基因的搜索是基于稀疏的基因组标志,导致仅鉴定与疾病相关的广泛染色体区域。这种方法通常需要多年的后续研究才能精确定位负责的基因。
ReferencesClarridge, J. E. 3rd Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17, 840–862, https://doi.org/10.1128/CMR.17.4.840-862.2004 (2004).Article
参考文献Clarridge,J。E。16S rRNA基因序列分析对临床微生物学和传染病细菌鉴定的第三次影响。临床。微生物。第17版,840–862,https://doi.org/10.1128/CMR.17.4.840-862.2004(2004年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Palys, T., Nakamura, L. K. & Cohan, F. M. Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int. J. Syst. Bacteriol. 47, 1145–1156, https://doi.org/10.1099/00207713-47-4-1145 (1997).Article
Palys,T.,Nakamura,L.K。&Cohan,F.M。细菌世界中生态多样性的发现和分类:DNA序列数据的作用。。细菌。471145-1156,https://doi.org/10.1099/00207713-47-4-1145(1997年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lander, E. S. Initial impact of the sequencing of the human genome. Nature 470, 187–197, https://doi.org/10.1038/nature09792 (2011).Article
兰德,E.S。人类基因组测序的初步影响。自然470187-197,https://doi.org/10.1038/nature09792(2011年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hassler, H. B. et al. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome 10, 104, https://doi.org/10.1186/s40168-022-01295-y (2022).Article
Hassler,H.B.等人,16S rRNA基因及其高变区的系统发育与核心基因组系统发育缺乏一致性。微生物组10104,https://doi.org/10.1186/s40168-022-01295-y(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821, https://doi.org/10.1038/nbt.2676 (2013).Article
Langille,M.G.等人。使用16S rRNA标记基因序列对微生物群落进行预测功能分析。美国国家生物技术公司。31814-821,https://doi.org/10.1038/nbt.2676(2013年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214, https://doi.org/10.1038/nature11234 (2012).Article
人类微生物组项目,C。健康人类微生物组的结构,功能和多样性。自然486207-214,https://doi.org/10.1038/nature11234(2012年)。文章
CAS
中科院
Google Scholar
谷歌学者
Integrative, H. M. P. R. N. C. The integrative human microbiome project. Nature 569, 641–648, https://doi.org/10.1038/s41586-019-1238-8 (2019).Article
整合,H.M.P.R.N.C。整合人类微生物组项目。自然569641-648,https://doi.org/10.1038/s41586-019-1238-8(2019年)。文章
CAS
中科院
Google Scholar
谷歌学者
Conlon, M. A. & Bird, A. R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7, 17–44, https://doi.org/10.3390/nu7010017 (2014).Article
Conlon,M.A。和Bird,A.R。饮食和生活方式对肠道微生物群和人类健康的影响。营养素7、17-44,https://doi.org/10.3390/nu7010017(2014年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Parizadeh, M. & Arrieta, M. C. The global human gut microbiome: genes, lifestyles, and diet. Trends Mol. Med. 29, 789–801, https://doi.org/10.1016/j.molmed.2023.07.002 (2023).Article
。趋势分子医学29789-801,https://doi.org/10.1016/j.molmed.2023.07.002(2023年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215, https://doi.org/10.1038/nature25973 (2018).Article
Rothschild,D。等人。环境在塑造人类肠道微生物群方面优于宿主遗传学。自然555210-215,https://doi.org/10.1038/nature25973(2018年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504, https://doi.org/10.1038/s41586-019-0965-1 (2019).Article
Almeida,A。等人。人类肠道微生物群的新基因组蓝图。自然568499-504,https://doi.org/10.1038/s41586-019-0965-1(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Van Rossum, T., Ferretti, P., Maistrenko, O. M. & Bork, P. Diversity within species: interpreting strains in microbiomes. Nat. Rev. Microbiol. 18, 491–506, https://doi.org/10.1038/s41579-020-0368-1 (2020).Article
Van Rossum,T.,Ferretti,P.,Maistrenko,O.M。&Bork,P。物种内的多样性:解释微生物群中的菌株。自然修订版微生物学。18491-506,https://doi.org/10.1038/s41579-020-0368-1(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhai, Y. & Wei, C. Open pangenome of Lactococcus lactis generated by a combination of metagenome-assembled genomes and isolate genomes. Front. Microbiol. 13, 948138, https://doi.org/10.3389/fmicb.2022.948138 (2022).Article
Zhai,Y。&Wei,C。通过宏基因组组装基因组和分离基因组的组合产生的乳酸乳球菌的开放泛基因组。正面。微生物。13948138,https://doi.org/10.3389/fmicb.2022.948138(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pavlopoulos, G. A. et al. Unraveling the functional dark matter through global metagenomics. Nature 622, 594–602, https://doi.org/10.1038/s41586-023-06583-7 (2023).Article
Pavlopoulos,G.A.等人通过全球宏基因组学揭示了功能性暗物质。自然622594-602,https://doi.org/10.1038/s41586-023-06583-7(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baltoumas, F. A. et al. NMPFamsDB: a database of novel protein families from microbial metagenomes and metatranscriptomes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkad800 (2023).Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes.
Baltoumas,F.A。等人。NMPFamsDB:来自微生物宏基因组和宏转录组的新型蛋白质家族的数据库。核酸研究。https://doi.org/10.1093/nar/gkad800(2023年)。Valles Colomer,M。等人,《肠道和口腔微生物群的人与人之间的传播情况》。
Nature 614, 125–135, https://doi.org/10.1038/s41586-022-05620-1 (2023).Article .
Nature 614, 125–135, https://doi.org/10.1038/s41586-022-05620-1 (2023).Article .
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schmidt, T. S. et al. Extensive transmission of microbes along the gastrointestinal tract. Elife 8. https://doi.org/10.7554/eLife.42693 (2019).Brito, I. L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 19, 442–453, https://doi.org/10.1038/s41579-021-00534-7 (2021).Article .
Schmidt,T.S.等人。微生物沿胃肠道的广泛传播。埃利夫8。https://doi.org/10.7554/eLife.42693(2019年)。Brito,I.L。研究微生物群落中的水平基因转移。自然修订版微生物学。19442-453,https://doi.org/10.1038/s41579-021-00534-7(2021年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Costea, P. I. et al. Subspecies in the global human gut microbiome. Mol. Syst. Biol. 13, 960, https://doi.org/10.15252/msb.20177589 (2017).Article
Costea,P.I.等人,《全球人类肠道微生物群中的亚种》。分子系统。生物学13960,https://doi.org/10.15252/msb.20177589(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zeevi, D. et al. Structural variation in the gut microbiome associates with host health. Nature 568, 43–48, https://doi.org/10.1038/s41586-019-1065-y (2019).Article
Zeevi,D。等人。肠道微生物组的结构变异与宿主健康相关。自然568,43-48,https://doi.org/10.1038/s41586-019-1065-y(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zahavi, L. et al. Bacterial SNPs in the human gut microbiome associate with host BMI. Nat. Med. 29, 2785–2792, https://doi.org/10.1038/s41591-023-02599-8 (2023).Article
Zahavi,L.等人,《人类肠道微生物组中的细菌SNP与宿主BMI相关》,《自然医学》292785-2792,https://doi.org/10.1038/s41591-023-02599-8(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zorrilla, F., Buric, F., Patil, K. R. & Zelezniak, A. metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Res. 49, e126, https://doi.org/10.1093/nar/gkab815 (2021).Article
Zorrilla,F.,Buric,F.,Patil,K.R。&Zelezniak,A。metaGEM:直接从宏基因组重建基因组规模的代谢模型。核酸研究49,e126,https://doi.org/10.1093/nar/gkab815(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heinken, A., Basile, A., Hertel, J., Thinnes, C. & Thiele, I. Genome-scale metabolic modeling of the human microbiome in the era of personalized medicine. Annu. Rev. Microbiol. 75, 199–222, https://doi.org/10.1146/annurev-micro-060221-012134 (2021).Article
Heinken,A.,Basile,A.,Hertel,J.,Thinds,C。&Thiele,I。个性化医学时代人类微生物组的基因组规模代谢建模。年。微生物修订版。75199-222,https://doi.org/10.1146/annurev-micro-060221-012134(2021年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Simpson, J. T. & Pop, M. The theory and practice of genome sequence assembly. Annu Rev. Genomics Hum. Genet 16, 153–172, https://doi.org/10.1146/annurev-genom-090314-050032 (2015).Article
Simpson,J.T。和Pop,M。基因组序列组装的理论和实践。Annu Rev.Genomics Hum.Genet 16153-172,https://doi.org/10.1146/annurev-genom-090314-050032(2015年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834, https://doi.org/10.1101/gr.213959.116 (2017).Article
Nurk,S.,Meleshko,D.,Korobeynikov,A。&Pevzner,P.A。metaSPAdes:一种新的多功能宏基因组组装器。基因组研究27824-834,https://doi.org/10.1101/gr.213959.116(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676, https://doi.org/10.1093/bioinformatics/btv033 (2015).Article
Li,D.,Liu,C.M.,Luo,R.,Sadakane,K。&Lam,T.W。MEGAHIT:通过简洁的de Bruijn图进行大型复杂宏基因组组装的超快速单节点解决方案。生物信息学311674-1676,https://doi.org/10.1093/bioinformatics/btv033(2015年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Compeau, P. E., Pevzner, P. A. & Tesler, G. How to apply de Bruijn graphs to genome assembly. Nat. Biotechnol. 29, 987–991, https://doi.org/10.1038/nbt.2023 (2011).Article
Compeau,P.E.,Pevzner,P.A。&Tesler,G。如何将de Bruijn图应用于基因组组装。美国国家生物技术公司。29987–991,https://doi.org/10.1038/nbt.2023(2011年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Churcheward, B., Millet, M., Bihouee, A., Fertin, G. & Chaffron, S. MAGNETO: an automated workflow for genome-resolved metagenomics. mSystems 7, e0043222, https://doi.org/10.1128/msystems.00432-22 (2022).Article
Churcheward,B.,Millet,M.,Bihouee,A.,Fertin,G。&Chaffron,S。MAGNETO:基因组解析宏基因组学的自动化工作流程。mSystems 7,e0043222,https://doi.org/10.1128/msystems.00432-22(2022年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Delgado, L. F. & Andersson, A. F. Evaluating metagenomic assembly approaches for biome-specific gene catalogues. Microbiome 10, 72, https://doi.org/10.1186/s40168-022-01259-2 (2022).Article
Delgado,L.F。&Andersson,A.F。评估生物群落特异性基因目录的宏基因组组装方法。微生物组10,72,https://doi.org/10.1186/s40168-022-01259-2(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sczyrba, A. et al. Critical assessment of metagenome Interpretation-a benchmark of metagenomics software. Nat. Methods 14, 1063–1071, https://doi.org/10.1038/nmeth.4458 (2017).Article
Sczyrba,A。等。宏基因组解释的关键评估-宏基因组学软件的基准。自然方法141063-1071,https://doi.org/10.1038/nmeth.4458(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868, https://doi.org/10.1038/ismej.2017.126 (2017).Article
Olm,M.R.,Brown,C.T.,Brooks,B.&Banfield,J.F.dRep:一种快速准确的基因组比较工具,可通过去复制改进宏基因组的基因组恢复。,https://doi.org/10.1038/ismej.2017.126(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, C. Y. et al. Human reference gut microbiome catalog including newly assembled genomes from under-represented Asian metagenomes. Genome Med. 13, 134, https://doi.org/10.1186/s13073-021-00950-7 (2021).Article
Kim,C.Y.等人。人类参考肠道微生物组目录,包括来自代表性不足的亚洲宏基因组的新组装基因组。基因组医学13134,https://doi.org/10.1186/s13073-021-00950-7(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146, https://doi.org/10.1038/nmeth.3103 (2014).Article
Alneberg,J。等人。通过覆盖率和组成对宏基因组重叠群进行分类。自然方法111144-1146,https://doi.org/10.1038/nmeth.3103(2014年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607, https://doi.org/10.1093/bioinformatics/btv638 (2016).Article
Wu,Y.W.,Simmons,B.A。&Singer,S.W。MaxBin 2.0:一种自动分箱算法,用于从多个宏基因组数据集中恢复基因组。生物信息学32605-607,https://doi.org/10.1093/bioinformatics/btv638(2016年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359, https://doi.org/10.7717/peerj.7359 (2019).Article
Kang,D.D.等人。MetaBAT 2:一种自适应分箱算法,用于从宏基因组组件中进行稳健有效的基因组重建。PeerJ 7,e7359,https://doi.org/10.7717/peerj.7359(2019年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nissen, J. N. et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat. Biotechnol. 39, 555–560, https://doi.org/10.1038/s41587-020-00777-4 (2021).Article
Nissen,J.N.等人使用深度变分自动编码器改进了宏基因组分箱和组装。美国国家生物技术公司。39555–560,https://doi.org/10.1038/s41587-020-00777-4(2021年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Teeling, H., Meyerdierks, A., Bauer, M., Amann, R. & Glockner, F. O. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ. Microbiol. 6, 938–947, https://doi.org/10.1111/j.1462-2920.2004.00624.x (2004).Article
Teeling,H.,Meyerdierks,A.,Bauer,M.,Amann,R。&Glockner,F.O。应用四核苷酸频率分配基因组片段。环境。微生物。6938-947,https://doi.org/10.1111/j.1462-2920.2004.00624.x(2004年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Musto, H. et al. Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochem Biophys. Res. Commun. 347, 1–3, https://doi.org/10.1016/j.bbrc.2006.06.054 (2006).Article
Musto,H.等人,《原核生物的基因组GC水平,最佳生长温度和基因组大小》。生物化学生物物理。公共资源。347,1-3,https://doi.org/10.1016/j.bbrc.2006.06.054(2006年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saeed, I., Tang, S. L. & Halgamuge, S. K. Unsupervised discovery of microbial population structure within metagenomes using nucleotide base composition. Nucleic Acids Res. 40, e34, https://doi.org/10.1093/nar/gkr1204 (2012).Article
Saeed,I.,Tang,S.L。和Halgamuge,S.K。使用核苷酸碱基组成无监督地发现宏基因组内的微生物种群结构。核酸研究40,e34,https://doi.org/10.1093/nar/gkr1204(2012年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828, https://doi.org/10.1038/nbt.2939 (2014).Article
Nielsen,H.B.等人。不使用参考基因组的复杂宏基因组样品中基因组和遗传元件的鉴定和组装。美国国家生物技术公司。32822-828,https://doi.org/10.1038/nbt.2939(2014年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mattock, J. & Watson, M. A comparison of single-coverage and multi-coverage metagenomic binning reveals extensive hidden contamination. Nat. Methods 20, 1170–1173, https://doi.org/10.1038/s41592-023-01934-8 (2023).Article
Mattock,J。&Watson,M。单覆盖和多覆盖宏基因组分箱的比较揭示了广泛的隐藏污染。自然方法201170-1173,https://doi.org/10.1038/s41592-023-01934-8(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lindez, P. P. et al. Adversarial and variational autoencoders improve metagenomic binning. Commun. Biol. 6, 1073, https://doi.org/10.1038/s42003-023-05452-3 (2023).Article
Lindez,P。P。等人。对抗性和变异性自动编码器改善了宏基因组分箱。Commun公司。生物学61073,https://doi.org/10.1038/s42003-023-05452-3(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, C. C. et al. MetaDecoder: a novel method for clustering metagenomic contigs. Microbiome 10, 46, https://doi.org/10.1186/s40168-022-01237-8 (2022).Article
Liu,C.C.等人。元解码器:一种聚类宏基因组重叠群的新方法。微生物组10,46,https://doi.org/10.1186/s40168-022-01237-8(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pan, S., Zhu, C., Zhao, X. M. & Coelho, L. P. A deep siamese neural network improves metagenome-assembled genomes in microbiome datasets across different environments. Nat. Commun. 13, 2326, https://doi.org/10.1038/s41467-022-29843-y (2022).Article
Pan,S.,Zhu,C.,Zhao,X.M。&Coelho,L.P。深度暹罗神经网络改善了不同环境中微生物组数据集中的宏基因组组装基因组。国家公社。132326,https://doi.org/10.1038/s41467-022-29843-y(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hickl, O., Queiros, P., Wilmes, P., May, P. & Heintz-Buschart, A. binny: an automated binning algorithm to recover high-quality genomes from complex metagenomic datasets. Brief Bioinform. 23. https://doi.org/10.1093/bib/bbac431 (2022).Wang, Z., Huang, P., You, R., Sun, F. & Zhu, S. MetaBinner: a high-performance and stand-alone ensemble binning method to recover individual genomes from complex microbial communities.
Hickl,O.,Queiros,P.,Wilmes,P.,May,P。&Heintz-Buschart,A.binny:一种自动分箱算法,用于从复杂的宏基因组数据集中恢复高质量的基因组。简介Bioinform。23https://doi.org/10.1093/bib/bbac431(2022年)。。
Genome Biol. 24, 1, https://doi.org/10.1186/s13059-022-02832-6 (2023).Article .
Genome Biol. 24, 1, https://doi.org/10.1186/s13059-022-02832-6 (2023).Article .
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pan, S., Zhao, X. M. & Coelho, L. P. SemiBin2: self-supervised contrastive learning leads to better MAGs for short- and long-read sequencing. Bioinformatics 39, i21–i29, https://doi.org/10.1093/bioinformatics/btad209 (2023).Article
Pan,S.,Zhao,X.M.&Coelho,L.P.SemiBin2:自我监督的对比学习可以为短读和长读测序带来更好的MAG。生物信息学39,i21-i29,https://doi.org/10.1093/bioinformatics/btad209(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, L. X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J. F. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333, https://doi.org/10.1101/gr.258640.119 (2020).Article
。基因组研究30315-333,https://doi.org/10.1101/gr.258640.119(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Meyer, F. et al. Critical assessment of metagenome interpretation: the second round of challenges. Nat. Methods 19, 429–440, https://doi.org/10.1038/s41592-022-01431-4 (2022).Article
Meyer,F.等人,《宏基因组解释的批判性评估:第二轮挑战》。自然方法19429-440,https://doi.org/10.1038/s41592-022-01431-4(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Song, W. Z. & Thomas, T. Binning_refiner: improving genome bins through the combination of different binning programs. Bioinformatics 33, 1873–1875, https://doi.org/10.1093/bioinformatics/btx086 (2017).Article
。生物信息学331873-1875,https://doi.org/10.1093/bioinformatics/btx086(2017年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843, https://doi.org/10.1038/s41564-018-0171-1 (2018).Article
Sieber,C.M.K.等人。通过去复制,聚集和评分策略从宏基因组中恢复基因组。自然微生物。3836-843,https://doi.org/10.1038/s41564-018-0171-1(2018年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158, https://doi.org/10.1186/s40168-018-0541-1 (2018).Article
Uritskiy,G.V.,DiRuggiero,J。&Taylor,J。MetaWRAP-用于基因组解析宏基因组数据分析的灵活管道。微生物组6158,https://doi.org/10.1186/s40168-018-0541-1(2018年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ruhlemann, M. C., Wacker, E. M., Ellinghaus, D. & Franke, A. MAGScoT: a fast, lightweight and accurate bin-refinement tool. Bioinformatics 38, 5430–5433, https://doi.org/10.1093/bioinformatics/btac694 (2022).Article
Ruhlemann,M.C.,Wacker,E.M.,Ellinghaus,D。和Franke,A。MAGScoT:一种快速,轻量级和准确的bin细化工具。生物信息学385430-5433,https://doi.org/10.1093/bioinformatics/btac694(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212, https://doi.org/10.1038/s41592-023-01940-w (2023).Article
Chklovski,A.,Parks,D.H.,Woodcroft,B.J。&Tyson,G.W。CheckM2:一种使用机器学习评估微生物基因组质量的快速,可扩展和准确的工具。自然方法201203-1212,https://doi.org/10.1038/s41592-023-01940-w(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055, https://doi.org/10.1101/gr.186072.114 (2015).Article
Parks,D.H.,Imelfort,M.,Skennerton,C.T.,Hugenholtz,P。&Tyson,G.W。CheckM:评估从分离株,单细胞和宏基因组中回收的微生物基因组的质量。基因组研究251043-1055,https://doi.org/10.1101/gr.186072.114(2015年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731, https://doi.org/10.1038/nbt.3893 (2017).Article
Bowers,R.M.等人。关于细菌和古细菌的单个扩增基因组(MISAG)和宏基因组组装基因组(MIMAG)的最低信息。美国国家生物技术公司。35725–731,https://doi.org/10.1038/nbt.3893(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Eisenhofer, R., Odriozola, I. & Alberdi, A. Impact of microbial genome completeness on metagenomic functional inference. ISME Commun. 3, 12, https://doi.org/10.1038/s43705-023-00221-z (2023).Article
Eisenhofer,R.,Odriozola,I。&Alberdi,A。微生物基因组完整性对宏基因组功能推断的影响。。3、12、,https://doi.org/10.1038/s43705-023-00221-z(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cornet, L. & Baurain, D. Contamination detection in genomic data: more is not enough. Genome Biol. 23, 60, https://doi.org/10.1186/s13059-022-02619-9 (2022).Article
Cornet,L。&Baurain,D。基因组数据中的污染检测:更多是不够的。基因组生物学。23、60、,https://doi.org/10.1186/s13059-022-02619-9(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 178, https://doi.org/10.1186/s13059-021-02393-0 (2021).Article
Orakov,A。等人。GUNC:检测原核基因组中的嵌合和污染。基因组生物学。22178年,https://doi.org/10.1186/s13059-021-02393-0(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fullam, A. et al. proGenomes3: approaching one million accurately and consistently annotated high-quality prokaryotic genomes. Nucleic Acids Res. 51, D760–D766, https://doi.org/10.1093/nar/gkac1078 (2023).Article
Fullam,A。等人,《proGenomes3:接近100万个准确且一致注释的高质量原核基因组》。,https://doi.org/10.1093/nar/gkac1078(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zeng, S. et al. A compendium of 32,277 metagenome-assembled genomes and over 80 million genes from the early-life human gut microbiome. Nat. Commun. 13, 5139, https://doi.org/10.1038/s41467-022-32805-z (2022).Article
Zeng,S.等人,一份包含32277个宏基因组组装基因组和来自早期人类肠道微生物组的8000多万个基因的概要。国家公社。135139,https://doi.org/10.1038/s41467-022-32805-z(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schoch, C. L. et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford) 2020. https://doi.org/10.1093/database/baaa062 (2020).Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy.
Schoch,C.L.等人,《NCBI分类学:管理、资源和工具的全面更新》。数据库(牛津)2020。https://doi.org/10.1093/database/baaa062(2020年)。Parks,D.H.等人,GTDB:通过系统发育一致,等级标准化和完整的基于基因组的分类学,正在进行的细菌和古细菌多样性普查。
Nucleic Acids Res. 50, D785–D794, https://doi.org/10.1093/nar/gkab776 (2022).Article .
核酸研究50,D785–D794,https://doi.org/10.1093/nar/gkab776(2022年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Beiko, R. G. Microbial malaise: how can we classify the microbiome? Trends Microbiol. 23, 671–679, https://doi.org/10.1016/j.tim.2015.08.009 (2015).Article
Beiko,R.G。微生物不适:我们如何对微生物组进行分类?趋势微生物。,https://doi.org/10.1016/j.tim.2015.08.009(2015年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004, https://doi.org/10.1038/nbt.4229 (2018).Article
Parks,D.H.等人。基于基因组系统发育的标准化细菌分类学大大修改了生命树。美国国家生物技术公司。,https://doi.org/10.1038/nbt.4229(2018年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927, https://doi.org/10.1093/bioinformatics/btz848 (2019).Article
Chaumeil,P.A.,Mussig,A.J.,Hugenholtz,P。&Parks,D.H。GTDB Tk:使用基因组分类学数据库对基因组进行分类的工具包。生物信息学361925-1927,https://doi.org/10.1093/bioinformatics/btz848(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510, https://doi.org/10.1038/s41586-019-1058-x (2019).Article
Nayfach,S.,Shi,Z.J.,Seshadri,R.,Pollard,K.S。&Kyrpides,N.C。来自全球人类肠道微生物组未培养基因组的新见解。自然568505-510,https://doi.org/10.1038/s41586-019-1058-x(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197, https://doi.org/10.1016/j.cell.2018.02.016 (2018).Article
Castelle,C.J。&Banfield,J.F。主要的新微生物群体扩大了多样性并改变了我们对生命树的理解。细胞1721181-1197,https://doi.org/10.1016/j.cell.2018.02.016(2018年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dimonaco, N. J., Aubrey, W., Kenobi, K., Clare, A. & Creevey, C. J. No one tool to rule them all: prokaryotic gene prediction tool annotations are highly dependent on the organism of study. Bioinformatics 38, 1198–1207, https://doi.org/10.1093/bioinformatics/btab827 (2022).Article
Dimonaco,N.J.,Aubrey,W.,Kenobi,K.,Clare,A。&Creevey,C.J。没有一种工具可以控制它们:原核基因预测工具注释高度依赖于研究的生物体。生物信息学381198-1207,https://doi.org/10.1093/bioinformatics/btab827(2022年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119, https://doi.org/10.1186/1471-2105-11-119 (2010).Article
。BMC生物信息学。11119,https://doi.org/10.1186/1471-2105-11-119(2010年)。文章
CAS
中科院
Google Scholar
谷歌学者
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314, https://doi.org/10.1093/nar/gky1085 (2019).Article
Huerta-Cepas,J。等人,《eggNOG 5.0:基于5090种生物体和2502种病毒的分层,功能和系统发育注释的直系同源资源》。核酸研究47,D309–D314,https://doi.org/10.1093/nar/gky1085(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829, https://doi.org/10.1093/molbev/msab293 (2021).Article
Cantalapiedra,C.P.,Hernandez Plaza,A.,Letunic,I.,Bork,P。&Huerta Cepas,J。eggNOG mapper v2:宏基因组规模的功能注释,正畸分配和域预测。分子生物学。进化。385825–5829,https://doi.org/10.1093/molbev/msab293(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gabaldon, T. & Koonin, E. V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 14, 360–366, https://doi.org/10.1038/nrg3456 (2013).Article
Gabaldon,T。&Koonin,E.V。基因正畸学的功能和进化意义。Genet自然Rev。14360–366,https://doi.org/10.1038/nrg3456(2013年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120, https://doi.org/10.1093/nar/gki442 (2005).Article
Quevillon,E。等人。InterProScan:蛋白质结构域标识符。核酸研究33,W116-W120,https://doi.org/10.1093/nar/gki442(2005年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069, https://doi.org/10.1093/bioinformatics/btu153 (2014).Article
Seemann,T。Prokka:快速原核基因组注释。生物信息学302068-2069,https://doi.org/10.1093/bioinformatics/btu153(2014年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom 7. https://doi.org/10.1099/mgen.0.000685 (2021).Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function.
Schwengers,O。等。Bakta:通过无比对序列鉴定快速标准化注释细菌基因组。微生物。基因组7。https://doi.org/10.1099/mgen.0.000685(2021年)。Shaffer,M。等人。DRAM用于提取微生物代谢以自动化微生物组功能的管理。
Nucleic Acids Res. 48, 8883–8900, https://doi.org/10.1093/nar/gkaa621 (2020).Article .
核酸研究488883-8900,https://doi.org/10.1093/nar/gkaa621(2020年)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ruiz-Perez, C. A., Conrad, R. E. & Konstantinidis, K. T. MicrobeAnnotator: a user-friendly, comprehensive functional annotation pipeline for microbial genomes. BMC Bioinforma. 22, 11, https://doi.org/10.1186/s12859-020-03940-5 (2021).Article
Ruiz-Perez,C.A.,Conrad,R.E。&Konstantinidis,K.T。MicrobeAnnotator:一种用于微生物基因组的用户友好,全面的功能注释管道。BMC生物信息学。22、11、,https://doi.org/10.1186/s12859-020-03940-5(2021年)。文章
CAS
中科院
Google Scholar
谷歌学者
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592, https://doi.org/10.1093/nar/gkac963 (2023).Article
Kanehisa,M.,Furumichi,M.,Sato,Y.,Kawashima,M。&Ishiguro Watanabe,M。KEGG用于基于分类学的途径和基因组分析。核酸研究51,D587–D592,https://doi.org/10.1093/nar/gkac963(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gene Ontology, C. The gene ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334, https://doi.org/10.1093/nar/gkaa1113 (2021).Article
基因本体论,C。基因本体论资源:丰富金矿。核酸研究49,D325–D334,https://doi.org/10.1093/nar/gkaa1113(2021年)。文章
CAS
中科院
Google Scholar
谷歌学者
Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419, https://doi.org/10.1093/nar/gkaa913 (2021).Article
Mistry,J.等人,《Pfam:2021年的蛋白质家族数据库》。核酸研究49,D412-D419,https://doi.org/10.1093/nar/gkaa913(2021年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–D577, https://doi.org/10.1093/nar/gkab1045 (2022).Article
Drula,E。等人。碳水化合物活性酶数据库:功能和文献。核酸研究50,D571–D577,https://doi.org/10.1093/nar/gkab1045(2022年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Antimicrobial Resistance, C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655, https://doi.org/10.1016/S0140-6736(21)02724-0 (2022).Article
抗菌药物耐药性,C.2019年全球细菌抗菌药物耐药性负担:系统分析。柳叶刀399629-655,https://doi.org/10.1016/S0140-6736(21)02724-0(2022)。文章
Google Scholar
谷歌学者
Crits-Christoph, A., Hallowell, H. A., Koutouvalis, K. & Suez, J. Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes 14, 2055944, https://doi.org/10.1080/19490976.2022.2055944 (2022).Article
Crits Christoph,A.,Hallowell,H.A.,Koutouvalis,K。&Suez,J。好的微生物,坏的基因?抗菌药物耐药性在人类微生物组中的传播。肠道微生物142055944,https://doi.org/10.1080/19490976.2022.2055944(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sommer, M. O. A., Dantas, G. & Church, G. M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131, https://doi.org/10.1126/science.1176950 (2009).Article
Sommer,M.O.A.,Dantas,G。和Church,G.M。人类微生物群落中抗生素抗性库的功能表征。科学3251128-1131,https://doi.org/10.1126/science.1176950(2009年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Forster, S. C. et al. Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome. Nat. Commun. 13, 1445, https://doi.org/10.1038/s41467-022-29096-9 (2022).Article
Forster,S.C.等人。从人类微生物组转移抗生素耐药性的广泛宿主范围移动遗传元件的菌株水平表征。国家公社。131445,https://doi.org/10.1038/s41467-022-29096-9(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, K. et al. Population-level impacts of antibiotic usage on the human gut microbiome. Nat. Commun. 14, 1191, https://doi.org/10.1038/s41467-023-36633-7 (2023).Article
。国家公社。141191年,https://doi.org/10.1038/s41467-023-36633-7(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fredriksen, S., de Warle, S., van Baarlen, P., Boekhorst, J. & Wells, J. M. Resistome expansion in disease-associated human gut microbiomes. Microbiome 11, 166, https://doi.org/10.1186/s40168-023-01610-1 (2023).Article
Fredriksen,S.,de Warle,S.,van Baarlen,P.,Boekhorst,J。&Wells,J.M。疾病相关的人类肠道微生物群中的抗性扩增。微生物组11166,https://doi.org/10.1186/s40168-023-01610-1(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rowan-Nash, A. D., Araos, R., D’Agata, E. M. C. & Belenky, P. Antimicrobial resistance gene prevalence in a population of patients with advanced dementia is related to specific pathobionts. iScience 23, 100905, https://doi.org/10.1016/j.isci.2020.100905 (2020).Article
Rowan Nash,A.D.,Araos,R.,D'Agata,E.M.C。&Belenky,P。晚期痴呆患者人群中的抗菌药物耐药基因流行与特定的病理生物有关。iScience 23100905,https://doi.org/10.1016/j.isci.2020.100905(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alcock, B. P. et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 51, D690–D699, https://doi.org/10.1093/nar/gkac920 (2023).Article
Alcock,B.P.等人,《CARD 2023:在综合抗生素耐药性数据库中扩展管理,支持机器学习和耐药性预测》。,https://doi.org/10.1093/nar/gkac920(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Seemann, T. Abricate, Github https://github.com/tseemann/abricate.Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 9, 207–216, https://doi.org/10.1038/ismej.2014.106 (2015).Article .
希曼(Seemann),T.Abricate,Githubhttps://github.com/tseemann/abricate.Gibson,M.K.,Forsberg,K.J。&Dantas,G。抗生素抗性决定因素的改进注释揭示了微生物抗性簇的生态学。ISME J.9207-216,https://doi.org/10.1038/ismej.2014.106(2015年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Berglund, F. et al. Identification and reconstruction of novel antibiotic resistance genes from metagenomes. Microbiome 7, 52, https://doi.org/10.1186/s40168-019-0670-1 (2019).Article
Berglund,F。等人。从宏基因组中鉴定和重建新的抗生素抗性基因。微生物组7,52,https://doi.org/10.1186/s40168-019-0670-1(2019年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23, https://doi.org/10.1186/s40168-018-0401-z (2018).Article
Arango Argoty,G。等人DeepARG:一种从宏基因组数据预测抗生素抗性基因的深度学习方法。微生物组6,23,https://doi.org/10.1186/s40168-018-0401-z(2018年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, J. et al. PLM-ARG: antibiotic resistance gene identification using a pretrained protein language model. Bioinformatics 39. https://doi.org/10.1093/bioinformatics/btad690 (2023).Gschwind, R. et al. ResFinderFG v2.0: a database of antibiotic resistance genes obtained by functional metagenomics.
Wu,J。等人。PLM-ARG:使用预训练的蛋白质语言模型进行抗生素抗性基因鉴定。生物信息学39。https://doi.org/10.1093/bioinformatics/btad690(2023年)。Gschwind,R。等人。ResFinderFG v2.0:通过功能宏基因组学获得的抗生素抗性基因数据库。
Nucleic Acids Res. 51, W493–W500, https://doi.org/10.1093/nar/gkad384 (2023).Article .
核酸研究51,W493-W500,https://doi.org/10.1093/nar/gkad384(2023年)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bonin, N. et al. MEGARes and AMR++, v3.0: an updated comprehensive database of antimicrobial resistance determinants and an improved software pipeline for classification using high-throughput sequencing. Nucleic Acids Res. 51, D744–D752, https://doi.org/10.1093/nar/gkac1047 (2023).Article .
Bonin,N。等人。MEGARes和AMR++,v3.0:更新的抗菌药物耐药性决定因素综合数据库和改进的使用高通量测序进行分类的软件管道。核酸研究51,D744–D752,https://doi.org/10.1093/nar/gkac1047(2023年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, G., Ross, C. R. & Blecha, F. Porcine antimicrobial peptides: new prospects for ancient molecules of host defense. Vet. Res. 31, 277–296, https://doi.org/10.1051/vetres:2000121 (2000).Article
Zhang,G.,Ross,C.R。&Blecha,F。猪抗菌肽:古代宿主防御分子的新前景。兽医。第31277-296号决议,https://doi.org/10.1051/vetres:2000121(2000年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huan, Y., Kong, Q., Mou, H. & Yi, H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front. Microbiol. 11, 582779, https://doi.org/10.3389/fmicb.2020.582779 (2020).Article
Huan,Y.,Kong,Q.,Mou,H。&Yi,H。抗菌肽:多领域的分类,设计,应用和研究进展。正面。微生物。11582779,https://doi.org/10.3389/fmicb.2020.582779(2020年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Divyashree, M. et al. Clinical Applications of Antimicrobial Peptides (AMPs): where do we stand now? Protein Pept. Lett. 27, 120–134, https://doi.org/10.2174/0929866526666190925152957 (2020).Article
Divyashree,M.等人。抗菌肽(AMPs)的临床应用:我们现在的处境如何?蛋白质Pept。利特。27120-134,https://doi.org/10.2174/0929866526666190925152957(2020年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Garcia-Gutierrez, E., Mayer, M. J., Cotter, P. D. & Narbad, A. Gut microbiota as a source of novel antimicrobials. Gut Microbes 10, 1–21, https://doi.org/10.1080/19490976.2018.1455790 (2019).Article
Garcia-Gutierrez,E.,Mayer,M.J.,Cotter,P.D。&Narbad,A。肠道微生物群是新型抗菌剂的来源。肠道微生物10,1-21,https://doi.org/10.1080/19490976.2018.1455790(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ma, Y. et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat. Biotechnol. 40, 921–931, https://doi.org/10.1038/s41587-022-01226-0 (2022).Article
Ma,Y.等人。使用深度学习从人类肠道微生物组中鉴定抗菌肽。美国国家生物技术公司。40921–931,https://doi.org/10.1038/s41587-022-01226-0(2022年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Spanig, S. & Heider, D. Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. BioData Min. 12, 7, https://doi.org/10.1186/s13040-019-0196-x (2019).Article
Spanig,S。&Heider,D。多重耐药病原体抗菌肽分类的编码和模型。生物数据最小值12、7,https://doi.org/10.1186/s13040-019-0196-x(2019年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Veltri, D., Kamath, U. & Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics 34, 2740–2747, https://doi.org/10.1093/bioinformatics/bty179 (2018).Article
Veltri,D.,Kamath,U。和Shehu,A。深度学习提高了抗菌肽的识别。生物信息学342740-2747,https://doi.org/10.1093/bioinformatics/bty179(2018年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, C. et al. AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC Genomics 23, 77, https://doi.org/10.1186/s12864-022-08310-4 (2022).Article
Li,C.等人(AMPlify):用于发现对世卫组织优先病原体有效的新型抗菌肽的专注深度学习模型。BMC基因组学23,77,https://doi.org/10.1186/s12864-022-08310-4(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome. Proc. Natl Acad. Sci. USA 102, 13950–13955, https://doi.org/10.1073/pnas.0506758102 (2005).Mira, A., Martin-Cuadrado, A. B., D’Auria, G. & Rodriguez-Valera, F.
Tettelin,H.等人,《无乳链球菌多种致病分离株的基因组分析:对微生物“泛基因组”的影响》,美国国家科学院院刊10213950-13955,https://doi.org/10.1073/pnas.0506758102(2005年)。米拉,A.,马丁·卡德拉多,A.B.,D'Auria,G.&罗德里格斯·瓦莱拉,F。
The bacterial pan-genome:a new paradigm in microbiology. Int. Microbiol. 13, 45–57, https://doi.org/10.2436/20.1501.01.110 (2010).Article .
细菌泛基因组:微生物学的新范例。国际微生物。13、45-57,https://doi.org/10.2436/20.1501.01.110(2010年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhu, A., Sunagawa, S., Mende, D. R. & Bork, P. Inter-individual differences in the gene content of human gut bacterial species. Genome Biol. 16, 82, https://doi.org/10.1186/s13059-015-0646-9 (2015).Article
Zhu,A.,Sunagawa,S.,Mende,D.R。&Bork,P。人类肠道细菌物种基因含量的个体间差异。基因组生物学。16、82、,https://doi.org/10.1186/s13059-015-0646-9(2015年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tantoso, E. et al. To kill or to be killed: pangenome analysis of Escherichia coli strains reveals a tailocin specific for pandemic ST131. BMC Biol. 20, 146, https://doi.org/10.1186/s12915-022-01347-7 (2022).Article
。BMC生物。20146年,https://doi.org/10.1186/s12915-022-01347-7(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl Acad. Sci. USA 112, E3574–E3581, https://doi.org/10.1073/pnas.1501049112 (2015).Article
。程序。国家科学院。科学。美国112,E3574–E3581,https://doi.org/10.1073/pnas.1501049112(2015年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Manzano-Morales, S., Liu, Y., Gonzalez-Bodi, S., Huerta-Cepas, J. & Iranzo, J. Comparison of gene clustering criteria reveals intrinsic uncertainty in pangenome analyses. Genome Biol. 24, 250, https://doi.org/10.1186/s13059-023-03089-3 (2023).Article
Manzano-Morales,S.,Liu,Y.,Gonzalez-Bodi,S.,Huerta-Cepas,J。&Iranzo,J。基因聚类标准的比较揭示了泛基因组分析的内在不确定性。基因组生物学。24250,https://doi.org/10.1186/s13059-023-03089-3(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Soria, P. S., McGary, K. L. & Rokas, A. Functional divergence for every paralog. Mol. Biol. Evol. 31, 984–992, https://doi.org/10.1093/molbev/msu050 (2014).Article
Soria,P.S.,McGary,K.L。和Rokas,A。每个旁系同源物的功能差异。分子生物学。进化。31984-992,https://doi.org/10.1093/molbev/msu050(2014年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fang, G., Rocha, E. P. & Danchin, A. Persistence drives gene clustering in bacterial genomes. BMC Genomics 9, 4, https://doi.org/10.1186/1471-2164-9-4 (2008).Article
Fang,G.,Rocha,E.P。&Danchin,A。持久性驱动细菌基因组中的基因聚类。BMC基因组学9,4,https://doi.org/10.1186/1471-2164-9-4(2008年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693, https://doi.org/10.1093/bioinformatics/btv421 (2015).Article
Page,A.J.等人,《Roary:快速大规模原核生物泛基因组分析》。生物信息学313691-3693,https://doi.org/10.1093/bioinformatics/btv421(2015年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gautreau, G. et al. PPanGGOLiN: depicting microbial diversity via a partitioned pangenome graph. PLoS Comput. Biol. 16, e1007732, https://doi.org/10.1371/journal.pcbi.1007732 (2020).Article
Gautreau,G。等人。PPanGGOLiN:通过分区泛基因组图描述微生物多样性。PLoS计算机。生物学16,e1007732,https://doi.org/10.1371/journal.pcbi.1007732(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tonkin-Hill, G. et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 21, 180, https://doi.org/10.1186/s13059-020-02090-4 (2020).Article
Tonkin Hill,G.等人,使用Panaroo管道生产抛光的原核泛基因组。基因组生物学。21180,https://doi.org/10.1186/s13059-020-02090-4(2020年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, T. & Yin, Y. Critical assessment of pan-genomic analysis of metagenome-assembled genomes. Brief Bioinform. 23 https://doi.org/10.1093/bib/bbac413 (2022).Horsfield, S. T., Tonkin-Hill, G., Croucher, N. J. & Lees, J. A. Accurate and fast graph-based pangenome annotation and clustering with ggCaller.
Li,T。&Yin,Y。宏基因组组装基因组的泛基因组分析的关键评估。简介Bioinform。23https://doi.org/10.1093/bib/bbac413(2022年)。Horsfield,S.T.,Tonkin Hill,G.,Croucher,N.J。&Lees,J.A。使用ggCaller进行准确快速的基于图形的泛基因组注释和聚类。
Genome Res. 33, 1622–1637, https://doi.org/10.1101/gr.277733.123 (2023).Article .
基因组研究331622-1637,https://doi.org/10.1101/gr.277733.123(2023).文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gurbich, T. A. et al. MGnify genomes: a resource for biome-specific microbial genome catalogues. J. Mol. Biol. 435, 168016, https://doi.org/10.1016/j.jmb.2023.168016 (2023).Article
Gurbich,T.A。等人,《MGnify基因组:生物群落特异性微生物基因组目录的资源》。J、 分子生物学。435168016,https://doi.org/10.1016/j.jmb.2023.168016(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114, https://doi.org/10.1038/s41587-020-0603-3 (2021).Article
Almeida,A。等人。来自人类肠道微生物组的204938个参考基因组的统一目录。美国国家生物技术公司。39105-114,https://doi.org/10.1038/s41587-020-0603-3(2021年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Leviatan, S., Shoer, S., Rothschild, D., Gorodetski, M. & Segal, E. An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species. Nat. Commun. 13, 3863, https://doi.org/10.1038/s41467-022-31502-1 (2022).Article
Leviatan,S.,Shoer,S.,Rothschild,D.,Gorodetski,M。&Segal,E。人类肠道微生物组的扩展参考图揭示了数百种以前未知的物种。国家公社。133863,https://doi.org/10.1038/s41467-022-31502-1(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gounot, J. S. et al. Genome-centric analysis of short and long read metagenomes reveals uncharacterized microbiome diversity in Southeast Asians. Nat. Commun. 13, 6044, https://doi.org/10.1038/s41467-022-33782-z (2022).Article
Gounot,J.S。等人。以基因组为中心的短读和长读宏基因组分析揭示了东南亚人未表征的微生物组多样性。国家公社。,https://doi.org/10.1038/s41467-022-33782-z(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jin, H. et al. A high-quality genome compendium of the human gut microbiome of Inner Mongolians. Nat. Microbiol. 8, 150–161, https://doi.org/10.1038/s41564-022-01270-1 (2023).Article
Jin,H.等人。内蒙古人肠道微生物组的高质量基因组纲要。自然微生物。8150–161,https://doi.org/10.1038/s41564-022-01270-1(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ghazi, A. R., Munch, P. C., Chen, D., Jensen, J. & Huttenhower, C. Strain identification and quantitative analysis in microbial communities. J. Mol. Biol. 434, 167582, https://doi.org/10.1016/j.jmb.2022.167582 (2022).Article
Ghazi,A.R.,Munch,P.C.,Chen,D.,Jensen,J。&Huttenhower,C。微生物群落中的菌株鉴定和定量分析。J、 分子生物学。434167582,https://doi.org/10.1016/j.jmb.2022.167582(2022年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhao, C., Dimitrov, B., Goldman, M., Nayfach, S. & Pollard, K. S. MIDAS2: metagenomic Intra-species diversity analysis system. Bioinformatics 39. https://doi.org/10.1093/bioinformatics/btac713 (2023).Wang, D. et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism.
Zhao,C.,Dimitrov,B.,Goldman,M.,Nayfach,S。&Pollard,K。S。MIDAS2:宏基因组物种内多样性分析系统。生物信息学39。https://doi.org/10.1093/bioinformatics/btac713(2023年)。Wang,D.等人。肠道微生物结构变异作为人类胆汁酸代谢决定因素的表征。
Cell Host Microbe 29, 1802–1814.e1805, https://doi.org/10.1016/j.chom.2021.11.003 (2021).Article .
细胞宿主微生物29802–1814.e1805,https://doi.org/10.1016/j.chom.2021.11.003(2021).文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, R. et al. Gut microbial structural variation associates with immune checkpoint inhibitor response. Nat. Commun. 14, 7421, https://doi.org/10.1038/s41467-023-42997-7 (2023).Article
Liu,R。等人。肠道微生物结构变异与免疫检查点抑制剂反应有关。国家公社。147421,https://doi.org/10.1038/s41467-023-42997-7(2023年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Treangen, T. J., Ondov, B. D., Koren, S. & Phillippy, A. M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15, 524, https://doi.org/10.1186/s13059-014-0524-x (2014).Article
Treangen,T.J.,Ondov,B.D.,Koren,S。和Phillippy,A.M。用于快速核心基因组比对和数千种种内微生物基因组可视化的收获套件。基因组生物学。15524,https://doi.org/10.1186/s13059-014-0524-x(2014年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 27, 626–638, https://doi.org/10.1101/gr.216242.116 (2017).Article
Truong,D.T.,Tett,A.,Pasolli,E.,Huttenhower,C。&Segata,N。微生物菌株水平的种群结构和宏基因组的遗传多样性。基因组研究27626-638,https://doi.org/10.1101/gr.216242.116(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Costea, P. I. et al. metaSNV: a tool for metagenomic strain level analysis. PLoS One 12, e0182392, https://doi.org/10.1371/journal.pone.0182392 (2017).Article
Costea,P.I。等人。metaSNV:宏基因组菌株水平分析的工具。PLoS One 12,e0182392,https://doi.org/10.1371/journal.pone.0182392(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nayfach, S., Rodriguez-Mueller, B., Garud, N. & Pollard, K. S. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 26, 1612–1625, https://doi.org/10.1101/gr.201863.115 (2016).Article
Nayfach,S.,Rodriguez-Mueller,B.,Garud,N。&Pollard,K.S。用于菌株分析的综合宏基因组学管道揭示了细菌传播和生物地理学的新模式。基因组研究261612-1625,https://doi.org/10.1101/gr.201863.115(2016年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shi, Z. J., Dimitrov, B., Zhao, C., Nayfach, S. & Pollard, K. S. Fast and accurate metagenotyping of the human gut microbiome with GT-Pro. Nat. Biotechnol. 40, 507–516, https://doi.org/10.1038/s41587-021-01102-3 (2022).Article
Shi,Z.J.,Dimitrov,B.,Zhao,C.,Nayfach,S。&Pollard,K.S。使用GT-Pro对人类肠道微生物组进行快速准确的基因分型。美国国家生物技术公司。40507–516,https://doi.org/10.1038/s41587-021-01102-3(2022年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, B. Y. et al. Roles of oral microbiota and oral-gut microbial transmission in hypertension. J. Adv. Res. 43, 147–161, https://doi.org/10.1016/j.jare.2022.03.007 (2023).Article
Chen,B.Y.等人。口腔微生物群和口腔肠道微生物传播在高血压中的作用。J、 Adv.Res.43147-161,https://doi.org/10.1016/j.jare.2022.03.007(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Asnicar, F. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2. https://doi.org/10.1128/mSystems.00164-16 (2017).Li, S. S. et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation.
。mSystems 2。https://doi.org/10.1128/mSystems.00164-16(2017年)。Li,S.S.等人。粪便微生物群移植后供体和受体菌株的持久共存。
Science 352, 586–589, https://doi.org/10.1126/science.aad8852 (2016).Article .
科学352586-589,https://doi.org/10.1126/science.aad8852(2016).文章联盟。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schmidt, T. S. B. et al. Drivers and determinants of strain dynamics following fecal microbiota transplantation. Nat. Med. 28, 1902–1912, https://doi.org/10.1038/s41591-022-01913-0 (2022).Article
Schmidt,T.S.B.等人。粪便微生物群移植后菌株动力学的驱动因素和决定因素。《自然医学》第28卷,1902-1912年,https://doi.org/10.1038/s41591-022-01913-0(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ianiro, G. et al. Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nat. Med. 28, 1913–1923, https://doi.org/10.1038/s41591-022-01964-3 (2022).Article
。《自然医学》281913-1923,https://doi.org/10.1038/s41591-022-01964-3(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50, https://doi.org/10.1038/nature11711 (2013).Article
Schloissnig,S.等人。人类肠道微生物组的基因组变异景观。,https://doi.org/10.1038/nature11711(2013年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66, https://doi.org/10.1038/nature23889 (2017).Article
Lloyd Price,J.等人,《扩展人类微生物组项目中的菌株,功能和动力学》。自然550,61-66,https://doi.org/10.1038/nature23889(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vatanen, T. et al. Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nat. Microbiol. 4, 470–479, https://doi.org/10.1038/s41564-018-0321-5 (2019).Article
Vatanen,T。等人。早期人类肠道微生物组的基因组变异和菌株特异性功能适应。自然微生物。4470–479,https://doi.org/10.1038/s41564-018-0321-5(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102, https://doi.org/10.1371/journal.pbio.3000102 (2019).Article
Garud,N.R.,Good,B.H.,Hallatschek,O。&Pollard,K.S。宿主内和宿主间肠道微生物组中细菌的进化动力学。《公共科学图书馆·生物学》。17,e3000102,https://doi.org/10.1371/journal.pbio.3000102(2019年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roodgar, M. et al. Longitudinal linked-read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment. Genome Res. 31, 1433–1446, https://doi.org/10.1101/gr.265058.120 (2021).Article
Roodgar,M。等人。纵向连锁阅读测序揭示了抗生素治疗期间人类肠道微生物组的生态和进化反应。基因组研究311433-1446,https://doi.org/10.1101/gr.265058.120(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505, https://doi.org/10.1038/s41467-019-12476-z (2019).Article
Visconti,A。等人。人类肠道微生物组与宿主代谢之间的相互作用。国家公社。104505,https://doi.org/10.1038/s41467-019-12476-z(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267, https://doi.org/10.1126/science.1223813 (2012).Article
Nicholson,J.K.等人。宿主-肠道微生物群-代谢相互作用。科学3361262-1267,https://doi.org/10.1126/science.1223813(2012年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y., Chen, R., Zhang, D., Qi, S. & Liu, Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed. Pharmacother. 160, 114295, https://doi.org/10.1016/j.biopha.2023.114295 (2023).Article
Zhang,Y.,Chen,R.,Zhang,D.,Qi,S。&Liu,Y。健康和疾病期间宿主和微生物群之间的代谢物相互作用:哪一种喂养另一种?生物医学。药剂师。160114295,https://doi.org/10.1016/j.biopha.2023.114295(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yim, H. et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7, 445–452, https://doi.org/10.1038/nchembio.580 (2011).Article
Yim,H.等人。大肠杆菌代谢工程,用于直接生产1,4-丁二醇。自然化学。生物学7445-452,https://doi.org/10.1038/nchembio.580(2011年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Edwards, J. S. & Palsson, B. O. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274, 17410–17416, https://doi.org/10.1074/jbc.274.25.17410 (1999).Article
Edwards,J.S。&Palsson,B.O。流感嗜血杆菌Rd代谢基因型的系统特性。J、 生物。化学。27417410–17416,https://doi.org/10.1074/jbc.274.25.17410(1999年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, H. et al. RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput. Biol. 14, e1006541, https://doi.org/10.1371/journal.pcbi.1006541 (2018).Article
Wang,H.等人,《RAVEN 2.0:代谢网络重建的多功能工具箱》和天蓝色链霉菌的案例研究。PLoS计算机。生物学14,e1006541,https://doi.org/10.1371/journal.pcbi.1006541(2018年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Karp, P. D. et al. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform 17, 877–890, https://doi.org/10.1093/bib/bbv079 (2016).Article
Karp,P.D.等人,《通路工具19.0版更新:通路/基因组信息学和系统生物学软件》。简介。Bioinform 17877-890,https://doi.org/10.1093/bib/bbv079(2016年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dias, O., Rocha, M., Ferreira, E. C. & Rocha, I. Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res. 43, 3899–3910, https://doi.org/10.1093/nar/gkv294 (2015).Article
Dias,O.,Rocha,M.,Ferreira,E.C。&Rocha,I。用merlin重建基因组规模的代谢模型。核酸研究433899-3910,https://doi.org/10.1093/nar/gkv294(2015年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seaver, S. M. D. et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, D575–D588, https://doi.org/10.1093/nar/gkaa746 (2021).Article .
Seaver,S.M.D.等人。用于整合代谢注释以及植物,真菌和微生物代谢模型的重建,比较和分析的ModelSEED生物化学数据库。核酸研究49,D575–D588,https://doi.org/10.1093/nar/gkaa746(2021年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982, https://doi.org/10.1038/nbt.1672 (2010).Article
Henry,C.S.等人。基因组规模代谢模型的高通量生成,优化和分析。美国国家生物技术公司。28977-982,https://doi.org/10.1038/nbt.1672(2010年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553, https://doi.org/10.1093/nar/gky537 (2018).Article
Machado,D.,Andrejev,S.,Tramontano,M。&Patil,K.R。快速自动重建微生物物种和群落的基因组规模代谢模型。核酸研究467542-7553,https://doi.org/10.1093/nar/gky537(2018年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zimmermann, J., Kaleta, C. & Waschina, S. gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol. 22, 81, https://doi.org/10.1186/s13059-021-02295-1 (2021).Article
Zimmermann,J.,Kaleta,C。&Waschina,S。gapseq:细菌代谢途径的知情预测和准确代谢模型的重建。基因组生物学。22、81、,https://doi.org/10.1186/s13059-021-02295-1(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276, https://doi.org/10.1038/s41587-020-0446-y (2020).Article
Lieven,C。等人。用于标准化基因组规模代谢模型测试的备忘录。美国国家生物技术公司。38272–276,https://doi.org/10.1038/s41587-020-0446-y(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–D214, https://doi.org/10.1093/nar/gkt1226 (2014).Article
Overbeek,R.等人。使用子系统技术(RAST)对微生物基因组进行种子和快速注释。核酸研究42,D206–D214,https://doi.org/10.1093/nar/gkt1226(2014年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Magnusdottir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89, https://doi.org/10.1038/nbt.3703 (2017).Article
Magnusdottir,S.等人。为773个人类肠道微生物群成员产生基因组规模的代谢重建。美国国家生物技术公司。35,81-89,https://doi.org/10.1038/nbt.3703(2017年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat. Biotechnol. 41, 1320–1331, https://doi.org/10.1038/s41587-022-01628-0 (2023).Article
Heinken,A.等人。用于个性化医学的7302种人类微生物的基因组规模代谢重建。美国国家生物技术公司。411320–1331,https://doi.org/10.1038/s41587-022-01628-0(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
King, Z. A. et al. BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522, https://doi.org/10.1093/nar/gkv1049 (2016).Article
King,Z.A.等人,《BiGG模型:整合,标准化和共享基因组规模模型的平台》。核酸研究44,D515–D522,https://doi.org/10.1093/nar/gkv1049(2016年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
UniProt, C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489, https://doi.org/10.1093/nar/gkaa1100 (2021).Article
UniProt,C。UniProt:2021年的通用蛋白质知识库。核酸研究49,D480–D489,https://doi.org/10.1093/nar/gkaa1100(2021年)。文章
CAS
中科院
Google Scholar
谷歌学者
Saier, M. H. Jr, Reddy, V. S., Tamang, D. G. & Vastermark, A. The transporter classification database. Nucleic Acids Res. 42, D251–D258, https://doi.org/10.1093/nar/gkt1097 (2014).Article
。核酸研究42,D251–D258,https://doi.org/10.1093/nar/gkt1097(2014年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Becker, S. A. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2, 727–738, https://doi.org/10.1038/nprot.2007.99 (2007).Article
Becker,S.A.等人,《基于约束模型的细胞代谢定量预测:COBRA工具箱》。自然协议。2727-738,https://doi.org/10.1038/nprot.2007.99(2007年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Heinken, A. & Thiele, I. Microbiome Modelling Toolbox 2.0: efficient, tractable modelling of microbiome communities. Bioinformatics 38, 2367–2368, https://doi.org/10.1093/bioinformatics/btac082 (2022).Article
Heinken,A。&Thiele,I。微生物组建模工具箱2.0:微生物群落的有效,易处理的建模。生物信息学382367-2368,https://doi.org/10.1093/bioinformatics/btac082(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis? Nat. Biotechnol. 28, 245–248, https://doi.org/10.1038/nbt.1614 (2010).Article
Orth,J.D.,Thiele,I。和Palsson,B.O。什么是通量平衡分析?美国国家生物技术公司。28245-248,https://doi.org/10.1038/nbt.1614(2010年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702, https://doi.org/10.1038/s41596-018-0098-2 (2019).Article
Heirendt,L.等人。使用COBRA Toolbox v.3.0创建和分析基于生化约束的模型。自然协议。14639-702,https://doi.org/10.1038/s41596-018-0098-2(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jung, T. S., Yeo, H. C., Reddy, S. G., Cho, W. S. & Lee, D. Y. WEbcoli: an interactive and asynchronous web application for in silico design and analysis of genome-scale E.coli model. Bioinformatics 25, 2850–2852, https://doi.org/10.1093/bioinformatics/btp496 (2009).Article
。生物信息学252850-2852,https://doi.org/10.1093/bioinformatics/btp496(2009年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, S. Y. et al. MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli. Genome Inf. 14, 23–33 (2003).CAS
Lee,S.Y.等人。MetaFluxNet,一种用于代谢途径构建和分析的程序包,及其在大肠杆菌大规模代谢通量分析中的应用。基因组信息14,23-33(2003)。中科院
Google Scholar
谷歌学者
Klamt, S., Saez-Rodriguez, J. & Gilles, E. D. Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst. Biol. 1, 2, https://doi.org/10.1186/1752-0509-1-2 (2007).Article
Klamt,S.,Saez-Rodriguez,J。&Gilles,E.D。使用CellNetAnalyzer对细胞网络进行结构和功能分析。BMC系统。生物学1、2,https://doi.org/10.1186/1752-0509-1-2(2007年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331, https://doi.org/10.1016/j.cmet.2015.07.001 (2015).Article
Shoaie,S.等人。量化饮食诱导的人类肠道微生物组代谢变化。细胞代谢。22320–331,https://doi.org/10.1016/j.cmet.2015.07.001(2015年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bauer, E., Zimmermann, J., Baldini, F., Thiele, I. & Kaleta, C. BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 13, e1005544, https://doi.org/10.1371/journal.pcbi.1005544 (2017).Article
Bauer,E.,Zimmermann,J.,Baldini,F.,Thiele,I。&Kaleta,C。BacArena:复杂群落中异质微生物的基于个体的代谢建模。PLoS计算机。生物学13,e1005544,https://doi.org/10.1371/journal.pcbi.1005544(2017年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454, https://doi.org/10.1073/pnas.1421834112 (2015).Article
Zelezniak,A。等人。代谢依赖性驱动物种在不同微生物群落中共存。程序。国家科学院。科学。美国1126449–6454,https://doi.org/10.1073/pnas.1421834112(2015年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hertel, J., Heinken, A., Martinelli, F. & Thiele, I. Integration of constraint-based modeling with fecal metabolomics reveals large deleterious effects of Fusobacterium spp. on community butyrate production. Gut Microbes 13, 1–23, https://doi.org/10.1080/19490976.2021.1915673 (2021).Article .
Hertel,J.,Heinken,A.,Martinelli,F。&Thiele,I。将基于约束的建模与粪便代谢组学相结合,揭示了梭杆菌属(Fusobacterium spp.)对社区丁酸盐生产的巨大有害影响。肠道微生物13,1-23,https://doi.org/10.1080/19490976.2021.1915673(2021年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hertel, J. et al. Integrated analyses of microbiome and longitudinal metabolome data reveal microbial-host interactions on Sulfur Metabolism in Parkinson’s disease. Cell Rep. 29, 1767–1777.e1768, https://doi.org/10.1016/j.celrep.2019.10.035 (2019).Article
Hertel,J.等人。微生物组和纵向代谢组数据的综合分析揭示了帕金森病中硫代谢的微生物-宿主相互作用。Cell Rep.291767–1777.e1768,https://doi.org/10.1016/j.celrep.2019.10.035(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hale, V. L. et al. Synthesis of multi-omic data and community metabolic models reveals insights into the role of hydrogen sulfide in colon cancer. Methods 149, 59–68, https://doi.org/10.1016/j.ymeth.2018.04.024 (2018).Article
Hale,V.L.等人,《多组学数据和社区代谢模型的综合》揭示了硫化氢在结肠癌中的作用。方法149,59-68,https://doi.org/10.1016/j.ymeth.2018.04.024(2018年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753, https://doi.org/10.1038/s41579-019-0256-8 (2019).Article
Kolodziejczyk,A.A.,Zheng,D。和Elinav,E。饮食-微生物群相互作用和个性化营养。自然修订版微生物学。17742-753,https://doi.org/10.1038/s41579-019-0256-8(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nielsen, J. Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab. 25, 572–579, https://doi.org/10.1016/j.cmet.2017.02.002 (2017).Article
Nielsen,J。代谢系统生物学:发展个性化和精准医学的驱动力。细胞代谢。25572-579,https://doi.org/10.1016/j.cmet.2017.02.002(2017年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat. Biotechnol. 38, 701–707, https://doi.org/10.1038/s41587-020-0422-6 (2020).Article
Moss,E.L.,Maghini,D.G。&Bhatt,A.S。使用纳米孔测序从微生物组中完成闭合的细菌基因组。美国国家生物技术公司。38701-707,https://doi.org/10.1038/s41587-020-0422-6(2020年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, C. Y., Ma, J. & Lee, I. HiFi metagenomic sequencing enables assembly of accurate and complete genomes from human gut microbiota. Nat. Commun. 13, 6367, https://doi.org/10.1038/s41467-022-34149-0 (2022).Article
Kim,C.Y.,Ma,J。&Lee,I。HiFi宏基因组测序能够从人类肠道微生物群中组装准确和完整的基因组。国家公社。136367,https://doi.org/10.1038/s41467-022-34149-0(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Abdill, R. J., Adamowicz, E. M. & Blekhman, R. Public human microbiome data are dominated by highly developed countries. PLoS Biol. 20, e3001536, https://doi.org/10.1371/journal.pbio.3001536 (2022).Article
Abdill,R.J.,Adamowicz,E.M。和Blekhman,R。公共人类微生物组数据由高度发达国家主导。《公共科学图书馆·生物学》。20,e3001536,https://doi.org/10.1371/journal.pbio.3001536(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Feehery, G. R. et al. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLoS One 8, e76096, https://doi.org/10.1371/journal.pone.0076096 (2013).Article
Feehery,G.R.等人。一种从污染的脊椎动物宿主DNA中选择性富集微生物DNA的方法。PLoS One 8,e76096,https://doi.org/10.1371/journal.pone.0076096(2013年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nelson, M. T. et al. Human and extracellular DNA depletion for metagenomic analysis of complex clinical infection samples yields optimized viable microbiome profiles. Cell Rep. 26, 2227–2240.e2225, https://doi.org/10.1016/j.celrep.2019.01.091 (2019).Article
Nelson,M.T.等人。用于复杂临床感染样品宏基因组分析的人和细胞外DNA消耗产生优化的活微生物组谱。细胞代表262227–2240.e2225,https://doi.org/10.1016/j.celrep.2019.01.091(2019年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marotz, C. A. et al. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome 6, 42, https://doi.org/10.1186/s40168-018-0426-3 (2018).Article
Marotz,C.A.等人。通过化学宿主DNA消耗改进唾液鸟枪宏基因组学。微生物组6,42,https://doi.org/10.1186/s40168-018-0426-3(2018年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu-Woods, N. J. et al. Microbial-enrichment method enables high-throughput metagenomic characterization from host-rich samples. Nat. Methods 20, 1672–1682, https://doi.org/10.1038/s41592-023-02025-4 (2023).Article
Wu Woods,N.J。等人。微生物富集方法可以从富含宿主的样品中进行高通量宏基因组表征。自然方法201672-1682,https://doi.org/10.1038/s41592-023-02025-4(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Heravi, F. S., Zakrzewski, M., Vickery, K. & Hu, H. Host DNA depletion efficiency of microbiome DNA enrichment methods in infected tissue samples. J. Microbiol. Methods 170, 105856, https://doi.org/10.1016/j.mimet.2020.105856 (2020).Article
Heravi,F.S.,Zakrzewski,M.,Vickery,K。&Hu,H。宿主DNA耗尽感染组织样品中微生物组DNA富集方法的效率。J、 微生物。方法170105856,https://doi.org/10.1016/j.mimet.2020.105856(2020年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ahannach, S. et al. Microbial enrichment and storage for metagenomics of vaginal, skin, and saliva samples. iScience 24, 103306, https://doi.org/10.1016/j.isci.2021.103306 (2021).Article
Ahannach,S.等人。阴道,皮肤和唾液样品宏基因组学的微生物富集和储存。iScience 24103306,https://doi.org/10.1016/j.isci.2021.103306(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis research was supported by the Korea Health Technology R&D Project, Korea Health Industry Development Institute (KHIDI), Ministry of Health & Welfare, Republic of Korea grant HI19C1344 (NY). P.B. was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK125382).
下载参考文献致谢本研究得到了韩国卫生技术研发项目,韩国卫生与福利部韩国卫生产业发展研究所(KHIDI)的支持,韩国HI19C1344(NY)。P、 B.得到了国家糖尿病、消化和肾脏疾病研究所(R01 DK125382)的支持。
The funding agencies had no role in the design and preparation of this manuscript.Author informationAuthors and AffiliationsDepartment of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of KoreaNayeon Kim, Junyeong Ma, Wonjong Kim, Jungyeon Kim & Insuk LeeDepartment of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USAPeter BelenkyPOSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of KoreaInsuk LeeAuthorsNayeon KimView author publicationsYou can also search for this author in.
资助机构在这份手稿的设计和准备中没有任何作用。作者信息作者和附属机构延世大学生命科学与生物技术学院生物技术系,首尔,03722,大韩民国Ayeon Kim,Junyeong Ma,Wonjong Kim,Jungyeon Kim&Insuk Lee布朗大学分子微生物学与免疫学系,普罗维登斯,RI,02912,美国彼得·贝伦基邮政技术中心,浦项科技大学(POSTECH),浦项,37673,大韩民国作者Nayeon KimView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarJunyeong MaView author publicationsYou can also search for this author in
PubMed Google ScholarJunyeong MaView作者出版物您也可以在
PubMed Google ScholarWonjong KimView author publicationsYou can also search for this author in
PubMed Google ScholarWonjong KimView作者出版物您也可以在
PubMed Google ScholarJungyeon KimView author publicationsYou can also search for this author in
PubMed Google ScholarJungyeon KimView作者出版物您也可以在
PubMed Google ScholarPeter BelenkyView author publicationsYou can also search for this author in
PubMed Google ScholarInsuk LeeView author publicationsYou can also search for this author in
PubMed Google ScholarInsuk LeeView作者出版物您也可以在
PubMed Google ScholarCorresponding authorsCorrespondence to
PubMed谷歌学者通讯作者通讯
Peter Belenky or Insuk Lee.Ethics declarations
彼得·贝伦基或因苏克·李。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary Table 1Rights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充表1权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleKim, N., Ma, J., Kim, W. et al. Genome-resolved metagenomics: a game changer for microbiome medicine.
转载和许可本文引用本文Kim,N.,Ma,J.,Kim,W。等人。基因组解析宏基因组学:微生物组医学的游戏规则改变者。
Exp Mol Med (2024). https://doi.org/10.1038/s12276-024-01262-7Download citationReceived: 13 December 2023Revised: 06 March 2024Accepted: 25 March 2024Published: 01 July 2024DOI: https://doi.org/10.1038/s12276-024-01262-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Exp Mol Med(2024)。https://doi.org/10.1038/s12276-024-01262-7Download引文接收日期:2023年12月13日修订日期:2024年3月6日接受日期:2024年3月25日发布日期:2024年7月1日OI:https://doi.org/10.1038/s12276-024-01262-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供