EN
登录

PLD1是癌症干性和化疗耐药性的关键参与者:PI3K/Akt和Wnt/β-catenin通路之间串扰的治疗靶向

PLD1 is a key player in cancer stemness and chemoresistance: Therapeutic targeting of cross-talk between the PI3K/Akt and Wnt/β-catenin pathways

Nature 等信源发布 2024-07-01 08:55

可切换为仅中文


AbstractThe development of chemoresistance is a major challenge in the treatment of several types of cancers in clinical settings. Stemness and chemoresistance are the chief causes of poor clinical outcomes. In this context, we hypothesized that understanding the signaling pathways responsible for chemoresistance in cancers is crucial for the development of novel targeted therapies to overcome drug resistance.

摘要化疗耐药的发展是临床治疗几种癌症的主要挑战。干性和化学抗性是临床结果不佳的主要原因。在这种情况下,我们假设了解负责癌症化学抗性的信号传导途径对于开发克服耐药性的新型靶向疗法至关重要。

Among the aberrantly activated pathways, the PI3K-Akt/Wnt/β-catenin signaling pathway is clinically implicated in malignancies such as colorectal cancer (CRC) and glioblastoma multiforme (GBM). Aberrant dysregulation of phospholipase D (PLD) has been implicated in several malignancies, and oncogenic activation of this pathway facilitates tumor proliferation, stemness, and chemoresistance.

。磷脂酶D(PLD)的异常失调与几种恶性肿瘤有关,该途径的致癌激活促进肿瘤增殖,干性和化学抗性。

Crosstalk involving the PLD and Wnt/β-catenin pathways promotes the progression of CRC and GBM and reduces the sensitivity of cancer cells to standard therapies. Notably, both pathways are tightly regulated and connected at multiple levels by upstream and downstream effectors. Thus, gaining deeper insights into the interactions between these pathways would help researchers discover unique therapeutic targets for the management of drug-resistant cancers.

涉及PLD和Wnt/β-连环蛋白途径的串扰促进CRC和GBM的进展,并降低癌细胞对标准疗法的敏感性。值得注意的是,这两种途径都受到上游和下游效应子的严格调控并在多个层面上连接。因此,深入了解这些途径之间的相互作用将有助于研究人员发现治疗耐药癌症的独特治疗靶点。

Here, we review the molecular mechanisms by which PLD signaling stimulates stemness and chemoresistance in CRC and GBM. Thus, the current review aims to address the importance of PLD as a central player coordinating cross-talk between the PI3K/Akt and Wnt/β-catenin pathways and proposes the possibility of targeting these pathways to improve cancer therapy and overcome drug resistance..

在这里,我们回顾了PLD信号刺激CRC和GBM中干性和化学抗性的分子机制。因此,目前的综述旨在解决PLD作为协调PI3K/Akt和Wnt/β-连环蛋白之间串扰的中心参与者的重要性。途径,并提出了靶向这些途径以改善癌症治疗和克服耐药性的可能性。。

IntroductionOne of the current challenges in comprehensive cancer treatment is recurrence, which occurs after a period of remission, thereby contributing to treatment failure and disease progression. Colorectal cancer (CRC) continues to be one of the main causes of cancer-related deaths because patients exhibit disease progression and a poor prognosis related to resistance to current therapies.

引言目前综合癌症治疗面临的挑战之一是复发,复发发生在缓解期后,从而导致治疗失败和疾病进展。结直肠癌(CRC)仍然是癌症相关死亡的主要原因之一,因为患者表现出疾病进展和与对当前疗法的耐药性相关的不良预后。

Glioblastoma multiforme (GBM) is a devastating primary glial brain tumor; its overall prognosis remains dismal, and there is an unmet need for effective therapeutic strategies. Within the tumor bulk, there is a small population of neoplastic units, termed cancer stem cells (CSCs), and these cells play a vital role in CRC or GBM tumorigenesis, progression, maintenance, invasion and recurrence1,2,3,4.

多形性胶质母细胞瘤(GBM)是一种破坏性的原发性神经胶质脑肿瘤;其总体预后仍然不佳,对有效治疗策略的需求尚未得到满足。在肿瘤体积内,有一小部分肿瘤单位,称为癌症干细胞(CSCs),这些细胞在CRC或GBM肿瘤发生,进展,维持,侵袭和复发中起着至关重要的作用1,2,3,4。

Although the oncogenic roles of CSCs have not yet been completely elucidated, these slowly dividing cells are different from rapidly dividing tumor cells and are difficult to target using conventional therapies without harming adjacent nonneoplastic tissues5. Therefore, it is important to understand the mechanisms through which CSCs cause recurrence from several perspectives.

虽然CSCs的致癌作用尚未完全阐明,但这些缓慢分裂的细胞与快速分裂的肿瘤细胞不同,并且难以使用常规疗法靶向而不损害相邻的非肿瘤组织5。。

The CSC microenvironment stimulates signaling pathways such as the Wnt, Notch, and Hedgehog pathways to facilitate metastasis, invasion, and anoikis evasion6,7,8. Among the various signaling pathways involved in CSC-driven chemoresistance, aberrant activation of Wnt signaling appears to be essential for the maintenance of CSC populations, consequently altering patient clinical outcomes.

CSC微环境刺激信号通路,如Wnt,Notch和Hedgehog通路,以促进转移,侵袭和失巢凋亡6,7,8。在涉及CSC驱动的化学抗性的各种信号传导途径中,Wnt信号传导的异常激活似乎对于维持CSC群体至关重要,从而改变患者的临床结果。

Remarkably, 90% of CRC patients exhibit aberrant activation of the canonical Wnt/β-catenin signaling pathway9,10. Dysregulation of the Wnt/β-catenin pathway plays a fundamental role in the genesis and progression of several types .

值得注意的是,90%的CRC患者表现出经典Wnt/β-连环蛋白信号通路的异常激活9,10。Wnt/β-连环蛋白途径的失调在几种类型的发生和发展中起着重要作用。

ReferencesEbrahimi, N. et al. Cancer stem cells in colorectal cancer: signaling pathways involved in stemness and therapy resistance. Crit. Rev. Oncol. Hematol. 182, 103920 (2023).Article

参考文献Sebrahimi,N。等。结直肠癌中的癌症干细胞:涉及干性和治疗抗性的信号传导途径。暴击。。血液学。182103920(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Telang, N. Drug-resistant stem cells: novel approach for colon cancer therapy. Int. J. Mol. Sci. 23, 2519 (2022).Article

特朗,N。耐药干细胞:结肠癌治疗的新方法。。232519(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nasrolahi, A. et al. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 101, 110493 (2023).Article

Nasrolahi,A。等人。控制神经胶质瘤癌症干细胞行为的信号通路。细胞信号101110493(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tomar, M. S., Kumar, A., Srivastava, C. & Shrivastava, A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys. Acta Rev. Cancer 1876, 188616 (2021).Article

Tomar,M.S.,Kumar,A.,Srivastava,C。&Shrivastava,A。阐明胶质瘤中替莫唑胺耐药的机制和克服耐药的策略。Biochim Biophys公司。《癌症学报》1876188616(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Boyd, N. H. et al. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 11, 665–683 (2021).Article

Boyd,N.H.等人。胶质瘤干细胞及其在低氧肿瘤微环境中的作用。Theranostics 11665-683(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).Article

Schwitalla,S.等人。通过去分化和获得干细胞样特性引发的肠道肿瘤发生。细胞152,25-38(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Saygin, C., Matei, D., Majeti, R., Reizes, O. & Lathia, J. D. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 24, 25–40 (2019).Article

Saygin,C.,Matei,D.,Majeti,R.,Reizes,O.&Lathia,J.D。针对临床中的癌症干性:从炒作到希望。细胞干细胞24,25-40(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Aramini, B. et al. Dissecting tumor growth: the role of cancer stem cells in drug resistance and recurrence. Cancers (Basel) 14, 976 (2022).Article

Aramini,B.等人,《解剖肿瘤生长:癌症干细胞在耐药性和复发中的作用》。癌症(巴塞尔)14976(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yuan, S. et al. Role of Wnt/β-catenin signaling in the chemoresistance modulation of colorectal cancer. Biomed. Res. Int. 2020, 9390878 (2020).Article

。生物医学。Res.Int.2020,9390878(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bian, J., Dannappel, M., Wan, C. & Firestein, R. Transcriptional regulation of Wnt/β-catenin pathway in colorectal cancer. Cells 9, 2125 (2020).Article

Bian,J.,Dannappel,M.,Wan,C。&Firestein,R。结直肠癌中Wnt/β-连环蛋白途径的转录调控。细胞92125(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, Y. et al. Wnt/β-catenin pathway is a key signaling pathway to trastuzumab resistance in gastric cancer cells. BMC Cancer 23, 922 (2023).Article

Kim,Y。等人。Wnt/β-连环蛋白途径是胃癌细胞中曲妥珠单抗耐药的关键信号通路。BMC癌症23922(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McCord, M., Mukouyama, Y. S., Gilbert, M. R. & Jackson, S. Targeting WNT signaling for multifaceted glioblastoma therapy. Front Cell Neurosci. 11, 318 (2017).Article

McCord,M.,Mukouyama,Y.S.,Gilbert,M.R。&Jackson,S。靶向WNT信号传导用于多方面胶质母细胞瘤治疗。前细胞神经科学。11318(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sareddy, G. R. et al. PELP1 promotes glioblastoma progression by enhancing Wnt/β-catenin signaling. Neurooncol. Adv. 1, vdz042 (2019).PubMed

Sareddy,G.R。等人,PELP1通过增强Wnt/β-连环蛋白信号传导来促进胶质母细胞瘤的进展。神经肿瘤学。。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guan, R., Zhang, X. & Guo, M. Glioblastoma stem cells and Wnt signaling pathway: molecular mechanisms and therapeutic targets. Chin. Neurosurg. J. 6, 25 (2020).Article

Guan,R.,Zhang,X。&Guo,M。胶质母细胞瘤干细胞和Wnt信号通路:分子机制和治疗靶点。下巴。《神经外科杂志》6,25(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kang, D. W. et al. Targeting phospholipase D1 attenuates intestinal tumorigenesis by controlling β-catenin signaling in cancer-initiating cells. J. Exp. Med. 212, 1219–1237 (2015).Article

Kang,D.W.等人。靶向磷脂酶D1通过控制癌症起始细胞中的β-连环蛋白信号传导来减弱肠道肿瘤发生。J、 实验医学2121219-1237(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kang, D. W. et al. Phospholipase D1 inhibition linked to upregulation of ICAT blocks colorectal cancer growth hyperactivated by Wnt/β-catenin and PI3K/Akt signaling. Clin. Cancer Res. 23, 7340–7350 (2017).Article

Kang,D。W。等人。磷脂酶D1抑制与ICAT上调相关,可阻断Wnt/β-连环蛋白和PI3K/Akt信号过度激活的结直肠癌生长。临床。癌症研究237340-7350(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kang, D. W., Hwang, W. C., Noh, Y. N., Park, K. S. & Min, D. S. Phospholipase D1 inhibition sensitizes glioblastoma to temozolomide and suppresses its tumorigenicity. J. Pathol. 252, 304–316 (2020).Article

Kang,D.W.,Hwang,W.C.,Noh,Y.N.,Park,K.S。&Min,D.S。磷脂酶D1抑制使胶质母细胞瘤对替莫唑胺敏感并抑制其致瘤性。J、 病理学。252304-316(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kang, D. W. et al. Phospholipase D1 acts through Akt/TopBP1 and RB1 to regulate the E2F1-dependent apoptotic program in cancer cells. Cancer Res. 77, 142–152 (2017).Article

Kang,D。W。等人,磷脂酶D1通过Akt/TopBP1和RB1起作用,调节癌细胞中E2F1依赖性凋亡程序。癌症研究77142-152(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bruntz, R. C., Lindsley, C. W. & Brown, H. A. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharm. Rev. 66, 1033–1079 (2014).Article

Bruntz,R.C.,Lindsley,C.W。和Brown,H.A。磷脂酶D信号通路和磷脂酸作为癌症的治疗靶点。《药学杂志》第661033-1079期(2014年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, P. & Frohman, M. A. The potential for phospholipase D as a new therapeutic target. Expert Opin. Ther. Targets 11, 707–716 (2007).Article

Huang,P。&Frohman,M.A。磷脂酶D作为新治疗靶点的潜力。专家意见。他们。目标11707-716(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gomez-Cambronero, J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J. Biol. Chem. 289, 22557–22566 (2014).Article

Gomez-Cambronero,J。细胞信号传导中的磷脂酶D:从无数细胞功能到癌症生长和转移。J、 生物。化学。28922557–22566(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kang, D. W., Choi, K. Y. & Min, D. S. Functional regulation of phospholipase D expression in cancer and inflammation. J. Biol. Chem. 289, 22575–22582 (2014).Article

Kang,D.W.,Choi,K.Y。&Min,D.S。磷脂酶D在癌症和炎症中表达的功能调节。J、 生物。化学。28922575–22582(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McDermott, M. I., Wang, Y., Wakelam, M. J. O. & Bankaitis, V. A. Mammalian phospholipase D: function, and therapeutics. Prog. Lipid Res. 78, 101018 (2020).Article

。程序。脂质研究78101018(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yao, Y. et al. Phospholipase D as a key modulator of cancer progression. Biol. Rev. Camb. Philos. Soc. 95, 911–935 (2020).Article

Yao,Y。等人。磷脂酶D作为癌症进展的关键调节剂。生物修订版Camb。菲洛斯。Soc.95911–935(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Brown, H. A., Thomas, P. G. & Lindsley, C. W. Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat. Rev. Drug Discov. 16, 351–367 (2017).Article

Brown,H.A.,Thomas,P.G。&Lindsley,C.W。靶向磷脂酶D治疗癌症,感染和神经退行性疾病。《药物目录》修订版。16351-367(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Selvy, P. E., Lavieri, R. R., Lindsley, C. W. & Brown, H. A. Phospholipase D: enzymology, functionality, and chemical modulation. Chem. Rev. 111, 6064–6119 (2011).Article

Selvy,P.E.,Lavieri,R.R.,Lindsley,C.W。和Brown,H.A。磷脂酶D:酶学,功能和化学调节。化学。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kang, D. W., Choi, K. Y. & Min, D. S. Phospholipase D meets Wnt signaling: a new target for cancer therapy. Cancer Res. 71, 293–297 (2011).Article

Kang,D.W.,Choi,K.Y。和Min,D.S。磷脂酶D满足Wnt信号传导:癌症治疗的新靶点。癌症研究71293-297(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Frias, M. A., Hatipoglu, A. & Foster, D. A. Regulation of mTOR by phosphatidic acid. Trends Endocrinol. Metab. 34, 170–180 (2023).Article

Frias,M.A.,Hatipoglu,A。和Foster,D.A。通过磷脂酸调节mTOR。趋势内分泌。代谢。34170-180(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kang, D. W. et al. Phospholipase D1 drives a positive feedback loop to reinforce the Wnt/beta-catenin/TCF signaling axis. Cancer Res. 70, 4233–4242 (2010).Article

Kang,D。W。等人,磷脂酶D1驱动正反馈回路以增强Wnt/β-连环蛋白/TCF信号轴。癌症研究704233-4242(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kang, D. W. & Min, D. S. Positive feedback regulation between phospholipase D and Wnt signaling promotes Wnt-driven anchorage-independent growth of colorectal cancer cells. PLoS One 5, e12109 (2010).Article

Kang,D。W。&Min,D。S。磷脂酶D和Wnt信号传导之间的正反馈调节促进Wnt驱动的结直肠癌细胞的锚定非依赖性生长。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hwang, W. C. et al. Inhibition of phospholipase D1 induces immunogenic cell death and potentiates cancer immunotherapy in colorectal cancer. Exp. Mol. Med. 54, 1563–1576 (2022).Article

Hwang,W.C.等人。磷脂酶D1的抑制诱导免疫原性细胞死亡并增强结直肠癌的癌症免疫治疗。实验分子医学541563-1576(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hagerstrand, D. et al. Systematic interrogation of 3q26 identifies TLOC1 and SKIL as cancer drivers. Cancer Discov. 3, 1044–1057 (2013).Article

Hagerstrand,D。等人对3q26的系统询问确定TLOC1和SKIL是癌症驱动因素。癌症发现。31044-1057(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kang, D. W. et al. Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFkappaB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J. Biol. Chem. 283, 4094–4104 (2008).Article

Kang,D。W。等人。佛波酯通过PKC/Ras/ERK/NFkappaB依赖性途径上调磷脂酶D1但不上调磷脂酶D2的表达,并增强结肠癌细胞中基质金属蛋白酶-9的分泌。J、 生物。化学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hatakeyama, M. Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor CagA. Oncogene 27, 7047–7054 (2008).Article

Hatakeyama,M。通过多任务幽门螺杆菌毒力因子CagA连接上皮极性和致癌作用。癌基因277047-7054(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kang, D. W. et al. Rebamipide abolishes Helicobacter pylori CagA-induced phospholipase D1 expression via inhibition of NFκB and suppresses invasion of gastric cancer cells. Oncogene 32, 3531–3542 (2013).Article

Rebamide通过抑制NFκB消除幽门螺杆菌CagA诱导的磷脂酶D1表达,并抑制胃癌细胞的侵袭。癌基因323531-3542(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gao, S. et al. Mutated ras induced PLD1 gene expression through increased Sp1 transcription factor. Nagoya J. Med Sci. 71, 127–136 (2009).CAS

Gao,S。等人。突变的ras通过增加Sp1转录因子诱导PLD1基因表达。名古屋J.医学科学。71127-136(2009)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Buchanan, F. G. et al. Requirement of phospholipase D1 activity in H-RasV12-induced transformation. Proc. Natl. Acad. Sci. USA 102, 1638–1642 (2005).Article

Buchanan,F.G.等人。H-RasV12诱导的转化中磷脂酶D1活性的要求。程序。纳特尔。阿卡德。科学。美国1021638-1642(2005)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kikuchi, R. et al. Ewing’s sarcoma fusion protein, EWS/Fli-1 and Fli-1 protein induce PLD2 but not PLD1 gene expression by binding to an ETS domain of 5′ promoter. Oncogene 26, 1802–1810 (2007).Article

Kikuchi,R。等人。尤因肉瘤融合蛋白,EWS/Fli-1和Fli-1蛋白通过与5'启动子的ETS结构域结合而诱导PLD2而不是PLD1基因表达。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Janardhan, S., Srivani, P. & Sastry, G. N. Choline kinase: an important target for cancer. Curr. Med Chem. 13, 1169–1186 (2006).Article

Janardhan,S.,Srivani,P。&Sastry,G.N。胆碱激酶:癌症的重要靶标。货币。医学化学。131169-1186(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brailoiu, E. et al. Choline is an intracellular messenger linking extracellular stimuli to IP3-evoked Ca2+ signals through sigma-1 receptors. Cell Rep. 26, 330–337. e4 (2019).Article

胆碱是一种细胞内信使,通过sigma-1受体将细胞外刺激与IP3诱发的Ca2+信号联系起来。细胞代表26330-337。e4(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chittim, C. L., Martinez del Campo, A. & Balskus, E. P. Gut bacterial phospholipase Ds support disease-associated metabolism by generating choline. Nat. Microbiol. 4, 155–163 (2019).Article

Chittim,C.L.,Martinez del Campo,A。和Balskus,E.P。肠道细菌磷脂酶Ds通过产生胆碱来支持疾病相关的代谢。自然微生物。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Krueger, S. K. & Williams, D. E. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol. Ther. 106, 357–387 (2005).Article

Krueger,S.K。&Williams,D.E。哺乳动物黄素单加氧酶:结构/功能,遗传多态性和在药物代谢中的作用。。他们。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, C., Du, G., Skowronek, K., Frohman, M. A. & Bar-Sagi, D. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat. Cell Biol. 9, 706–712 (2007).Article

Zhao,C.,Du,G.,Skowronek,K.,Frohman,M.A。&Bar Sagi,D。磷脂酶D2产生的磷脂酸将EGFR刺激与Sos激活的Ras偶联。自然细胞生物学。9706-712(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y. & Du, G. Phosphatidic acid signaling regulation of Ras superfamily of small guanosine triphosphatases. Biochim. Biophys. Acta 1791, 850–855 (2009).Article

Zhang,Y。&Du,G。磷脂酸信号调节小鸟苷三磷酸酶Ras超家族。生物化学。生物物理。Acta 1791850–855(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Foster, D. A. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim. Biophys. Acta 1791, 949–955 (2009).Article

Foster,D.A。磷脂酸向mTOR发出信号:人类癌细胞存活的信号。生物化学。生物物理。Acta 1791949–955(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Foster, D. A., Salloum, D., Menon, D. & Frias, M. A. Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J. Biol. Chem. 289, 22583–22588 (2014).Article

Foster,D.A.,Salloum,D.,Menon,D。&Frias,M.A。磷脂酶D和维持磷脂酸水平以调节哺乳动物雷帕霉素靶标(mTOR)。J、 生物。化学。28922583–22588(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. & Chen, J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945 (2001).Article

。科学2941942-1945(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, Y., Zheng, Y. & Foster, D. A. Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 22, 3937–3942 (2003).Article

Chen,Y.,Zheng,Y。&Foster,D.A。磷脂酶D赋予人乳腺癌细胞雷帕霉素抗性。癌基因223937-3942(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, J. et al. Phospholipase D prevents etoposide-induced apoptosis by inhibiting the expression of early growth response-1 and phosphatase and tensin homologue deleted on chromosome 10. Cancer Res. 66, 784–793 (2006).Article

磷脂酶D通过抑制早期生长反应-1和10号染色体上缺失的磷酸酶和张力蛋白同源物的表达来防止依托泊苷诱导的细胞凋亡。癌症研究66784-793(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jang, Y. H. et al. Differential regulation of apoptosis by caspase-mediated cleavage of phospholipase D isozymes. Cell Signal 20, 2198–2207 (2008).Article

Jang,Y.H.等人。通过半胱天冬酶介导的磷脂酶D同工酶切割对细胞凋亡的差异调节。细胞信号202198-2207(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, S. Y. et al. Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells. J. Biol. Chem. 279, 38125–38133 (2004).Article

Kim,S.Y.等人,磷脂酶D同工酶介导表没食子儿茶素没食子酸酯诱导的星形胶质细胞环氧合酶-2的表达。J、 生物。化学。27938125–38133(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jang, J. H., Lee, C. S., Hwang, D. & Ryu, S. H. Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog. Lipid Res. 51, 71–81 (2012).Article

Jang,J.H.,Lee,C.S.,Hwang,D。和Ryu,S.H。通过它们的结合伴侣理解磷脂酶D和磷脂酸的作用。程序。脂质研究51,71-81(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Park, M. H., Bae, S. S., Choi, K. Y. & Min, D. S. Phospholipase D2 promotes degradation of hypoxia-inducible factor-1α independent of lipase activity. Exp. Mol. Med. 47, e196 (2015).Article

Park,M.H.,Bae,S.S.,Choi,K.Y。&Min,D.S。磷脂酶D2促进缺氧诱导因子-1α的降解,而与脂肪酶活性无关。实验分子医学47,e196(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Park, M. H., Choi, K. Y., Jung, Y. & Min, D. S. Phospholipase D1 protein coordinates dynamic assembly of HIF-1α-PHD-VHL to regulate HIF-1α stability. Oncotarget 5, 11857–11872 (2014).Article

Park,M.H.,Choi,K.Y.,Jung,Y。&Min,D.S。磷脂酶D1蛋白协调HIF-1α-PHD-VHL的动态组装以调节HIF-1α的稳定性。Oncotarget511857–11872(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, M. K., Hwang, W. C. & Min, D. S. Pleckstrin homology domain of phospholipase D2 is a negative regulator of focal adhesion kinase. BMB Rep. 54, 112–117 (2021).Article

Kim,M.K.,Hwang,W.C。&Min,D.S。磷脂酶D2的Pleckstrin同源结构域是粘着斑激酶的负调节剂。BMB Rep.54112–117(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, K. et al. ICAT inhibits glioblastoma cell proliferation by suppressing Wnt/β-catenin activity. Cancer Lett. 357, 404–411 (2015).Article

Zhang,K。等人。ICAT通过抑制Wnt/β-连环蛋白活性来抑制胶质母细胞瘤细胞增殖。癌症Lett。357404-411(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).Article

MacDonald,B.T.,Tamai,K。&He,X。Wnt/β-连环蛋白信号传导:成分,机制和疾病。Dev.Cell 17,9-26(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cavallo, R. A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608 (1998).Article

Cavallo,R.A。等人。果蝇Tcf和Groucho相互作用以抑制无翼信号传导活动。自然395604-608(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Roose, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).Article

Roose,J。等人。非洲爪蟾Wnt效应子XTcf-3与Groucho相关的转录抑制因子相互作用。自然395608-612(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tago, K. et al. Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev. 14, 1741–1749 (2000).Article

Tago,K。等人。新型β-连环蛋白相互作用蛋白ICAT抑制Wnt信号传导。Genes Dev.141741-1749(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gottardi, C. J. & Gumbiner, B. M. Role for ICAT in beta-catenin-dependent nuclear signaling and cadherin functions. Am. J. Physiol. Cell Physiol. 286, C747–C756 (2004).Article

Gottardi,C.J。&Gumbiner,B.M。ICAT在β-连环蛋白依赖性核信号传导和钙粘蛋白功能中的作用。Am.J.Physiol。细胞生理学。286,C747–C756(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sekiya, T. et al. Overexpression of Icat induces G(2) arrest and cell death in tumor cell mutants for adenomatous polyposis coli, beta-catenin, or Axin. Cancer Res 62, 3322–3326 (2002).CAS

Sekiya,T。等人。Icat的过表达诱导腺瘤性息肉病大肠杆菌,β-连环蛋白或Axin的肿瘤细胞突变体中的G(2)停滞和细胞死亡。癌症研究623322-3326(2002)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Morris, E. J. et al. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455, 552–556 (2008).Article

Morris,E.J。等人E2F1抑制β-连环蛋白转录,并被pRB和CDK8拮抗。《自然》45552-556(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bramis, J. et al. E2F-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res. 24, 3041–3047 (2004).CAS

Bramis,J。等人。E2F-1转录因子免疫表达与结肠癌的肿瘤生长呈负相关。抗癌研究243041-3047(2004)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, K., Paik, J. C., Wang, B., Lin, F. T. & Lin, W. C. Regulation of TopBP1 oligomerization by Akt/PKB for cell survival. Embo J. 25, 4795–4807 (2006).Article

Liu,K.,Paik,J.C.,Wang,B.,Lin,F.T。&Lin,W.C。通过Akt/PKB调节TopBP1寡聚化以促进细胞存活。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Arqués, O. et al. Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin. Cancer Res. 22, 644–656 (2016).Article

Arqués,O。等人。Tankyrase抑制阻断Wnt/β-连环蛋白途径,并在结直肠癌治疗中恢复对PI3K和AKT抑制剂的耐药性。临床。《癌症研究》22644-656(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tenbaum, S. P. et al. β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat. Med. 18, 892–901 (2012).Article

Tenbaum,S.P。等人,β-连环蛋白赋予对PI3K和AKT抑制剂的抗性,并破坏FOXO3a以促进结肠癌的转移。《自然医学》18892-901(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514–1520 (2011).Article

DeRose,Y.S.等人。源自乳腺癌女性的肿瘤移植物真实地反映了肿瘤病理学,生长,转移和疾病结果。《自然医学》171514-1520(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3, 11–20 (2002).Article

Trimarchi,J.M。和Lees,J.A。E2F家族中的兄弟姐妹竞争。Nat。Rev。Mol。Cell Biol。3,11-20(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lai, P. S. et al. Overexpression of RB1 transcript is significantly correlated with 13q14 allelic imbalance in colorectal carcinomas. Int. J. Cancer 119, 1061–1066 (2006).Article

Lai,P.S.等人。RB1转录本的过表达与结直肠癌中13q14等位基因失衡显着相关。Int.J.Cancer 1191061–1066(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Firestein, R. et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455, 547–551 (2008).Article

CDK8是一种调节β-连环蛋白活性的结直肠癌致癌基因。自然455547-551(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Park, M. H., Ahn, B. H., Hong, Y. K. & Min, D. S. Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappaB/Sp1-mediated signaling pathways. Carcinogenesis 30, 356–365 (2009).Article

Park,M.H.,Ahn,B.H.,Hong,Y.K。&Min,D.S。磷脂酶D的过表达通过蛋白激酶C和蛋白激酶A/NF-κB/Sp1介导的信号通路增强基质金属蛋白酶-2的表达和神经胶质瘤细胞的侵袭。致癌作用30356-365(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kang, D. W. et al. Phospholipase D1 is upregulated by vorinostat and confers resistance to vorinostat in glioblastoma. J. Cell Physiol. 236, 549–560 (2021).Article

Kang,D.W。等人,磷脂酶D1被伏立诺他上调,并赋予胶质母细胞瘤对伏立诺他的抗性。J、 细胞生理学。236549-560(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bruntz, R. C., Taylor, H. E., Lindsley, C. W. & Brown, H. A. Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. J. Biol. Chem. 289, 600–616 (2014).Article

Bruntz,R.C.,Taylor,H.E.,Lindsley,C.W。和Brown,H.A。磷脂酶D2通过直接调节胶质母细胞瘤细胞中的Akt介导存活信号传导。J、 生物。化学。289600–616(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mathews, T. P. et al. Human phospholipase D activity transiently regulates pyrimidine biosynthesis in malignant gliomas. ACS Chem. Biol. 10, 1258–1268 (2015).Article

Mathews,T.P.等人。人磷脂酶D活性瞬时调节恶性胶质瘤中嘧啶的生物合成。ACS化学。生物学101258-1268(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, C. et al. Wnt/beta-Catenin pathway in human glioma: expression pattern and clinical/prognostic correlations. Clin. Exp. Med. 11, 105–112 (2011).Article

Liu,C。等人。人脑胶质瘤中的Wnt/β-连环蛋白途径:表达模式和临床/预后相关性。临床。实验医学11105-112(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gratas, C., Séry, Q., Rabé, M., Oliver, L. & Vallette, F. M. Bak and Mcl-1 are essential for Temozolomide induced cell death in human glioma. Oncotarget 5, 2428–2435 (2014).Article

Gratas,C.,Séry,Q.,Rabé,M.,Oliver,L.&Vallette,F.M.Bak和Mcl-1对于替莫唑胺诱导的人脑胶质瘤细胞死亡至关重要。Oncotarget52428–2435(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yi, G. Z. et al. Akt and β-catenin contribute to TMZ resistance and EMT of MGMT negative malignant glioma cell line. J. Neurol. Sci. 367, 101–106 (2016).Article

Yi,G。Z。等人。Akt和β-连环蛋白有助于MGMT阴性恶性胶质瘤细胞系的TMZ抗性和EMT。J、 神经病学。科学。367101-106(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, Y., Tao, L., Yi, J., Song, H. & Chen, L. The role of canonical Wnt signaling in regulating radioresistance. Cell Physiol. Biochem 48, 419–432 (2018).Article

Zhao,Y.,Tao,L.,Yi,J.,Song,H。&Chen,L。经典Wnt信号在调节放射抗性中的作用。细胞生理学。生物化学48419-432(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kang, D. W. et al. MicroRNA-320a and microRNA-4496 attenuate Helicobacter pylori cytotoxin-associated gene A (CagA)-induced cancer-initiating potential and chemoresistance by targeting β-catenin and ATP-binding cassette, subfamily G, member 2. J. Pathol. 241, 614–625 (2017).Article

Kang,D.W.等人,MicroRNA-320a和MicroRNA-4496通过靶向β-连环蛋白和ATP结合盒,亚家族G,成员2来减弱幽门螺杆菌细胞毒素相关基因A(CagA)诱导的癌症起始潜力和化学抗性。J、 病理学。241614-625(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kang, D. W., Noh, Y. N., Hwang, W. C., Choi, K. Y. & Min, D. S. Rebamipide attenuates Helicobacter pylori CagA-induced self-renewal capacity via modulation of β-catenin signaling axis in gastric cancer-initiating cells. Biochem Pharm. 113, 36–44 (2016).Article

Kang,D.W.,Noh,Y.N.,Hwang,W.C.,Choi,K.Y。&Min,D.S。瑞巴派特通过调节β-连环蛋白信号轴来减弱幽门螺杆菌CagA诱导的自我更新能力。胃癌起始细胞。生物化学制药113,36-44(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).Article

。N、 英语。J、 医学3581148-1159(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Monovich, L. et al. Optimization of halopemide for phospholipase D2 inhibition. Bioorg. Med Chem. Lett. 17, 2310–2311 (2007).Article

。生物组织医学化学。利特。172310-2311(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Loonen, A. J., Soe-Agnie, C. J. & Soudijn, W. Effects of halopemide on GABA receptor binding, uptake and release. Brain Res. 210, 485–492 (1981).Article

Loonen,A.J.,Soe Agnie,C.J。&Soudijn,W。卤哌胺对GABA受体结合,摄取和释放的影响。大脑研究210485-492(1981)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Scott, S. A. et al. Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat. Chem. Biol. 5, 108–117 (2009).Article

Scott,S.A.等人。调节癌细胞侵袭性的同工型选择性磷脂酶D抑制剂的设计。自然化学。生物学杂志5108-117(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lavieri, R. R. et al. Design, synthesis, and biological evaluation of halogenated N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. J. Med. Chem. 53, 6706–6719 (2010).Article

Lavieri,R.R.等人。卤代N-(2-(4-氧代-1-苯基-1,3,8-三氮杂螺[4.5]癸-8-基)乙基)苯甲酰胺的设计,合成和生物学评价:发现同工型选择性小分子磷脂酶D2抑制剂。J、 医学化学。536706-6719(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lewis, J. A. et al. Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: impact of alternative halogenated privileged structures for PLD1 specificity. Bioorg. Med Chem. Lett. 19, 1916–1920 (2009).Article

Lewis,J.A.等人。异构体选择性磷脂酶D(PLD)抑制剂的设计和合成。第一部分:替代卤化特权结构对PLD1特异性的影响。生物组织医学化学。利特。1916年至1920年(2009年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ghim, J., Chelakkot, C., Bae, Y. S., Suh, P. G. & Ryu, S. H. Accumulating insights into the role of phospholipase D2 in human diseases. Adv. Biol. Regul. 61, 42–46 (2016).Article

Ghim,J.,Chelakkot,C.,Bae,Y.S.,Suh,P.G。&Ryu,S.H。积累了磷脂酶D2在人类疾病中作用的见解。高级生物学。法规。61,42-46(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

O’Reilly, M. C. et al. Development of dual PLD1/2 and PLD2 selective inhibitors from a common 1,3,8-Triazaspiro[4.5]decane Core: discovery of Ml298 and Ml299 that decrease invasive migration in U87-MG glioblastoma cells. J. Med. Chem. 56, 2695–2699 (2013).Article

O'Reilly,M.C.等人。从常见的1,3,8-三氮杂螺[4.5]癸烷核心开发双重PLD1/2和PLD2选择性抑制剂:发现Ml298和Ml299可减少U87-MG胶质母细胞瘤细胞的侵袭性迁移。J、 医学化学。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thielmann, I. et al. Redundant functions of phospholipases D1 and D2 in platelet α-granule release. J. Thromb. Haemost. 10, 2361–2372 (2012).Article

Thielmann,I。等人。磷脂酶D1和D2在血小板α颗粒释放中的冗余功能。J、 血栓。血友病。102361-2372(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jang, Y. H., Choi, K. Y. & Min, D. S. Phospholipase D-mediated autophagic regulation is a potential target for cancer therapy. Cell Death Differ. 21, 533–546 (2014).Article

Jang,Y.H.,Choi,K.Y。&Min,D.S。磷脂酶D介导的自噬调节是癌症治疗的潜在靶标。细胞死亡不同。21533-546(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bowling, F. Z. et al. Crystal structure of human PLD1 provides insight into activation by PI(4,5)P(2) and RhoA. Nat. Chem. Biol. 16, 400–407 (2020).Article

Bowling,F.Z。等人。人PLD1的晶体结构提供了对PI(4,5)P(2)和RhoA激活的见解。自然化学。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Metrick, C. M. et al. Human PLD structures enable drug design and characterization of isoenzyme selectivity. Nat. Chem. Biol. 16, 391–399 (2020).Article

Metrick,C.M。等人。人类PLD结构使药物设计和同工酶选择性表征成为可能。自然化学。生物学16391-399(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fucikova, J. et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11, 1013 (2020).Article

Fucikova,J。等人。免疫原性细胞死亡的检测及其与癌症治疗的相关性。细胞死亡Dis。11013(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).Article

Galluzzi,L.,Buqué,A.,Kepp,O.,Zitvogel,L。&Kroemer,G。癌症和传染病中的免疫原性细胞死亡。国家免疫修订版。17,97-111(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xiao, Q. et al. DKK2 imparts tumor immunity evasion through β-catenin-independent suppression of cytotoxic immune-cell activation. Nat. Med. 24, 262–270 (2018).Article

Xiao,Q。等人。DKK2通过β-连环蛋白非依赖性抑制细胞毒性免疫细胞活化来传递肿瘤免疫逃避。《自然医学》24262-270(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mu, C. Y., Huang, J. A., Chen, Y., Chen, C. & Zhang, X. G. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med. Oncol. 28, 682–688 (2011).Article

Mu,C.Y.,Huang,J.A.,Chen,Y.,Chen,C.&Zhang,X.G.肺癌中PD-L1的高表达可能通过抑制肿瘤浸润树突状细胞成熟而导致预后不良和肿瘤细胞免疫逃逸。医学肿瘤学。28682-688(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No. 2023R1A2C100530811, RS-2023-00219297). Figures were created with BioRender.com.Author informationAuthor notesThese authors contributed equally: Seong Hun Lim, Hyesung Lee.Authors and AffiliationsDepartment of Pharmacy, Yonsei University, Incheon, 21983, Republic of KoreaSeong Hun Lim, Hyesung Lee, Hyun Ji Lee, Kuglae Kim, Junjeong Choi, Jung Min Han & Do Sik MinPOSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, Republic of KoreaJung Min HanYonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of KoreaDo Sik MinAuthorsSeong Hun LimView author publicationsYou can also search for this author in.

下载参考文献致谢这项工作得到了韩国政府(MSIT)资助的韩国国家研究基金会(NRF)资助(编号2023R1A2C100530811,RS-2023-00219297)的支持。数字是用BioRender.com.Author informationAuthor notes创建的。这些作者做出了同样的贡献:Seong Hun Lim,Hyesung Lee。作者和附属机构延世大学药学系,仁川,21983,韩国共和国延世大学药学院,洪林,李,李,金,崔俊贞,韩正民和多西明波斯特生物技术中心,浦项科技大学,浦项,37673,韩国共和国延世大学药学院,韩正民韩延世药物科学研究所,仁川,21983,韩国共和国作者出版物你也可以在中搜索这位作者。

PubMed Google ScholarHyesung LeeView author publicationsYou can also search for this author in

PubMed Google ScholarHyesung LeeView作者出版物您也可以在

PubMed Google ScholarHyun Ji LeeView author publicationsYou can also search for this author in

PubMed Google ScholarHyun Ji LeeView作者出版物您也可以在

PubMed Google ScholarKuglae KimView author publicationsYou can also search for this author in

PubMed Google ScholarKuglae KimView作者出版物您也可以在

PubMed Google ScholarJunjeong ChoiView author publicationsYou can also search for this author in

PubMed谷歌学者Junjeong ChoiView作者出版物您也可以在

PubMed Google ScholarJung Min HanView author publicationsYou can also search for this author in

PubMed Google ScholarJung Min HanView作者出版物您也可以在

PubMed Google ScholarDo Sik MinView author publicationsYou can also search for this author in

PubMed Google ScholarDo Sik MinView作者出版物您也可以在

PubMed Google ScholarCorresponding authorCorrespondence to

PubMed谷歌学者通讯社

Do Sik Min.Ethics declarations

Do Sik Min.道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleLim, S.H., Lee, H., Lee, H.J. et al. PLD1 is a key player in cancer stemness and chemoresistance: Therapeutic targeting of cross-talk between the PI3K/Akt and Wnt/β-catenin pathways.

转载和许可本文引用本文Lim,S.H.,Lee,H.,Lee,H.J.等人。PLD1是癌症干性和化学抗性的关键参与者:治疗靶向PI3K/Akt和Wnt/β-连环蛋白途径之间的串扰。

Exp Mol Med (2024). https://doi.org/10.1038/s12276-024-01260-9Download citationReceived: 29 December 2023Revised: 04 March 2024Accepted: 19 March 2024Published: 01 July 2024DOI: https://doi.org/10.1038/s12276-024-01260-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Exp Mol Med(2024)。https://doi.org/10.1038/s12276-024-01260-9Download引文接收日期:2023年12月29日修订日期:2024年3月4日接受日期:2024年3月19日发布日期:2024年7月1日OI:https://doi.org/10.1038/s12276-024-01260-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供