EN
登录

PHGDH:癌症新的治疗靶点

PHGDH: a novel therapeutic target in cancer

Nature 等信源发布 2024-07-01 08:55

可切换为仅中文


AbstractSerine is a key contributor to the generation of one-carbon units for DNA synthesis during cellular proliferation. In addition, it plays a crucial role in the production of antioxidants that prevent abnormal proliferation and stress in cancer cells. In recent studies, the relationship between cancer metabolism and the serine biosynthesis pathway has been highlighted.

摘要丝氨酸是细胞增殖过程中产生DNA合成单碳单位的关键因素。此外,它在抗氧化剂的生产中起着至关重要的作用,抗氧化剂可以防止癌细胞的异常增殖和应激。在最近的研究中,已经强调了癌症代谢与丝氨酸生物合成途径之间的关系。

In this context, 3-phosphoglycerate dehydrogenase (PHGDH) is notable as a key enzyme that functions as the primary rate-limiting enzyme in the serine biosynthesis pathway, facilitating the conversion of 3-phosphoglycerate to 3-phosphohydroxypyruvate. Elevated PHGDH activity in diverse cancer cells is mediated through genetic amplification, posttranslational modification, increased transcription, and allosteric regulation.

在这种情况下,3-磷酸甘油酸脱氢酶(PHGDH)是一种关键酶,可作为丝氨酸生物合成途径中的主要限速酶,促进3-磷酸甘油酸转化为3-磷酸羟基丙酮酸。不同癌细胞中PHGDH活性升高是通过遗传扩增,翻译后修饰,转录增加和变构调节介导的。

Ultimately, these characteristics allow PHGDH to not only influence the growth and progression of cancer but also play an important role in metastasis and drug resistance. Consequently, PHGDH has emerged as a crucial focal point in cancer research. In this review, the structural aspects of PHGDH and its involvement in one-carbon metabolism are investigated, and PHGDH is proposed as a potential therapeutic target in diverse cancers.

最终,这些特征使PHGDH不仅影响癌症的生长和进展,而且在转移和耐药性中发挥重要作用。因此,PHGDH已成为癌症研究的关键焦点。在这篇综述中,研究了PHGDH的结构方面及其参与单碳代谢,并提出PHGDH是多种癌症的潜在治疗靶点。

By elucidating how PHGDH expression promotes cancer growth, the goal of this review is to provide insight into innovative treatment strategies. This paper aims to reveal how PHGDH inhibitors can overcome resistance mechanisms, contributing to the development of effective cancer treatments..

通过阐明PHGDH表达如何促进癌症生长,本综述的目的是提供对创新治疗策略的见解。本文旨在揭示PHGDH抑制剂如何克服耐药机制,有助于开发有效的癌症治疗方法。。

IntroductionSerine provides one-carbon (1C) units for de novo purine and deoxythymidine synthesis, which are crucial for DNA replication during cellular proliferation1. Serine plays a role in the production of glutathione, hypotaurine, and NADPH, which are antioxidants that can prevent the abnormal proliferation of cancer cells and stresses associated with these cells2,3.3-Phosphoglycerate dehydrogenase (PHGDH) is known to play important roles in cancer progression and migration4,5.

引言丝氨酸为从头嘌呤和脱氧胸苷的合成提供了一个碳(1C)单元,这对于细胞增殖过程中的DNA复制至关重要1。。

PHGDH has the capacity to stabilize the oncogenic forkhead box protein M1, a factor implicated in tumor invasion, initiation, and proliferation processes6. Increased PHGDH activity in various cancer cells is mediated through genetic amplification, posttranslational modification, enhanced transcription, and allosteric regulation7,8.

PHGDH具有稳定致癌叉头盒蛋白M1的能力,这是一种与肿瘤侵袭,起始和增殖过程有关的因子6。各种癌细胞中PHGDH活性的增加是通过遗传扩增,翻译后修饰,增强的转录和变构调节来介导的7,8。

Therefore, PHGDH is now recognized as a significant factor in cancer research.PHGDH is one of three sequential enzymes involved in the serine synthesis pathway (SSP). The SSP is an important component of glycolysis and contains the sequential enzymes phosphoserine aminotransferase 1 and phosphoserine phosphatase, in addition to PHGDH9,10.

因此,PHGDH现在被认为是癌症研究的重要因素。PHGDH是参与丝氨酸合成途径(SSP)的三种顺序酶之一。SSP是糖酵解的重要组成部分,除PHGDH9,10外,还含有顺序酶磷酸丝氨酸氨基转移酶1和磷酸丝氨酸磷酸酶。

The activity of this pathway is affected by various processes considered important in cancer research, such as antioxidant production and methylation reactions. PHGDH is known to be a substantial contributor to the importance of this pathway in cancer growth because PHGDH plays the most important role in serine production11.

该途径的活性受癌症研究中重要的各种过程的影响,例如抗氧化剂产生和甲基化反应。已知PHGDH是该途径在癌症生长中的重要性的重要贡献者,因为PHGDH在丝氨酸产生中起着最重要的作用11。

Research on the proteins that regulate PHGDH is ongoing, and it can be seen that PHGDH does not act alone in cancer but has factors through which partnerships are formed7,12,13.In this review, we thoroughly examine the pivotal role of PHGDH and its implications for cancer treatment. With insights drawn from a.

对调节PHGDH的蛋白质的研究正在进行中,可以看出PHGDH在癌症中并不单独起作用,而是具有形成伙伴关系的因素7,12,13。在这篇综述中,我们彻底研究了PHGDH的关键作用及其对癌症治疗的影响。从a。

ReferencesMeiser, J. et al. Serine one-carbon catabolism with formate overflow. Sci. Adv. 2, e1601273 (2016).Article

参考文献Meiser,J。等人。丝氨酸一碳分解代谢与甲酸盐溢出。科学。Adv.2,e1601273(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kurniawan, H. et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 31, 920–936.e927 (2020).Article

Kurniawan,H。等人。谷胱甘肽限制丝氨酸代谢以保持调节性T细胞功能。细胞代谢。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gao, X. et al. Serine availability influences mitochondrial dynamics and function through lipid metabolism. Cell Rep. 22, 3507–3520 (2018).Article

Gao,X。等人。丝氨酸的可用性通过脂质代谢影响线粒体动力学和功能。Cell Rep.223507–3520(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, L. et al. Cysteine catabolism and the serine biosynthesis pathway support pyruvate production during pyruvate kinase knockdown in pancreatic cancer cells. Cancer Metab. 7, 1–13 (2019).Article

Yu,L。等人。半胱氨酸分解代谢和丝氨酸生物合成途径支持胰腺癌细胞中丙酮酸激酶敲低期间丙酮酸的产生。癌症代谢。7,1-13(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Singh, M. et al. Shift from stochastic to spatially-ordered expression of serine-glycine synthesis enzymes in 3D microtumors. Sci. Rep. 8, 9388 (2018).Article

Singh,M.等人在3D微肿瘤中从丝氨酸-甘氨酸合成酶的随机表达转变为空间有序表达。科学。代表89388(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, J. et al. Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead box M1. J. Neuro-Oncol. 111, 245–255 (2013).Article

Liu,J。等人。磷酸甘油酸脱氢酶通过稳定叉头盒M1诱导神经胶质瘤细胞增殖和侵袭。J、 神经肿瘤学。111245-255(2013)。文章

CAS

中科院

Google Scholar

谷歌学者

Wang, K. et al. PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma. Nat. Commun. 14, 1011 (2023).Article

Wang,K。等人。PRMT1的PHGDH精氨酸甲基化促进丝氨酸合成,并代表肝细胞癌的治疗脆弱性。国家公社。141011(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, Q. et al. Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem. Biol. 24, 55–65 (2017).Article

Wang,Q。等。具有抗肿瘤活性的PHGDH和丝氨酸合成选择性变构抑制剂的合理设计。细胞化学。生物学杂志24,55-65(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liao, L. et al. Upregulation of phosphoserine phosphatase contributes to tumor progression and predicts poor prognosis in non‐small cell lung cancer patients. Thorac. Cancer 10, 1203–1212 (2019).Article

Liao,L。等人。磷酸丝氨酸磷酸酶的上调有助于肿瘤进展,并预测非小细胞肺癌患者的预后不良。胸部。癌症101203-1212(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, H. et al. Overexpression of PSAT1 regulated by G9A sustains cell proliferation in colorectal cancer. Signal Transduct. Target. Ther. 5, 47 (2020).Article

Wang,H。等人。由G9A调节的PSAT1的过表达维持结直肠癌中的细胞增殖。信号传输管。目标。他们。5,47(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tajan, M. et al. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat. Commun. 12, 366 (2021).Article

Tajan,M。等人。丝氨酸合成途径抑制与饮食中的丝氨酸和甘氨酸限制合作用于癌症治疗。国家公社。12366(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ou, Y., Wang, S.-J., Jiang, L., Zheng, B. & Gu, W. p53 Protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. J. Biol. Chem. 290, 457–466 (2015).Article

Ou,Y.,Wang,S.-J.,Jiang,L.,Zheng,B。&Gu,W。p53蛋白介导的磷酸甘油酸脱氢酶(PHGDH)调节对于丝氨酸饥饿时的凋亡反应至关重要。J、 生物。化学。290457-466(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, C. et al. Acetylation stabilizes phosphoglycerate dehydrogenase by disrupting the interaction of E3 ligase RNF5 to promote breast tumorigenesis. Cell Rep. 32, 108021 (2020).Article

Wang,C。等人。乙酰化通过破坏E3连接酶RNF5的相互作用来促进乳腺肿瘤发生,从而稳定磷酸甘油酸脱氢酶。Cell Rep.32108021(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Unterlass, J. E. et al. Structural insights into the enzymatic activity and potential substrate promiscuity of human 3-phosphoglycerate dehydrogenase (PHGDH). Oncotarget 8, 104478 (2017).Article

Unterlass,J.E.等人。对人3-磷酸甘油酸脱氢酶(PHGDH)的酶活性和潜在底物混杂性的结构见解。Oncotarget 8104478(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grant, G. A. Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Arch. Biochem. Biophys. 519, 175–185 (2012).Article

Grant,G.A。对比磷酸甘油酸脱氢酶的催化和变构机制。拱门。。生物物理。519175-185(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dai, Z. et al. Multi-omics analysis of the role of PHGDH in colon cancer. Technol. Cancer Res. Treat. 22, 15330338221145994 (2023).Article

Dai,Z.等。PHGDH在结肠癌中作用的多组学分析。技术。癌症研究治疗。2215330338221145994(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. et al. Cul4A-DDB1-mediated monoubiquitination of phosphoglycerate dehydrogenase promotes colorectal cancer metastasis via increased S-adenosylmethionine. J. Clin. Investig. 131, e146187 (2021).Article

Zhang,Y。等人。Cul4A-DDB1介导的磷酸甘油酸脱氢酶单泛素化通过增加S-腺苷甲硫氨酸促进结直肠癌转移。J、 临床。调查。131,e146187(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, J. et al. Parkin ubiquitinates phosphoglycerate dehydrogenase to suppress serine synthesis and tumor progression. J. Clin. Investig. 130, 3253–3269 (2020).Article

Liu,J。等人。Parkin泛素化磷酸甘油酸脱氢酶以抑制丝氨酸合成和肿瘤进展。J、 临床。调查。1303253-3269(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, H. et al. Renal UTX-PHGDH-serine axis regulates metabolic disorders in the kidney and liver. Nat. Commun. 13, 3835 (2022).Article

Chen,H。等人。肾脏UTX-PHGDH-丝氨酸轴调节肾脏和肝脏的代谢紊乱。国家公社。133835(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, F., Marshall, C. B. & Ikura, M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell. Mol. Life Sci. 70, 3989–4008 (2013).Article

Wang,F.,Marshall,C。B。&Ikura,M。肿瘤发生中的转录/表观遗传调节因子CBP/p300:靶标识别中的结构和功能多功能性。细胞。分子生命科学。703989-4008(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, X. et al. ATF3 promotes the serine synthesis pathway and tumor growth under dietary serine restriction. Cell Rep. 36, 109706 (2021).Article

。Cell Rep.36109706(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, G., Li, L. & Zhou, W. USP14 activation promotes tumor progression in hepatocellular carcinoma. Oncol. Rep. 34, 2917–2924 (2015).Article

Huang,G.,Li,L。&Zhou,W。USP14激活促进肝细胞癌的肿瘤进展。Oncol公司。代表342917–2924(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liao, Y. et al. USP1-dependent RPS16 protein stability drives growth and metastasis of human hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. 40, 1–16 (2021).Article

Liao,Y。等。USP1依赖性RPS16蛋白稳定性驱动人肝细胞癌细胞的生长和转移。J、 实验临床。癌症研究40,1-16(2021)。文章

Google Scholar

谷歌学者

Ni, Q. et al. Expression of OTUB1 in hepatocellular carcinoma and its effects on HCC cell migration and invasion. Acta Biochim. Biophys. Sin. 49, 680–688 (2017).Article

Ni,Q。等。OTUB1在肝细胞癌中的表达及其对HCC细胞迁移和侵袭的影响。生物化学学报。生物物理。罪恶。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, Y. et al. Deubiquitinating enzyme Josephin-2 stabilizes PHGDH to promote a cancer stem cell phenotype in hepatocellular carcinoma. Genes Genomics 45, 215–224 (2023).Article

Wang,Y.等人。去泛素化酶Josephin-2稳定PHGDH以促进肝细胞癌中的癌症干细胞表型。基因基因组学45215-224(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yao, B. et al. Hypoxia‐induced cofilin 1 promotes hepatocellular carcinoma progression by regulating the PLD1/AKT pathway. Clin. Transl. Med. 11, e366 (2021).Article

Yao,B。等人。缺氧诱导的cofilin 1通过调节PLD1/AKT途径促进肝细胞癌的进展。临床。翻译。医学杂志11,e366(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, S. et al. Remodeling serine synthesis and metabolism via nanoparticles (NPs)‐mediated CFL1 silencing to enhance the sensitivity of hepatocellular carcinoma to sorafenib. Adv. Sci. 10, 2207118 (2023).Article

Li,S.等人。通过纳米颗粒(NPs)介导的CFL1沉默重塑丝氨酸合成和代谢,以增强肝细胞癌对索拉非尼的敏感性。高级科学。102207118(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Zhao, E., Hou, J. & Cui, H. Serine–glycine-one-carbon metabolism: vulnerabilities in MYCN-amplified neuroblastoma. Oncogenesis 9, 14 (2020).Article

Zhao,E.,Hou,J。&Cui,H。丝氨酸-甘氨酸单碳代谢:MYCN扩增的神经母细胞瘤的脆弱性。肿瘤发生9,14(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shuvalov, O. et al. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 8, 23955 (2017).Article

Shuvalov,O。等人。单碳代谢和核苷酸生物合成是抗癌治疗的有吸引力的靶标。Oncotarget823955(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fox, J. T. & Stover, P. J. Folate‐mediated one‐carbon metabolism. Vitam. Hormones 79, 1–44 (2008).Article

Fox,J.T。和Stover,P.J。叶酸介导的单碳代谢。维塔姆。激素79,1-44(2008)。文章

CAS

中科院

Google Scholar

谷歌学者

Qiu, A. et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127, 917–928 (2006).Article

邱,A。等。肠道叶酸转运蛋白的鉴定和遗传性叶酸吸收不良的分子基础。细胞127917-928(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zheng, Y. et al. Mitochondrial one-carbon pathway supports cytosolic folate integrity in cancer cells. Cell 175, 1546–1560.e1517 (2018).Article

Zheng,Y。等人。线粒体单碳途径支持癌细胞中胞质叶酸的完整性。细胞1751546-1560.e1517(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Labuschagne, C. F., Van Den Broek, N. J., Mackay, G. M., Vousden, K. H. & Maddocks, O. D. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7, 1248–1258 (2014).Article

Labuschagne,C.F.,Van Den Broek,N.J.,Mackay,G.M.,Vousden,K.H。&Maddocks,O.D。丝氨酸,但不支持甘氨酸,支持癌细胞的单碳代谢和增殖。Cell Rep.71248–1258(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014).Article

Fan,J。等人。定量通量分析揭示了叶酸依赖性NADPH的产生。《自然》510298-302(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zheng, Y. et al. Regulation of folate and methionine metabolism by multisite phosphorylation of human methylenetetrahydrofolate reductase. Sci. Rep. 9, 4190 (2019).Article

Zheng,Y。等人。通过人亚甲基四氢叶酸还原酶的多位点磷酸化调节叶酸和蛋氨酸代谢。科学。代表94190(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Newman, A. C. & Maddocks, O. D. One-carbon metabolism in cancer. Br. J. Cancer. 116, 1499–1504 (2017).Article

Newman,A.C。和Maddocks,O.D。癌症中的单碳代谢。Br.J.癌症。1161499-1504(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, W. et al. One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol. Cell 75, 1147–1160. e1145 (2019).Article

Yu,W。等人。单碳代谢支持S-腺苷甲硫氨酸和组蛋白甲基化以驱动炎性巨噬细胞。分子细胞751147-1160。e1145(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Judd, A. M. et al. Bacterial methionine metabolism genes influence Drosophila melanogaster starvation resistance. Appl. Environ. Microbiol. 84, e00662–00618 (2018).Article

Judd,A.M.等人。细菌蛋氨酸代谢基因影响果蝇的饥饿抵抗力。应用。环境。微生物。84,e00662–00618(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Parkhitko, A. A. et al. A genetic model of methionine restriction extends Drosophila health-and lifespan. Proc. Natl Acad. Sci. USA 118, e2110387118 (2021).Article

Parkhitko,A.A。等人。蛋氨酸限制的遗传模型延长了果蝇的健康和寿命。程序。国家科学院。科学。美国118,e2110387118(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

George, A. K. et al. Hydrogen sulfide intervention in cystathionine-β-synthase mutant mouse helps restore ocular homeostasis. Int. J. Ophthalmol. 12, 754 (2019).PubMed

George,A.K.等人。胱硫醚-β-合酶突变小鼠的硫化氢干预有助于恢复眼部稳态。国际眼科杂志。12754(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martínez, Y. et al. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 49, 2091–2098 (2017).Article

Martínez,Y.等人。蛋氨酸在代谢、氧化应激和疾病中的作用。氨基酸492091-2098(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Minois, N., Carmona-Gutierrez, D. & Madeo, F. Polyamines in aging and disease. Aging 3, 716 (2011).Article

Minois,N.,Carmona Gutierrez,D。和Madeo,F。多胺在衰老和疾病中的作用。年龄3716(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lauinger, L. & Kaiser, P. Sensing and signaling of methionine metabolism. Metabolites 11, 83 (2021).Article

Lauinger,L。&Kaiser,P。蛋氨酸代谢的传感和信号传导。代谢物11,83(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deplancke, B. & Gaskins, H. R. Redox control of the transsulfuration and glutathione biosynthesis pathways. Curr. Opin. Clin. Nutr. Metab. Care 5, 85–92 (2002).Article

Deplancke,B。&Gaskins,H.R。氧化还原控制转硫和谷胱甘肽生物合成途径。货币。奥平。临床。营养。代谢。护理5,85-92(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Reid, M. A. et al. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat. Commun. 9, 5442 (2018).Article

Reid,M.A。等人。通过PHGDH合成丝氨酸通过维持中心碳代谢来协调核苷酸水平。国家公社。95442(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maddocks, O. D., Labuschagne, C. F., Adams, P. D. & Vousden, K. H. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol. Cell 61, 210–221 (2016).Article

Maddocks,O.D.,Labuschagne,C.F.,Adams,P.D。&Vousden,K.H。丝氨酸代谢通过癌细胞中的从头ATP合成支持蛋氨酸循环和DNA/RNA甲基化。分子细胞61210-221(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rathore, R., Schutt, C. R. & Van Tine, B. A. PHGDH as a mechanism for resistance in metabolically-driven cancers. Cancer Drug Resist. 3, 762 (2020).CAS

Rathore,R.,Schutt,C.R。&Van Tine,B.A。PHGDH作为代谢驱动的癌症的耐药机制。抗癌药物抵抗。3762(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, X., Tian, C., Cao, Y., Zhao, M. & Wang, K. The role of serine metabolism in lung cancer: from oncogenesis to tumor treatment. Front. Genet. 13, 1084609 (2023).Article

Zhou,X.,Tian,C.,Cao,Y.,Zhao,M。&Wang,K。丝氨酸代谢在肺癌中的作用:从肿瘤发生到肿瘤治疗。正面。基因。131084609(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, H. et al. Comprehensive analysis of PHGDH for predicting prognosis and immunotherapy response in patients with endometrial carcinoma. BMC Med. Genomics 16, 1–14 (2023).

Zhang,H。等。PHGDH综合分析预测子宫内膜癌患者的预后和免疫治疗反应。BMC医学基因组学16,1-14(2023)。

Google Scholar

谷歌学者

Li, S. et al. ADH1C inhibits progression of colorectal cancer through the ADH1C/PHGDH/PSAT1/serine metabolic pathway. Acta Pharmacol. Sin. 43, 2709–2722 (2022).Article

Li,S。等人。ADH1C通过ADH1C/PHGDH/PSAT1/丝氨酸代谢途径抑制结直肠癌的进展。药理学学报。罪恶。432709-2722(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ma, X., Li, B., Liu, J., Fu, Y. & Luo, Y. Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E. J. Exp. Clin. Cancer Res. 38, 1–15 (2019).Article

Ma,X.,Li,B.,Liu,J.,Fu,Y。&Luo,Y。磷酸甘油酸脱氢酶通过与eIF4A1和eIF4E相互作用促进胰腺癌的发展。J、 实验临床。癌症研究38,1-15(2019)。文章

Google Scholar

谷歌学者

Birsoy, K., Garraway, L. A. & Mino-Kenudson, M. Functional genomics reveals serine synthesis is essential in PHGDH-amplified breast cancer. Nature 476, 346–350 (2012).

Birsoy,K.,Garraway,L.A。&Mino-Kenudson,M。功能基因组学揭示丝氨酸合成在PHGDH扩增的乳腺癌中至关重要。《自然》476346-350(2012)。

Google Scholar

谷歌学者

Wang, J. et al. Inhibition of Phosphoglycerate dehydrogenase induces ferroptosis and overcomes enzalutamide resistance in castration-resistant prostate cancer cells. Drug Resist. Updates 70, 100985 (2023).Article

Wang,J。等人。抑制磷酸甘油酸脱氢酶诱导ferroptosis并克服去势抵抗性前列腺癌细胞中的enzalutamide抗性。抗药性。更新70100985(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Sun, W. et al. Targeting serine-glycine-one-carbon metabolism as a vulnerability in cancers. Biomark. Res. 11, 48 (2023).Article

Sun,W.等人将丝氨酸-甘氨酸一碳代谢作为癌症的脆弱性。生物标志物第11、48号决议(2023年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, J. et al. High expression of PHGDH predicts poor prognosis in non-small cell lung cancer. Transl. Oncol. 9, 592–599 (2016).Article

Zhu,J。等人。PHGDH的高表达预示着非小细胞肺癌的预后不良。翻译。Oncol公司。9592-599(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, B. et al. PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep. 19, 2289–2303 (2017).Article

Zhang,B。等人。PHGDH定义了预后不良的肺腺癌的代谢亚型。Cell Rep.192289–2303(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Van de Gucht, M. et al. Inhibition of phosphoglycerate dehydrogenase radiosensitizes human colorectal cancer cells under hypoxic conditions. Cancers 14, 5060 (2022).Article

Van de Gucht,M.等人。在低氧条件下抑制磷酸甘油酸脱氢酶对人结直肠癌细胞的放射增敏作用。癌症145060(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jia, X.-q et al. Increased expression of PHGDH and prognostic significance in colorectal cancer. Transl. Oncol. 9, 191–196 (2016).Article

Jia,X.-q等人。PHGDH在结直肠癌中的表达增加及其预后意义。翻译。Oncol公司。9191-196(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Song, Z., Feng, C., Lu, Y., Lin, Y. & Dong, C. PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer. Gene 642, 43–50 (2018).Article

Song,Z.,Feng,C.,Lu,Y.,Lin,Y。&Dong,C。PHGDH是一种独立的预后标志物,有助于人类胰腺癌的细胞增殖,迁移和侵袭。基因642,43-50(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Itoyama, R. et al. Metabolic shift to serine biosynthesis through 3-PG accumulation and PHGDH induction promotes tumor growth in pancreatic cancer. Cancer Lett. 523, 29–42 (2021).Article

。癌症Lett。523,29-42(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).Article

功能基因组学揭示丝氨酸合成途径在乳腺癌中至关重要。《自然》476346-350(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Samanta, D. et al. PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer Res. 76, 4430–4442 (2016).Article

线粒体氧化还原稳态,乳腺癌干细胞维持和肺转移需要PHGDH表达。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).Article

Chaffer,C.L。和Weinberg,R.A。关于癌细胞转移的观点。科学3311559-1564(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Smith, H. A. & Kang, Y. Determinants of organotropic metastasis. Annu. Rev. Cancer Biol. 1, 403–423 (2017).Article

Smith,H.A。&Kang,Y。器官转移的决定因素。年。癌症生物学评论。1403-423(2017)。文章

Google Scholar

谷歌学者

Rossi, M. et al. PHGDH heterogeneity potentiates cancer cell dissemination and metastasis. Nature 605, 747–753 (2022).Article

Rossi,M。等人。PHGDH异质性增强癌细胞的传播和转移。自然605747-753(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ngo, B. et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov. 10, 1352–1373 (2020).Article

Ngo,B。等人有限的环境丝氨酸和甘氨酸赋予脑转移对PHGDH抑制的敏感性。癌症发现。101352-1373(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rinaldi, G. et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition. Mol. Cell 81, 386–397.e387 (2021).Article

Rinaldi,G。等人。丝氨酸生物合成的体内证据定义了肺转移对mTORC1抑制的敏感性,而不是原发性乳腺肿瘤。分子细胞81386-397.e387(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, H. et al. ZEB1 transcriptionally activates PHGDH to facilitate carcinogenesis and progression of HCC. Cell. Mol. Gastroenterol. Hepatol. 16, 541–556 (2023).Article

Wang,H。等人。ZEB1转录激活PHGDH以促进HCC的癌变和进展。细胞。胃肠病学分子。肝病。16541-556(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jeon, M. J. et al. High phosphoglycerate dehydrogenase expression induces stemness and aggressiveness in thyroid cancer. Thyroid 30, 1625–1638 (2020).Article

Jeon,M.J.等人。高磷酸甘油酸脱氢酶表达诱导甲状腺癌的干性和侵袭性。甲状腺301625-1638(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Duan, X. et al. PHGDH promotes esophageal squamous cell carcinoma progression via Wnt/β-catenin pathway. Cell. Signal. 109, 110736 (2023).Article

Duan,X。等。PHGDH通过Wnt/β-连环蛋白途径促进食管鳞状细胞癌的进展。细胞。信号。109110736(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhai, L., Yang, X., Cheng, Y. & Wang, J. Glutamine and amino acid metabolism as a prognostic signature and therapeutic target in endometrial cancer. Cancer Med. 12, 16337–16358 (2023).Article

翟,L.,杨,X.,程,Y。&Wang,J。谷氨酰胺和氨基酸代谢作为子宫内膜癌的预后特征和治疗靶点。癌症医学1216337-16358(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoon, B. K. et al. PHGDH preserves one-carbon cycle to confer metabolic plasticity in chemoresistant gastric cancer during nutrient stress. Proc. Natl Acad. Sci. USA 120, e2217826120 (2023).Article

Yoon,B.K.等人,PHGDH保留一个碳循环,在营养应激期间赋予化疗耐药胃癌代谢可塑性。程序。国家科学院。科学。美国120,e2217826120(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoshino, H. et al. PHGDH as a key enzyme for serine biosynthesis in HIF2α-targeting therapy for renal cell carcinoma. Cancer Res. 77, 6321–6329 (2017).Article

Yoshino,H。等人。PHGDH作为HIF2α靶向治疗肾细胞癌中丝氨酸生物合成的关键酶。癌症研究776321-6329(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wei, L. et al. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat. Commun. 10, 4681 (2019).Article

Wei,L。等人。全基因组CRISPR/Cas9文库筛选确定PHGDH是HCC中索拉非尼耐药的关键驱动因素。国家公社。104681(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dong, J.-K. et al. Overcoming erlotinib resistance in EGFR mutation-positive lung adenocarcinomas through repression of phosphoglycerate dehydrogenase. Theranostics 8, 1808 (2018).Article

Dong,J.-K.等人。通过抑制磷酸甘油酸脱氢酶克服EGFR突变阳性肺腺癌对厄洛替尼的耐药性。Theranostics 81808(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ross, K. C., Andrews, A. J., Marion, C. D., Yen, T. J. & Bhattacharjee, V. Identification of the serine biosynthesis pathway as a critical component of BRAF inhibitor resistance of melanoma, pancreatic, and non-small cell lung cancer cells. Mol. Cancer Ther. 16, 1596–1609 (2017).Article .

Ross,K.C.,Andrews,A.J.,Marion,C.D.,Yen,T.J。&Bhattacharjee,V。鉴定丝氨酸生物合成途径是黑色素瘤,胰腺癌和非小细胞肺癌细胞BRAF抑制剂抗性的关键组成部分。分子癌症治疗。161596-1609(2017)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zaal, E. A. et al. Bortezomib resistance in multiple myeloma is associated with increased serine synthesis. Cancer Metab. 5, 1–12 (2017).Article

Zaal,E.A.等人。多发性骨髓瘤中硼替佐米耐药与丝氨酸合成增加有关。癌症代谢。5,1-12(2017)。文章

Google Scholar

谷歌学者

Bi, F., An, Y., Sun, T., You, Y. & Yang, Q. PHGDH is upregulated at translational level and implicated in platin-resistant in ovarian cancer cells. Front. Oncol. 11, 643129 (2021).Article

Bi,F.,An,Y.,Sun,T.,You,Y。&Yang,Q。PHGDH在翻译水平上调,并与卵巢癌细胞中的铂耐药有关。正面。Oncol公司。11643129(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, X. & Bai, W. Repression of phosphoglycerate dehydrogenase sensitizes triple-negative breast cancer to doxorubicin. Cancer Chemother. Pharmacol. 78, 655–659 (2016).Article

Zhang,X。&Bai,W。抑制磷酸甘油酸脱氢酶使三阴性乳腺癌对阿霉素敏感。癌症化疗。。78655-659(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pranzini, E. et al. SHMT2-mediated mitochondrial serine metabolism drives 5-FU resistance by fueling nucleotide biosynthesis. Cell Rep. 40, 111233 (2022).Article

Pranzini,E。等人。SHMT2介导的线粒体丝氨酸代谢通过促进核苷酸生物合成来驱动5-FU抗性。Cell Rep.40111233(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, D. et al. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab. 35, 517–534.e518 (2023).Article

Zhang,D。等人。PHGDH介导的内皮代谢驱动胶质母细胞瘤对嵌合抗原受体T细胞免疫疗法的抗性。细胞代谢。35517–534.e518(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, K. et al. Simultaneous suppression of PKM2 and PHGDH elicits synergistic anti-cancer effect in NSCLC. Front. Pharmacol. 14, 1200538 (2023).Article

Wang,K。等人。同时抑制PKM2和PHGDH在NSCLC中引起协同抗癌作用。正面。。141200538(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Metcalf, S. et al. Serine synthesis influences tamoxifen response in ER+ human breast carcinoma. Endocr.-Relat. Cancer 28, 27–37 (2021).Article

Metcalf,S。等人。丝氨酸合成影响ER+人乳腺癌中他莫昔芬的反应。内分泌-相关。癌症28,27-37(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Federico, A. et al. Integrated network pharmacology approach for drug combination discovery: a multi-cancer case study. Cancers 14, 2043 (2022).Article

Federico,A.等人,《药物组合发现的综合网络药理学方法:多癌症病例研究》。癌症142043(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoshino, H. et al. Characterization of PHGDH expression in bladder cancer: potential targeting therapy with gemcitabine/cisplatin and the contribution of promoter DNA hypomethylation. Mol. Oncol. 14, 2190–2202 (2020).Article

Yoshino,H。等。膀胱癌中PHGDH表达的表征:吉西他滨/顺铂的潜在靶向治疗和启动子DNA低甲基化的贡献。分子Oncol。142190-2202(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jing, Z. et al. Downregulation of phosphoglycerate dehydrogenase inhibits proliferation and enhances cisplatin sensitivity in cervical adenocarcinoma cells by regulating Bcl-2 and caspase-3. Cancer Biol. Ther. 16, 541–548 (2015).Article

Jing,Z。等。磷酸甘油酸脱氢酶的下调通过调节Bcl-2和caspase-3抑制宫颈腺癌细胞的增殖并增强顺铂敏感性。癌症生物学。他们。16541-548(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hwang, Y. et al. Co-inhibition of glutaminolysis and one-carbon metabolism promotes ROS accumulation leading to enhancement of chemotherapeutic efficacy in anaplastic thyroid cancer. Cell Death Dis. 14, 515 (2023).Article

Hwang,Y.等。谷氨酰胺分解和单碳代谢的共同抑制促进ROS积累,从而增强甲状腺未分化癌的化疗效果。细胞死亡Dis。14515(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wirth, L. J. et al. Open-label, single-arm, multicenter, phase II trial of lenvatinib for the treatment of patients with anaplastic thyroid cancer. J. Clin. Oncol. 39, 2359 (2021).Article

Wirth,L.J.等人。lenvatinib治疗甲状腺未分化癌患者的开放标签,单臂,多中心,II期临床试验。J、 临床。Oncol公司。392359(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kawakami, Y. et al. Impaired neurogenesis in embryonic spinal cord of Phgdh knockout mice, a serine deficiency disorder model. Neurosci. Res. 63, 184–193 (2009).Article

Kawakami,Y.等人。Phgdh基因敲除小鼠胚胎脊髓神经发生受损,这是一种丝氨酸缺乏症模型。神经科学。第63184-193号决议(2009年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Furuya, S. An essential role for de novo biosynthesis of L-serine in CNS development. Asia Pac. J. Clin. Nutr. 17, 312–315 (2008).CAS

Furuya,S。L-丝氨酸从头生物合成在中枢神经系统发育中的重要作用。亚太地区。J、 临床。营养。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yoshida, K. et al. Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J. Biol. Chem. 279, 3573–3577 (2004).Article

Yoshida,K。等人。靶向破坏小鼠3-磷酸甘油酸脱氢酶基因会导致严重的神经发育缺陷并导致胚胎致死率。J、 生物。化学。2793573-3577(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, X., Sun, M., Jiao, Y., Lin, B. & Yang, Q. PHGDH inhibitor CBR-5884 inhibits epithelial ovarian cancer progression via ROS/Wnt/β-catenin pathway and plays a synergistic role with PARP inhibitor olaparib. Oxid. Med. Cell. Longev. 2022, 9029544 (2022).PubMed

Zhang,X.,Sun,M.,Jiao,Y.,Lin,B。&Yang,Q。PHGDH抑制剂CBR-5884通过ROS/Wnt/β-连环蛋白途径抑制上皮性卵巢癌的进展,并与PARP抑制剂olaparib.oxida发挥协同作用。医学细胞。朗格夫。20229029544(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by the National Research Foundation of Korea (NRF-2021R1A2C2009749 and NRF-2018R1A5A2025079) to S.F.Author informationAuthors and AffiliationsGraduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of KoreaChae Min Lee, Yeseong Hwang, Minki Kim, Ye-Chan Park, Hyeonhui Kim & Sungsoon FangDepartment of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of KoreaChae Min Lee, Yeseong Hwang, Minki Kim, Ye-Chan Park, Hyeonhui Kim & Sungsoon FangChronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Republic of KoreaSungsoon FangSeverance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Republic of KoreaSungsoon FangAuthorsChae Min LeeView author publicationsYou can also search for this author in.

下载参考文献致谢这项工作得到了韩国国家研究基金会(NRF-2021R1A2C2009749和NRF-2018R1A5A2025079)的支持。作者信息作者和附属机构延世大学医学院医学研究生院,Brain Korea 21项目,韩国延世大学医学院,首尔,韩国延世大学医学院,韩国延世大学医学院,江南遣散医院生物医学科学系,韩国延世大学医学院,韩国延世大学医学院,韩国延世大学医学院韩国延世大学医学院系统医学研究中心慢性难治性疾病研究中心,韩国延世大学医学院血管与代谢研究所,韩国延世大学医学院。

PubMed Google ScholarYeseong HwangView author publicationsYou can also search for this author in

PubMed Google ScholarYeseong HwangView作者出版物您也可以在

PubMed Google ScholarMinki KimView author publicationsYou can also search for this author in

PubMed Google ScholarMinki KimView作者出版物您也可以在

PubMed Google ScholarYe-Chan ParkView author publicationsYou can also search for this author in

PubMed Google ScholarYe Chan ParkView作者出版物您也可以在

PubMed Google ScholarHyeonhui KimView author publicationsYou can also search for this author in

PubMed Google ScholarHyeonhui KimView作者出版物您也可以在

PubMed Google ScholarSungsoon FangView author publicationsYou can also search for this author in

PubMed Google ScholarSungsoon FangView作者出版物您也可以在

PubMed Google ScholarContributionsS.F. conceived the manuscript; S.F., C.M.L., and Y.H. designed the structure; S.F. and C.M.L. wrote the manuscript with the coauthors’ inputs; C.M.L. and Y.H. contributed to the whole manuscript; M.K. contributed to the metabolic diseases section; C.M.L.

PubMed谷歌学术贡献。F、 构思了手稿;S、 F.,C.M.L。和Y.H.设计了该结构;S、 ;C、 M.L.和Y.H.为整个手稿做出了贡献;M、 K.为代谢疾病科做出了贡献;C、 M.L。

contributed to the figures; and S.F., C.M.L., Y.C.P., and H.K. reviewed the manuscript.Corresponding authorCorrespondence to.

对数字有贡献;S.F.,C.M.L.,Y.C.P。和H.K.审查了手稿。对应作者对应。

Sungsoon Fang.Ethics declarations

方成顺。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleLee, C.M., Hwang, Y., Kim, M. et al. PHGDH: a novel therapeutic target in cancer.

转载和许可本文引用本文Lee,C.M.,Hwang,Y.,Kim,M。等人。PHGDH:癌症的新型治疗靶点。

Exp Mol Med (2024). https://doi.org/10.1038/s12276-024-01268-1Download citationReceived: 26 December 2023Revised: 18 March 2024Accepted: 01 April 2024Published: 01 July 2024DOI: https://doi.org/10.1038/s12276-024-01268-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Exp Mol Med(2024)。https://doi.org/10.1038/s12276-024-01268-1Download引文接收日期:2023年12月26日修订日期:2024年3月18日接受日期:2024年4月1日发布日期:2024年7月1日OI:https://doi.org/10.1038/s12276-024-01268-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供