商务合作
动脉网APP
可切换为仅中文
AbstractSingle-cell and spatial molecular profiling assays have shown large gains in sensitivity, resolution and throughput. Applying these technologies to specimens from human and model organisms promises to comprehensively catalogue cell types, reveal their lineage origins in development and discern their contributions to disease pathogenesis.
。将这些技术应用于人类和模式生物的标本有望全面分类细胞类型,揭示其在发育中的谱系起源,并辨别其对疾病发病机理的贡献。
Moreover, rapidly dropping costs have made well-controlled perturbation experiments and cohort studies widely accessible, illuminating mechanisms that give rise to phenotypes at the scale of the cell, the tissue and the whole organism. Interpreting the coming flood of single-cell data, much of which will be spatially resolved, will place a tremendous burden on existing computational pipelines.
此外,快速下降的成本使得控制良好的扰动实验和队列研究得到了广泛的应用,阐明了在细胞,组织和整个生物体的规模上产生表型的机制。解释即将到来的单细胞数据洪水,其中大部分将在空间上解决,将给现有的计算管道带来巨大负担。
However, statistical concepts, models, tools and algorithms can be repurposed to solve problems now arising in genetic and molecular biology studies of development and disease. Here, I review how the questions that recent technological innovations promise to answer can be addressed by the major classes of statistical tools..
然而,可以重新利用统计概念,模型,工具和算法来解决目前在发育和疾病的遗传和分子生物学研究中出现的问题。在这里,我回顾了主要类别的统计工具如何解决最近的技术创新有望回答的问题。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springer link上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Regression analysis at single-cell resolution isolates cell types and genes central to pathobiology.Fig. 2: Statistical models of gene expression aim to quantify relative contributions of regulatory DNA sequence, proteins and signals to a gene’s mRNA and protein output.Fig. 3: Identifying molecular mediators of cell–cell interaction with spatial statistics.Fig.
图1:单细胞分辨率的回归分析分离出病理生物学中心的细胞类型和基因。图2:基因表达的统计模型旨在量化调控DNA序列,蛋白质和信号对基因mRNA和蛋白质输出的相对贡献。图3:用空间统计学鉴定细胞间相互作用的分子介质。图。
4: Statistical inference of cell lineage relationships during development using molecular recorders.Fig. 5: Analysing conditional dependence relationships between genes and other experimental factors in single-cell data can reveal regulatory interactions between them.Fig. 6: Forecasting cell fates, states and phenotypes..
4: 使用分子记录仪在发育过程中统计推断细胞谱系关系。。图6:预测细胞命运,状态和表型。。
ReferencesReplogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).Article
ReferencesReplogle,J.M.等人。使用基因组规模扰动序列绘制信息丰富的基因型-表型景观。细胞1852559-2575.e28(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).Article
Srivatsan,S.R.等人以单细胞分辨率大规模多重化学转录组学。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Funk, L. et al. The phenotypic landscape of essential human genes. Cell 185, 4634–4653.e22 (2022).Article
Funk,L.等人,《人类基本基因的表型景观》。细胞1854634-4653.e22(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).Article
Cao,J。等人。哺乳动物器官发生的单细胞转录景观。自然566496-502(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).Article
Cusanovich,D.A。等人。通过组合细胞索引对染色质可及性进行多重单细胞分析。科学348910-914(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mulqueen, R. M. et al. Highly scalable generation of DNA methylation profiles in single cells. Nat. Biotechnol. 36, 428–431 (2018).Article
Mulqueen,R.M.等人。单细胞中DNA甲基化谱的高度可扩展生成。美国国家生物技术公司。36428-431(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).Article
Cao,J.等人。数千个单细胞中染色质可及性和基因表达的联合分析。科学3611380-1385(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).Article
Chen,A。等人。使用DNA纳米球图案阵列的小鼠器官发生的时空转录组图谱。细胞1851777-1792.e21(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chavez, M., Chen, X., Finn, P. B. & Qi, L. S. Advances in CRISPR therapeutics. Nat. Rev. Nephrol. 19, 9–22 (2023).Article
Chavez,M.,Chen,X.,Finn,P.B。&Qi,L.S。CRISPR治疗的进展。。19,9-22(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kemmeren, P. et al. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157, 740–752 (2014).Article
大规模的遗传扰动揭示了调控网络和丰富的基因特异性阻遏物。细胞157740-752(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dorrity, M. W., Saunders, L. M., Queitsch, C., Fields, S. & Trapnell, C. Dimensionality reduction by UMAP to visualize physical and genetic interactions. Nat. Commun. 11, 1537 (2020).Article
Dorrity,M.W.,Saunders,L.M.,Queitsch,C.,Fields,S。&Trapnell,C。UMAP降维以可视化物理和遗传相互作用。国家公社。111537(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Phipson, B. et al. propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).Article
Phipson,B.等人,《螺旋桨:测试单细胞数据中细胞类型比例的差异》。生物信息学384720-4726(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).Article
Heumos,L.等人。跨模式单细胞分析的最佳实践。Genet自然Rev。24550-572(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rozenblatt-Rosen, O., Stubbington MJT, Regev, A. & Teichmann, S. A. The human cell atlas: from vision to reality. Nature 550, 451–453 (2017).Article
Rozenblatt Rosen,O.,Stubbington MJT,Regev,A。&Teichmann,S.A。人类细胞图谱:从视觉到现实。自然550451-453(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saunders, L. M. et al. Embryo-scale reverse genetics at single-cell resolution. Nature 623, 782–791 (2023). This paper deploys massively scalable single-cell RNA-seq on many developing wild-type and mutant zebrafish to measure the consequences of gene disruption on the whole transcriptome in each cell in the animal.Article .
Saunders,L.M.等人,《单细胞分辨率下的胚胎规模反向遗传学》。自然623782-791(2023)。本文在许多正在发育的野生型和突变型斑马鱼上部署了大规模可扩展的单细胞RNA-seq,以测量基因破坏对动物每个细胞中整个转录组的影响。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).Article
Cao,J。等人。胎儿基因表达的人类细胞图谱。科学370,eaba7721(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).Article
Domcke,S.等人,《胎儿染色质可及性的人类细胞图谱》。科学370,eaba7612(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021).Article
大脑倡议细胞普查网络(BICCN)。哺乳动物初级运动皮层的多模式细胞普查和图谱。自然598,86-102(2021)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).Article
Sikkema,L.等人,《健康与疾病中肺的综合细胞图谱》。《自然医学》291563-1577(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables rapid annotation of cell atlases. Nat. Meth. 16, 983–986 (2019).Article
Pliner,H.A.,Shendure,J。和Trapnell,C。监督分类可以快速注释细胞图谱。天然冰毒。16983-986(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Fu, R. et al. clustifyr: an R package for automated single-cell RNA sequencing cluster classification. F1000Res. 9, 223 (2020).Article
Fu,R。等人。clustifyr:用于自动单细胞RNA测序簇分类的R包。。9223(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).Article
Domínguez-Conde,C.等人。跨组织免疫细胞分析揭示了人类的组织特异性特征。科学376,eabl5197(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).Article
Lotfollahi,M.等人。通过转移学习将单细胞数据映射到参考地图集。美国国家生物技术公司。40121-130(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).Article
Kang,J.B.等人。使用Symphony进行高效精确的单细胞参考地图集映射。国家公社。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).Article
Hao,Y.等人。多模式单细胞数据的综合分析。细胞1843573-3587.e29(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Friedman, J., Hastie, T. & Tibshirani, R. Lasso and elastic-net regularized generalized linear models. glmnet https://glmnet.stanford.edu (2009).Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).Article .
Friedman,J.,Hastie,T。&Tibshirani,R。Lasso和弹性网正则化广义线性模型。glmnet公司https://glmnet.stanford.edu(2009年)。Hao,Y。等人。用于综合,多模式和可扩展单细胞分析的词典学习。美国国家生物技术公司。42293-304(2024)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Persad, S. et al. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nat. Biotechnol. 41, 1746–1757 (2023).Article
Persad,S。等人。SEACells从单细胞基因组学数据推断转录和表观基因组细胞状态。美国国家生物技术公司。411746-1757(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, F. et al. Variant to function mapping at single-cell resolution through network propagation. Nat. Biotechnol. 40, 1644–1653 (2022).Article
Yu,F.等人。通过网络传播以单细胞分辨率进行变体到功能映射。美国国家生物技术公司。401644-1653(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, Y. et al. scDC: single cell differential composition analysis. BMC Bioinform. 20, 721 (2019).Article
Cao,Y。等人。scDC:单细胞差异组成分析。BMC生物信息。20721(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Burkhardt, D. B. et al. Quantifying the effect of experimental perturbations at single-cell resolution. Nat. Biotechnol. 39, 619–629 (2021).Article
Burkhardt,D.B.等人,《在单细胞分辨率下量化实验扰动的影响》。美国国家生物技术公司。39619-629(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).Article
Dann,E.,Henderson,N.C.,Teichmann,S.A.,Morgan,M.D。和Marioni,J.C。使用k-最近邻图对单细胞数据进行差异丰度测试。美国国家生物技术公司。40245-253(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hasegawa, Y. et al. Pulmonary osteoclast-like cells in silica induced pulmonary fibrosis. Preprint at bioRxiv https://doi.org/10.1101/2023.02.17.528996 (2023).Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).Article .
长谷川,Y。等人。二氧化硅诱导的肺纤维化中的肺破骨细胞样细胞。bioRxiv预印本https://doi.org/10.1101/2023.02.17.528996。Squair,J.W.等人面临单细胞差异表达的错误发现。国家公社。125692(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zimmerman, K. D., Espeland, M. A. & Langefeld, C. D. A practical solution to pseudoreplication bias in single-cell studies. Nat. Commun. 12, 738 (2021).Article
Zimmerman,K.D.,Espeland,M.A。和Langefeld,C.D。单细胞研究中假复制偏倚的实用解决方案。国家公社。12738(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article
Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).Article
Robinson,M.D.,McCarthy,D.J。&Smyth,G.K.edgeR:用于数字基因表达数据差异表达分析的生物导体软件包。生物信息学26139-140(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Neufeld, A., Popp, J., Gao, L. L., Battle, A. & Witten, D. Negative binomial count splitting for single-cell RNA sequencing data. Preprint at arxiv https://doi.org/10.48550/arXiv.2307.12985 (2023).Neufeld, A., Dharamshi, A., Gao, L. L. & Witten, D. Data thinning for convolution-closed distributions.
Neufeld,A.,Popp,J.,Gao,L.L.,Battle,A。&Witten,D。单细胞RNA测序数据的负二项式计数分裂。arxiv预印本https://doi.org/10.48550/arXiv.2307.12985。Neufeld,A.,Dharamshi,A.,Gao,L.L。和Witten,D。卷积闭合分布的数据细化。
Preprint at arxiv https://doi.org/10.48550/arXiv.2301.07276 (2023).Dharamshi, A. et al. Generalized data thinning using sufficient statistics. Preprint at arxiv https://doi.org/10.48550/arXiv.2303.12931 (2023).Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics.
arxiv预印本https://doi.org/10.48550/arXiv.2301.07276。Dharamshi,A。等人。使用足够的统计数据进行广义数据细化。arxiv预印本https://doi.org/10.48550/arXiv.2303.12931。Vandereyken,K.,Sifrim,A.,Thienpont,B。&Voet,T。单细胞和空间多组学的方法和应用。
Nat. Rev. Genet. 24, 494–515 (2023).Article .
Genet自然牧师。24, 494-515 (2023).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Meth. 14, 865–868 (2017).Article
Stoeckius,M.等人。单细胞中表位和转录组的同时测量。天然冰毒。14865-868(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).Article
Mimitou,E.P.等人。单细胞中染色质可及性,基因表达和蛋白质水平的可扩展多模式分析。美国国家生物技术公司。391246-1258(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).Article
Ma,S。等人。通过RNA和染色质的共享单细胞分析鉴定染色质潜力。细胞1831103-1116.e20(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).Article
Jacob,F。&Monod,J。蛋白质合成中的遗传调控机制。J、 分子生物学。3318-356(1961)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Phillips, R. Napoleon is in equilibrium. Annu. Rev. Condens. Matter Phys. 6, 85–111 (2015). This paper discusses the power and limitations of statistical mechanics in constructing quantitative models of gene regulation.Article
菲利普斯,R。拿破仑处于平衡状态。年。康登斯牧师。物质物理。6,85-111(2015)。本文讨论了统计力学在构建基因调控定量模型方面的力量和局限性。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996).Article
Tibshirani,R。通过套索回归收缩和选择。J、 R.统计社会服务。B 58267-288(1996)。文章
Google Scholar
谷歌学者
Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike (eds Parzen, E., Tanabe, K. & Kitagawa, G.)199–213 (Springer, 1998).Klumpe, H. E. et al. The context-dependent, combinatorial logic of BMP signaling. Cell Syst. 18, 388–407.e10 (2022).
Akaike,H。信息论和最大似然原理的扩展。。Klumpe,H.E.等人。BMP信号的上下文相关组合逻辑。细胞系统。18388–407.e10(2022)。
This study combines genetic perturbations of the BMP pathway with statistical modelling to discriminate between possible functions for genes using the quantitative kinetics of the cellular behaviours they control.Article .
这项研究将BMP途径的遗传扰动与统计建模相结合,以使用它们控制的细胞行为的定量动力学来区分基因的可能功能。文章。
Google Scholar
谷歌学者
Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).Article
Moffitt,J.R.,Lundberg,E。&Heyn,H。空间剖面技术的新兴景观。Genet自然Rev。23741-759(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Elhanani, O., Ben-Uri, R. & Keren, L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 41, 404–420 (2023).Article
Elhanani,O.,Ben Uri,R。&Keren,L。空间分析技术阐明了肿瘤微环境。癌细胞41404-420(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hildebrandt, F. et al. Spatial transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat. Commun. 12, 7046 (2021).Article
Hildebrandt,F。等人。空间转录组学,用于定义小鼠肝脏中分区和结构成分的转录模式。国家公社。127046(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, S. et al. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep. Med. 3, 100754 (2022).Article
。细胞代表医学3100754(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).Article
Rodriques,S.G.等人,Slide-seq:一种用于以高空间分辨率测量全基因组表达的可扩展技术。科学3631463-1467(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).Article
Moncada,R。等人整合基于微阵列的空间转录组学和单细胞RNA-seq揭示了胰腺导管腺癌的组织结构。美国国家生物技术公司。38333-342(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022). This paper exemplifies the utility of statistical deconvolution techniques to overcome limitations of spatial transcriptomics, improving the resolution and power of the technology.Article .
Cable,D.M.等人。空间转录组学中细胞类型混合物的稳健分解。美国国家生物技术公司。40517-526(2022)。本文举例说明了统计反卷积技术的实用性,以克服空间转录组学的局限性,提高技术的分辨率和能力。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Srivatsan, S. R. et al. Embryo-scale, single-cell spatial transcriptomics. Science 373, 111–117 (2021).Article
Srivatsan,S.R.等人。胚胎规模,单细胞空间转录组学。科学373111-117(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jones, A., Townes, F. W., Li, D. & Engelhardt, B. E. Alignment of spatial genomics data using deep Gaussian processes. Nat. Meth. 20, 1379–1387 (2023). This paper explores how spatial statistics can be augmented with techniques from deep learning to solve difficult problems in spatial data integration.Article .
Jones,A.,Townes,F.W.,Li,D。&Engelhardt,B.E。使用深高斯过程对齐空间基因组学数据。天然冰毒。201379-1387(2023)。本文探讨了如何通过深度学习技术来增强空间统计,以解决空间数据集成中的难题。文章。
CAS
中科院
Google Scholar
谷歌学者
Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).Article
Sulston,J.E.,Schierenberg,E.,White,J.G。和Thomson,J.N。线虫秀丽隐杆线虫的胚胎细胞谱系。开发生物。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sankaran, V. G., Weissman, J. S. & Zon, L. I. Cellular barcoding to decipher clonal dynamics in disease. Science 378, eabm5874 (2022).Article
Sankaran,V.G.,Weissman,J.S。和Zon,L.I。细胞条形码来破译疾病中的克隆动力学。科学378,eabm5874(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, Z. et al. Reconstructing cell lineage trees with genomic barcoding: approaches and applications. J. Genet. Genom. 51, 35–47 (2023).Article
Li,Z.等人。用基因组条形码重建细胞谱系树:方法和应用。J、 基因。基因组。51,35-47(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016). This paper introduces the concept of cumulative, CRISPR-based genome editing to write lineage histories into the genomes of developing embryos.Article
McKenna,A。等人。通过组合和累积基因组编辑进行全生物谱系追踪。科学353,aaf7907(2016)。本文介绍了累积的,基于CRISPR的基因组编辑的概念,以将谱系历史写入发育中胚胎的基因组。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, L. et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell 186, 5183–5199.e22 (2023).Article
Li,L。等人。具有高克隆条形码多样性的小鼠模型,用于单细胞中的关节谱系,转录组学和表观基因组分析。细胞1865183-5199.e22(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rosenberg, N. A. & Nordborg, M. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat. Rev. Genet. 3, 380–390 (2002).Article
Rosenberg,N.A。&Nordborg,M。家谱树,聚结理论和遗传多态性分析。Genet自然Rev。3380-390(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Serra, A., Coretto, P., Fratello, M., Tagliaferri, R. & Stegle, O. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data. Bioinformatics 34, 625–634 (2018).Article
Serra,A.,Coretto,P.,Fratello,M.,Tagliaferri,R。&Stegle,O。用于分析高维基因组学数据的稳健和稀疏相关矩阵估计。生物信息学34625-634(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shadish, W. R., Cook, T. D. & Campbell, D. T. Experimental and Quasi-experimental Designs for Generalized Causal Inference (Houghton Mifflin, 2002).Badia-I-Mompel, P. et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 24, 739–754 (2023).Article .
Shadish,W.R.,Cook,T.D。和Campbell,D.T。广义因果推理的实验和准实验设计(Houghton-Mifflin,2002)。Badia-I-Mompel,P。等。单细胞多组学时代的基因调控网络推断。Genet自然Rev。24739-754(2023)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).Article
Adamson,B。等人。多重单细胞CRISPR筛选平台能够系统地解剖未折叠的蛋白质反应。细胞1671867-1882.e21(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell rna profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).Article
Dixit,A。等人。Perpurt-seq:用可扩展的单细胞rna谱分析合并的遗传筛选来解剖分子回路。细胞1671853-1866.e17(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jaitin, D. A. et al. Dissecting immune circuits by linking crispr-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896.e15 (2016).Article
Jaitin,D.A。等人通过将crispr合并筛选与单细胞RNA-seq连接来解剖免疫回路。细胞1671883-1896.e15(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Meth. 14, 297–301 (2017).Article
Datlinger,P。等人用单细胞转录组读数进行CRISPR筛选。天然冰毒。14297-301(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).Article
Norman,T.M.等人探索由丰富的单细胞表型构建的遗传相互作用流形。科学365786-793(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McFaline-Figueroa, J. L. et al. Multiplex single-cell chemical genomics reveals the kinase dependence of the response to targeted therapy. Cell Genom. 4, 100487 (2024).Article
McFaline-Figueroa,J.L.等人,《多重单细胞化学基因组学》揭示了靶向治疗反应的激酶依赖性。细胞基因组。4100487(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, S. J. et al. In vivo perturb-seq of cancer and immune cells dissects oncologic drivers and therapy response. Preprint at bioRxiv https://doi.org/10.1101/2023.09.01.555831v1 (2023).Papalexi, E. et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens.
Liu,S.J.等人。癌症和免疫细胞的体内扰动序列剖析了肿瘤驱动因素和治疗反应。bioRxiv预印本https://doi.org/10.1101/2023.09.01.555831v1。Papalexi,E.等人用多模式单细胞筛选表征抑制性免疫检查点的分子调控。
Nat. Genet. 53, 322–331 (2021).Article .
自然基因。53, 322-331 (2021).第[UNK]条。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martin-Rufino, J. D. et al. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 186, 2456–2474.e24 (2023).Article
Martin Rufino,J.D.等人。大规模并行碱基编辑以绘制人类造血中的变异效应。细胞1862456-2474.e24(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Olsen, T. R. et al. Scalable co-sequencing of RNA and DNA from individual nuclei. Preprint at bioRxiv https://doi.org/10.1101/2023.02.09.527940 (2023).Stoeckius, M. et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol.
Olsen,T.R.等人。来自单个细胞核的RNA和DNA的可扩展共测序。bioRxiv预印本https://doi.org/10.1101/2023.02.09.527940。Stoeckius,M。等人。使用条形码抗体进行细胞散列可以实现单细胞基因组学的多路复用和双重检测。基因组生物学。
19, 224 (2018).Article .
19224(2018)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gehring, J., Hwee Park, J., Chen, S., Thomson, M. & Pachter, L. Highly multiplexed single-cell RNA-seq by DNA oligonucleotide tagging of cellular proteins. Nat. Biotechnol. 38, 35–38 (2020).Article
Gehring,J.,Hwee Park,J.,Chen,S.,Thomson,M。&Pachter,L。通过细胞蛋白的DNA寡核苷酸标记高度多重化的单细胞RNA-seq。美国国家生物技术公司。38,35-38(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Meth. 16, 619–626 (2019).Article
McGinnis,C.S.等人。MULTI-seq:使用脂质标记指数进行单细胞RNA测序的样品多路复用。天然冰毒。16619-626(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).Article
Trapnell,C。等人。通过单细胞的伪时间顺序揭示了细胞命运决定的动力学和调节因子。美国国家生物技术公司。32381-386(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).Article
单细胞轨迹检测揭示了人类B细胞发育的进程和调控协调。细胞157714-725(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Deconinck, L., Cannoodt, R., Saelens, W., Deplancke, B. & Saeys, Y. Recent advances in trajectory inference from single-cell omics data. Curr. Opin. Syst. Biol. 27, 100344 (2021).Article
Deconck,L.,Cannoodt,R.,Saelens,W.,Deplancke,B。&Saeys,Y。从单细胞组学数据推断轨迹的最新进展。货币。奥平。系统。生物学27100344(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Diggle, P. Time Series: A Biostatistical Introduction 257 (Oxford Univ. Press, 1990).Boukouvalas, A., Hensman, J. & Rattray, M. BGP: identifying gene-specific branching dynamics from single-cell data with a branching Gaussian process. Genome Biol. 19, 65 (2018).Article
Diggle,P。时间序列:生物统计学简介257(牛津大学出版社,1990)。Boukouvalas,A.,Hensman,J。&Rattray,M。BGP:通过分支高斯过程从单细胞数据中识别基因特异性分支动力学。基因组生物学。19,65(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Qiu, X. et al. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe. Cell Syst. 10, 265–274.e11 (2020).Article
Qiu,X。等人。使用scribe从耦合的单细胞表达动力学推断因果基因调控网络。细胞系统。10265-274.e11(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, J., Zhou, W., Steemers, F., Trapnell, C. & Shendure, J. Sci-fate characterizes the dynamics of gene expression in single cells. Nat. Biotechnol. 38, 980–988 (2020).Article
。美国国家生物技术公司。38980-988(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).Article
La Manno,G。等人。单细胞的RNA速度。自然560494-498(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Meth. 19, 159–170 (2022).Article
Lange,M。等人。CellRank用于定向单细胞命运映射。天然冰毒。19159-170(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Qiu, X. et al. Mapping transcriptomic vector fields of single cells. Cell 185, 690–711.e45 (2022).Article
邱,X。等。绘制单细胞的转录组载体场。细胞185690–711.e45(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023). This paper introduces CellOracle, an algorithm for forecasting the effects of genetic perturbations on cell fates in developmental or reprogramming contexts.Article .
Kamimoto,K。等人。通过网络推断和计算机基因扰动剖析细胞身份。自然614742-751(2023)。本文介绍了CellOracle,一种在发育或重编程环境中预测遗传扰动对细胞命运影响的算法。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019). This paper explores the potential of variational autoencoders for making predictions about the future behaviour of individual cells after genetic perturbations.Article .
Lotfollahi,M.,Wolf,F.A。&Theis,F.J。scGen预测单细胞扰动响应。自然方法16715-721(2019)。本文探讨了变分自动编码器在预测遗传扰动后单个细胞未来行为方面的潜力。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lotfollahi, M. et al. Predicting cellular responses to complex perturbations in high-throughput screens. Mol. Syst. Biol. 19, e11517 (2023).Article
Lotfollahi,M.等人。在高通量筛选中预测细胞对复杂扰动的反应。分子系统。生物学杂志19,e11517(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023). This paper introduces Geneformer, a ‘foundational model’ of gene regulation constructed from the Human Cell Atlas, and demonstrates its versatility for addressing diverse problems in human genetics.Article .
Theodoris,C.V。等人。迁移学习可以在网络生物学中进行预测。自然618616-624(2023)。本文介绍了Geneformer,一种由人类细胞图谱构建的基因调控的“基础模型”,并证明了它在解决人类遗传学中的各种问题方面的多功能性。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods https://doi.org/10.1038/s41592-024-02201-0 (2024).Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W. & Mostafavi, S. Obtaining genetics insights from deep learning via explainable artificial intelligence.
Cui,H.等人。scGPT:使用生成人工智能方法建立单细胞多组学的基础模型https://doi.org/10.1038/s41592-024-02201-0(2024年)。Novakovsky,G.,Dexter,N.,Libbrecht,M.W.,Wasserman,W.W。&Mostafavi,S。通过可解释的人工智能从深度学习中获得遗传学见解。
Nat. Rev. Genet. 24, 125–137 (2023).Article .
Genet自然牧师。24, 125-137 (2023).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Martin, B. K. et al. Optimized single-nucleus transcriptional profiling by combinatorial indexing. Nat. Protoc. 18, 188–207 (2022).Article
Martin,B.K.等人通过组合索引优化了单核转录谱。自然协议。18188-207(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sziraki, A. et al. A global view of aging and Alzheimer’s pathogenesis-associated cell population dynamics and molecular signatures in human and mouse brains. Nat. Genet. 55, 2104–2116 (2023).Article
Sziraki,A。等人。衰老和阿尔茨海默病发病机制的全球观点-人类和小鼠大脑中与细胞群动力学和分子特征相关的细胞群动力学。纳特·吉内特。552104-2116(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).Article
Macosko,E.Z.等人。使用纳升液滴对单个细胞进行高度平行的全基因组表达谱分析。细胞1611202-1214(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).Article
Klein,A.M.等人。应用于胚胎干细胞的单细胞转录组学的液滴条形码。细胞1611187-1201(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Clark, I. C. et al. Microfluidics-free single-cell genomics with templated emulsification. Nat. Biotechnol. 41, 1557–1566 (2023).Article
。美国国家生物技术公司。411557-1566(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).Article
Lareau,C.A。等人。基于液滴的大规模单细胞染色质可及性组合索引。美国国家生物技术公司。37916-924(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).Article
Cao,J.等人。多细胞生物的全面单细胞转录谱分析。科学357661-667(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).Article
Rosenberg,A.B.等人。使用分裂池条形码对发育中的小鼠大脑和脊髓进行单细胞分析。科学360176-182(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
O’Huallachain, M. et al. Ultra-high throughput single-cell analysis of proteins and RNAs by split-pool synthesis. Commun. Biol. 3, 213 (2020).Article
O'Huallachane,M.等人。通过分裂池合成对蛋白质和RNA进行超高通量单细胞分析。Commun公司。生物学杂志3213(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).Article
Peterson,V.M.等人。单细胞中蛋白质和转录物的多重定量。美国国家生物技术公司。35936-939(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 10, e63632 (2021).Article
Swanson,E.等人。使用TEA-seq同时进行转录本,表位和染色质可及性的三峰单细胞测量。eLife 10,e63632(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Blair, J. D. et al. Phospho-seq: integrated, multi-modal profiling of intracellular protein dynamics in single cells. Preprint at bioRxiv https://doi.org/10.1101/2023.03.27.534442 (2023).Liscovitch-Brauer, N. et al. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens.
Blair,J.D.等人,《Phospho-seq:单细胞内蛋白质动力学的综合多模式分析》。bioRxiv预印本https://doi.org/10.1101/2023.03.27.534442。Liscovitch-Brauer,N。等人。用可扩展的单细胞CRISPR筛选分析染色质可及性的遗传决定因素。
Nat. Biotechnol. 39, 1270–1277 (2021).Article .
美国国家生物技术公司。391270-1277(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).Article
Shah,S.,Lubeck,E.,Zhou,W。&Cai,L。单细胞的原位转录谱揭示了小鼠海马中细胞的空间组织。神经元92342-357(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).Article
Chen,K.H.,Boettiger,A.N.,Moffitt,J.R.,Wang,S。&Zhuang,X。单细胞中的空间分辨,高度多重RNA分析。科学348,aaa6090(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).Article
Ståhl,P.L.等人。通过空间转录组学可视化和分析组织切片中的基因表达。科学353,78-82(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101–109 (2024).Article
Russell,A.J.C.等人的Slide tags为多模式空间基因组学提供了单核条形码。自然625101-109(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e15 (2018).Article
。细胞174968-981.e15(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Spencer Chapman, M. et al. Lineage tracing of human development through somatic mutations. Nature 595, 85–90 (2021).Article
Spencer Chapman,M.等人。通过体细胞突变追踪人类发育的谱系。自然595,85-90(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176, 1325–1339.e22 (2019).Article
Ludwig,L.S.等人。通过线粒体突变和单细胞基因组学实现人类谱系追踪。细胞1761325-1339.e22(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zafar, H., Lin, C. & Bar-Joseph, Z. Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data. Nat. Commun. 11, 3055 (2020).Article
Zafar,H.,Lin,C。&Bar-Joseph,Z。通过将CRISPR-Cas9突变与转录组数据整合来进行单细胞谱系追踪。国家公社。113055(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Forrow, A. & Schiebinger, G. LineageOT is a unified framework for lineage tracing and trajectory inference. Nat. Commun. 12, 4940 (2021).Article
Forrow,A。&Schiebinger,G。LineageOT是谱系追踪和轨迹推断的统一框架。国家公社。124940(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Biddy, B. A. et al. Single-cell mapping of lineage and identity in direct reprogramming. Nature 564, 219–224 (2018).Article
Biddy,B.A.等人。直接重编程中谱系和身份的单细胞定位。自然564219-224(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D. & Klein, A. M. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367, eaaw3381 (2020).Article
。科学367,eaaw3381(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single cells. Nature 541, 107–111 (2016).Article
Frieda,K.L.等人。单细胞谱系信息的合成记录和原位读出。自然541107-111(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Choi, J. et al. A time-resolved, multi-symbol molecular recorder via sequential genome editing. Nature 608, 98–107 (2022).Article
Choi,J.等人。通过顺序基因组编辑的时间分辨多符号分子记录器。自然608,98-107(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, W. et al. Multiplex genomic recording of enhancer and signal transduction activity in mammalian cells. Preprint at bioRxiv https://doi.org/10.1101/2021.11.05.467434 (2021).Download referencesAcknowledgementsThe author is grateful to D. Kimelman, and members of their own laboratory for critical feedback on the manuscript.
Chen,W。等人。哺乳动物细胞中增强子和信号转导活性的多重基因组记录。bioRxiv预印本https://doi.org/10.1101/2021.11.05.467434(2021年)。下载参考文献致谢作者感谢D.Kimelman及其实验室成员对手稿的批判性反馈。
The author’s work is supported by grants from the Paul G. Allen Frontiers Group, the Chan Zuckerberg Initiative, and the National Institutes of Health (UM1HG011586, 1R01HG010632, RC2DK114777 and R01HG012761). The author’s work is also supported by the Seattle Hub for Synthetic Biology, a collaboration between the Allen Institute, the Chan Zuckerberg Initiative (award number CZIF2023-008738) and the University of Washington.Author informationAuthors and AffiliationsDepartment of Genome Sciences, University of Washington, Seattle, WA, USACole TrapnellBrotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USACole TrapnellAllen Discovery Center for Cell Lineage Tracing, Seattle, WA, USACole TrapnellSeattle Hub for Synthetic Biology, Seattle, WA, USACole TrapnellAuthorsCole TrapnellView author publicationsYou can also search for this author in.
作者的工作得到了Paul G.Allen Frontiers Group,Chan Zuckerberg Initiative和National Institutes of Health(UM1HG011586、1R01HG010632,RC2DK114777和R01HG012761)的资助。作者的工作也得到了西雅图合成生物学中心的支持,该中心是艾伦研究所,陈扎克伯格倡议(奖项编号CZIF2023-008738)和华盛顿大学之间的合作。作者信息作者和附属机构华盛顿大学西雅图分校基因组科学系,华盛顿大学西雅图分校USACole TrapnellBrotman Baty精准医学研究所,华盛顿大学西雅图分校,USACole TrapnellAllen细胞谱系追踪发现中心,华盛顿州西雅图,USACole TrapnellAllen西雅图合成生物学中心,华盛顿州西雅图,USACole TRAPNELLATHORSCOLE TrapnellView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarCorresponding authorCorrespondence to
PubMed谷歌学者通讯社
Cole Trapnell.Ethics declarations
科尔·特拉普内尔。道德宣言
Competing interests
相互竞争的利益
C.T. is a scientific advisory board member, consultant and/or co-founder of Algen Biotechnologies, Altius Therapeutics and Scale Biosciences.
C、 T.是Algen Biotechnologies、Altius Therapeutics和Scale Biosciences的科学顾问委员会成员、顾问和/或联合创始人。
Peer review
同行评审
Peer review information
同行评审信息
Nature Reviews Genetics thanks Vijay G. Sankaran, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然评论》遗传学感谢Vijay G.Sankaran和另一位匿名审稿人对这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Related linksHuman Cell Atlas: https://www.humancellatlas.org/Model organism atlases: https://descartes.brotmanbaty.org/GlossaryAkaike information criterion.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。相关链接舒曼细胞图谱:https://www.humancellatlas.org/Model生物地图集:https://descartes.brotmanbaty.org/GlossaryAkaike信息标准。
Weighs the explanatory value of a model against its complexity (in terms of parameters that must be estimated from data).
权衡模型的解释价值与其复杂性(就必须从数据中估计的参数而言)。
Attention network
注意力网络
A neural network that focuses training on parts of a larger problem, then composes those parts into an overall solution: can be trained in a semi-supervised or self-supervised manner, scaling to massive datasets; useful for modelling context in complex biological tasks such as predicting protein structure from sequence..
一种神经网络,将训练重点放在较大问题的一部分,然后将这些部分组合成一个整体解决方案:可以以半监督或自我监督的方式进行训练,扩展到海量数据集;用于模拟复杂生物学任务中的上下文,例如从序列预测蛋白质结构。。
Autoregressive model
自回归模型
A model that treats the past and current output of a process as input for predicting its future output, broadly useful in time series analysis and forecasting (for example, in financial markets).
将过程的过去和当前输出作为预测其未来输出的输入的模型,在时间序列分析和预测(例如,在金融市场中)中广泛使用。
Bayesian network
贝叶斯网络
A type of graphical model that captures the direction of dependencies between input variables, facilitating causal inference.
一种图形模型,用于捕捉输入变量之间依赖关系的方向,从而促进因果推断。
Coalescent theory
溯祖理论
A model of how alleles sampled from a population may have arisen from a common ancestor, with numerous applications in population genetics; potentially repurposable to model cell lineages.
从群体中取样的等位基因如何来自共同祖先的模型,在群体遗传学中有许多应用;可能可用于模拟细胞谱系。
Data thinning
数据细化
Avoids circular reasoning when testing for differences between cell clusters defined from single-cell data.
在测试从单细胞数据定义的细胞簇之间的差异时,避免了循环推理。
Deep learning
Machine learning methods that use layers of interconnected artificial neural networks to automatically discover how to represent input data for various tasks such as classification.
机器学习方法使用多层互连的人工神经网络来自动发现如何表示各种任务(例如分类)的输入数据。
Deep neural network
深度神经网络
A class of artificial neural network that uses many layers of interconnected ‘artificial neurons’, each of which is capable of performing a very simple calculation, to solve a complex task in machine learning (for example, classification or natural language translation).
一类人工神经网络,使用多层相互连接的“人工神经元”,每个神经元都能够执行非常简单的计算,以解决机器学习中的复杂任务(例如分类或自然语言翻译)。
Foundation model
基础模型
An artificial intelligence model trained on a vast amount of unlabelled data to perform a core task that can be subsequently adapted to perform many other tasks through transfer learning, useful for building large language models such as ChatGPT and text-to-image models such as DALL-E.
一种人工智能模型,在大量未标记数据上进行训练,以执行核心任务,随后可以通过迁移学习适应执行许多其他任务,这对于构建大型语言模型(如ChatGPT)和文本到图像模型(如DALL-E)很有用。
Generalized linear mixed model
广义线性混合模型
(GLMM). Accounts for grouping structure in single-cell datasets.
(GLMM)。。
Generalized linear regression models
广义线性回归模型
(GLM). Used to quantify effects of genotype, drugs, environments or other factors on gene expression or cell proportions.
(GLM)。用于量化基因型,药物,环境或其他因素对基因表达或细胞比例的影响。
Graphical modelling
图形建模
Captures the hierarchical (conditional) dependences between a set of input variables that contribute to an output.
捕获有助于输出的一组输入变量之间的层次(条件)依赖关系。
Kriging
克里金
A Gaussian process regression method for interpolating at unmeasured points based on measurements at nearby points, useful for both spatial and temporal data.
一种高斯过程回归方法,用于基于附近点的测量值对未测量点进行插值,对空间和时间数据都有用。
LASSO
套索
A tool used to identify a parsimonious set of variables to explain variation across cells or samples.
一种工具,用于识别一组简约的变量,以解释细胞或样品之间的变化。
Maximum parsimony
最大简约性
A method of reconstructing the phylogenetic tree that explains a set of alleles requiring the fewest changes needed to transform them into a single allele, useful for reconstructing cell lineages from molecular recorders.
一种重建系统发育树的方法,该方法解释了一组等位基因,这些等位基因需要最少的变化才能将其转化为单个等位基因,可用于从分子记录器重建细胞谱系。
Mixture models
混合模型
A modelling approach that represents variables as mixtures of two or more distributions, and simultaneously estimates the variables and their relative proportions from data.
一种建模方法,将变量表示为两个或多个分布的混合物,同时根据数据估计变量及其相对比例。
Network propagation
网络传播
A technique for identifying the most relevant reference data points or documents for a given query by measuring their distance to the query in a network of relatedness between all the documents in the database.
通过在数据库中所有文档之间的相关性网络中测量它们与查询的距离来识别给定查询中最相关的参考数据点或文档的一种技术。
Pseudotime
伪时间
Single-cell trajectory inference: a data-driven, unsupervised approach for ordering cells according to developmental maturity based on their transcriptomes or other aspects of molecular state, useful for defining the sequence of gene regulatory events in a cell’s development.
单细胞轨迹推断:一种数据驱动的无监督方法,用于根据细胞的转录组或分子状态的其他方面根据发育成熟度对细胞进行排序,可用于定义细胞发育中基因调控事件的序列。
RNA velocity
RNA速度
A technique for forecasting a cell’s future transcriptome based on the differences between its fully processed mRNAs and its pre-mRNAs.
一种基于细胞完全加工的mRNA与其前mRNA之间的差异来预测细胞未来转录组的技术。
Transfer learning
迁移学习
A machine learning strategy that adapts a model trained to perform one task to perform a different, related task; it is useful when training data for one task are limited, but training data for the other task are more abundant.
一种机器学习策略,可以调整经过训练以执行一项任务的模型,以执行不同的相关任务;当一个任务的训练数据有限,而另一个任务的训练数据更丰富时,它很有用。
Variational autoencoder
变分自动编码器
A type of artificial neural network that learns both how to encode a set of unlabelled data into a low-dimensional representation and how to decode it in an unsupervised manner, useful for single-cell data visualization and forecasting unseen perturbations.
一种人工神经网络,它学习如何将一组未标记的数据编码为低维表示,以及如何以无监督的方式对其进行解码,可用于单细胞数据可视化和预测看不见的扰动。
Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleTrapnell, C.
权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Trapnell,C。
Revealing gene function with statistical inference at single-cell resolution..
通过单细胞分辨率的统计推断揭示基因功能。。
Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00750-wDownload citationAccepted: 21 May 2024Published: 01 July 2024DOI: https://doi.org/10.1038/s41576-024-00750-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Rev Genet(2024年)。https://doi.org/10.1038/s41576-024-00750-wDownload引文接受日期:2024年5月21日发布日期:2024年7月1日OI:https://doi.org/10.1038/s41576-024-00750-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供