商务合作
动脉网APP
可切换为仅中文
AbstractGreenhouse whitefly (Trialeurodes vaporariorum) is a major global pest, causing direct damage to plants and transmitting viral plant diseases. Management of T. vaporariorum is problematic because of widespread pesticide resistance, and many greenhouse growers rely on biological control agents to regulate T.
温室粉虱(Trialeurodes vaporariorum)是一种主要的全球害虫,对植物造成直接危害并传播病毒性植物疾病。T的管理。由于广泛的抗药性,vaporariorum存在问题,许多温室种植者依靠生物防治剂来调节T。
vaporariorum populations. However, these are often slow and vary in efficacy, leading to subsequent application of chemical insecticides when pest populations exceed threshold levels. Combining chemical and biological pesticides has great potential but can result in different outcomes, from positive to negative interactions.
vaporariorum种群。然而,这些通常缓慢且功效不同,导致当害虫种群超过阈值水平时,随后使用化学杀虫剂。化学和生物农药的结合具有很大的潜力,但可能会产生不同的结果,从正面到负面的相互作用。
In this study, we evaluated co-applications of the entomopathogenic fungi (EPF) Beauveria bassiana and Cordyceps farinosa and the chemical insecticide spiromesifen in laboratory bioassays. Complex interactions between the EPFs and insecticide were described using an ecotoxicological mixtures model, the MixTox analysis.
在这项研究中,我们评估了昆虫病原真菌(EPF)白僵菌(Beauveria bassiana)和冬虫夏草(Cordyceps farinosa)以及化学杀虫剂螺旋霉素(spiromesifen)在实验室生物测定中的共同应用。使用生态毒理学混合物模型MixTox分析描述了EPF和杀虫剂之间的复杂相互作用。
Depending on the EPF and chemical concentrations applied, mixtures resulted in additivity, synergism, or antagonism in terms of total whitefly mortality. Combinations of B. bassiana and spiromesifen, compared to single treatments, increased the rate of kill by 5 days. Results indicate the potential for combined applications of EPF and spiromesifen as an effective integrated pest management strategy and demonstrate the applicability of the MixTox model to describe complex mixture interactions..
。与单一处理相比,球孢白僵菌和螺旋霉烯的组合使杀灭率提高了5天。结果表明,EPF和螺霉烯作为一种有效的综合害虫管理策略的联合应用潜力,并证明了MixTox模型在描述复杂混合物相互作用方面的适用性。。
IntroductionThe greenhouse whitefly (Trialeurodes vaporariorum) is a major insect pest causing substantial damage to > 850 plant species, including high-value greenhouse, ornamental and agricultural crops1. Damage by T. vaporariorum is caused directly by feeding and through the transmission of plant viruses, resulting in crop losses in excess of $1 billion a year2,3,4.
引言温室粉虱(Trialeurodes vaporariorum)是一种主要的害虫,对850多种植物物种造成重大损害,包括高价值的温室,观赏和农业作物1。T.vaporariorum的损害是由植物病毒的饲养和传播直接引起的,每年导致作物损失超过10亿美元2,3,4。
The most effective greenhouse insect integrated pest management (IPM) systems are based on preventative applications of arthropod predators and parasitoids5 as components of an integrated pest management (IPM) ‘pyramid’ approach6. Under this system, IPM-compatible chemical plant protection products (PPPs) are still applied but are used as supplementary treatments to biological control, acting as a second line of defence should pest numbers increase to levels where natural enemies are unable to control them7.Increasingly, IPM practitioners in greenhouse crops are incorporating low-risk plant protection products such as microbial PPPs into their programmes.
最有效的温室昆虫综合害虫管理(IPM)系统是基于节肢动物捕食者和寄生虫的预防应用5,作为综合害虫管理(IPM)“金字塔”方法的组成部分6。。
These biopesticides are typically based on microorganisms such as entomopathogenic bacteria (predominantly Bacillus thuringiensis), viruses, fungi, and protozoa8. Microbial PPPs for control of T. vaporariorum and other species of whiteflies are based primarily on entomopathogenic fungi (EPF). Entomopathogenic fungi infect their host via direct penetration by conidia through the host cuticle and then via proliferation in the host, ultimately killing the insect in a few days.Microbial PPPs are selected to have high specificity to the insect pest but also have a number of advantages, including lack of toxic residues, shorter pre-harvest and re-entry intervals for workers, and the potential for a certain amount of self-sustaining secondary control through re.
这些生物杀虫剂通常基于微生物,如昆虫病原菌(主要是苏云金芽孢杆菌),病毒,真菌和原生动物8。用于控制T.vaporariorum和其他种类粉虱的微生物PPP主要基于昆虫病原真菌(EPF)。昆虫病原真菌通过分生孢子直接穿透宿主角质层,然后通过宿主增殖感染宿主,最终在几天内杀死昆虫。选择微生物PPP对害虫具有高度特异性,但也具有许多优点,包括缺乏有毒残留物,工人的收获前和重返间隔较短,以及通过重新进行一定程度的自我维持二级控制的潜力。
There were significant differences between the total mortality observed at the end of the 12d bioassay for each treatment in the mixture bioassays involving B. bassiana and spiromesifen (F = 16.36, df = 12, p = < 0.001). In single-application treatments, mortality ranged from 2 to 90% depending on the concentration of EPF or spiromesifen applied, with increasing application concentration resulting in increasing mortality.
在涉及球孢双歧杆菌和螺霉烯的混合物生物测定中,每种处理在12d生物测定结束时观察到的总死亡率之间存在显着差异(F=16.36,df=12,p=0.001)。在单次施用治疗中,死亡率范围为2%至90%,具体取决于施用的EPF或螺霉烯的浓度,随着施用浓度的增加,死亡率增加。
There were no significant differences between mortality for each treatment across bioassays (F = 2.35, df = 2, p = 0.10) or conidia deposition for the application of the same EPF concentration (Table 3). Therefore, further analysis was conducted with data compiled as one dataset across all bioassays.
生物测定中每种处理的死亡率(F=2.35,df=2,p=0.10)或应用相同EPF浓度的分生孢子沉积之间没有显着差异(表3)。因此,对所有生物测定中汇编为一个数据集的数据进行了进一步分析。
Control mortality was 3.5%, 3.2%, and 10.6% in each bioassay respectively. Total corrected mortality ranged from 0.2 to 88%, depending on the treatment applied. For combined applications, mortality data were successfully described by the Independent action (IA) model (R2 = 0.63, p < 0.001), and the addition of parameters to allow for antagonism or synergism did not improve the fit (p = 0.73).
在每次生物测定中,对照死亡率分别为3.5%,3.2%和10.6%。根据所采用的治疗方法,总校正死亡率范围为0.2%至88%。对于组合应用,死亡率数据通过独立作用(IA)模型成功描述(R2=0.63,p<0.001),并且添加参数以允许拮抗或协同作用并没有改善拟合(p=0.73)。
Therefore, all mixture outcomes for concentrations applied of B. bassiana and spiromesifen resulted in additivity, whereby the observed mortality was not significantly different from the expected mortality based on the single dose response of each component, assuming they follow independent action, as shown in Fig. 2.Table 3 Average dose received by 22 × 22 mm coverslips during spray applications of lethal concentrations (LC) of Beauveria bassiana, spiromesifen or simultaneous applications of both control agents in three replicate mixture bioassays.Full size tableFigure 2Mixture interactions 14 days after the simultaneous application of Beauveria bassiana and spirome.
因此,球孢白僵菌和螺旋体霉素浓度的所有混合物结果都产生了加和性,因此观察到的死亡率与基于每种成分的单剂量反应的预期死亡率没有显着差异,假设它们遵循独立作用,如图2所示。表3在喷雾应用致命浓度(LC)的球孢白僵菌,螺旋体霉素或在三次重复混合物生物测定中同时应用两种对照剂期间,22×22 mm盖玻片接受的平均剂量。全尺寸表图2同时应用白僵菌和螺旋体后14天的混合物相互作用。
(1)
(1)
where a is the percentage mortality data from the treated group and b is the percentage mortality from the control group.Differences in total mortality at the end of the bioassay between treatments and between bioassays were determined by ANOVA in R studio (version 4.0.0 2020/04/24).The predicted combined effect of the two control agents was calculated from the single treatment applications assuming Bliss independence24.
其中a是治疗组的死亡率百分比数据,b是对照组的死亡率百分比。通过R studio(版本4.0.0 2020/04/24)中的ANOVA确定治疗之间和生物测定之间生物测定结束时总死亡率的差异。假设Bliss独立,从单一治疗应用计算两种对照剂的预测组合效应24。
Under this assumption, each control agent interacting in the mixture kills the target pest by a dissimilar mechanism. This method uses the combination of unaffected fractions to calculate the expected outcome of a mixture.$$Pm=\left(pA\right)(pB)$$.
在此假设下,混合物中相互作用的每种控制剂都通过不同的机制杀死目标害虫。该方法使用未受影响分数的组合来计算混合物的预期结果$$Pm=\左(pA \右)(pB)$$。
(2)
(2)
where the probability of an organism surviving the combined treatment of agent A and agent B (\(Pm\)) would be the probability of an organism surviving agent A (\(pA\)) multiplied by the probability of an organism surviving agent B (\(pB\)). Therefore, a mixture consisting of two agents which independently each cause 25% mortality when applied alone will result in 56% mortality as a mixture assuming no interaction between the agents (also known as additivity), by the calculation of (1 − 0.25) * (1 − 0.25) = 1 − survivorship.
其中,生物体存活的概率(药剂A和药剂B的联合处理)(\(Pm)\)将是生物体存活的概率(药剂A)(\(pA)\)乘以生物体存活的概率(药剂B)(\(pB)))。因此,通过计算(1-0.25)*(1-0.25)=1-survivorship,假设两种药物之间没有相互作用(也称为加和性),由两种药物组成的混合物单独使用时各自独立导致25%的死亡率将导致56%的死亡率。
If the observed mortality is greater than the expected mortality, a synergistic interaction has occurred. Alternatively, antagonism results in lower mortality than expected.The effect of pathogen—spiromesifen mixtures were determined using the MixTox analysis23. Mortality was modeled against dose received for EPF applications in order to account for variation in suspensions applied between replicates and bioassays.
如果观察到的死亡率大于预期死亡率,则发生了协同相互作用。另外,拮抗作用导致死亡率低于预期。使用MixTox分析确定病原体螺旋体混合物的作用23。根据EPF应用所接受的剂量对死亡率进行建模,以解释重复和生物测定之间应用的悬浮液的变化。
The MixTox analysis takes into account the control mortality, so uncorrected data was used for this analysis. In this analysis, a reference model is produced based on mortality observed following experiments to determine the mortality achieved with the single application of each mixture component. The reference model describes the expected outcome of applications of the mixture across a range of concentrations assuming independent action of components based on the single outcomes of the single applications.
。在此分析中,根据实验后观察到的死亡率产生参考模型,以确定每种混合物组分单次应用所达到的死亡率。参考模型描述了在一系列浓度范围内应用混合物的预期结果,假设基于单一应用的单一结果的组分的独立作用。
Mixture effects are characterised based on the deviation of observed mixture data compared to the independent action reference model (i.e., the expected outcomes). Deviations from the independent action model can differ across the model axes. Patterns in the deviation from the reference model can be categorised as absol.
。与独立动作模型的偏差可能在模型轴上有所不同。偏离参考模型的模式可以归类为绝对模式。
Data availability
数据可用性
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
在当前研究期间生成和/或分析的数据集可根据合理要求从通讯作者处获得。
ReferencesCABI (2021) Trialeurodes vaporariorum (greenhouse whitelfy), Centre for Agriculture and Biosciences International, Invasive Species Compendium. Available at: https://www.cabi.org/isc/datasheet/54660 (Accessed: 8 September 2021).Gonzalez, R. et al. Whitefly invasion in Imperial Valley costs growers, workers millions in losses.
参考文献Cabi(2021)Trialeurodes vaporariorum(greenhouse whitelfy),国际农业和生物科学中心,入侵物种纲要。网址:https://www.cabi.org/isc/datasheet/54660(访问日期:2021年9月8日)。冈萨雷斯(Gonzalez,R.et al。)粉虱入侵帝王谷(Imperial Valley)使种植者和工人损失数百万美元。
Calif. Agric. 46, 5 (1992).Article .
加州农业。46,5(1992)。文章。
Google Scholar
谷歌学者
Legg, J. P., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in East and Central Africa: Epidemiology and management of a regional pandemic. Adv. Virus Res. 67, 355–418 (2006).Article
Legg,J.P.,Owor,B.,Sseruwagi,P。&Ndunguru,J。东非和中非木薯花叶病:区域大流行的流行病学和管理。Adv.Virus Res.67355–418(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aregbesola, O. Z., Legg, J. P., Sigsgaard, L., Lund, O. S. & Rapisarda, C. Potential impact of climate change on whiteflies and implications for the spread of vectored viruses. J. Pest. Sci. 92, 2. https://doi.org/10.1007/s10340-018-1059-9 (2019).Article
Aregbesola,O.Z.,Legg,J.P.,Sigsgaard,L.,Lund,O.S。&Rapisarda,C。气候变化对粉虱的潜在影响以及对媒介病毒传播的影响。J、 害虫。科学。92,2。https://doi.org/10.1007/s10340-018-1059-9。文章
Google Scholar
谷歌学者
van Lenteren, J. C. A greenhouse without pesticides: Fact or fantasy?. Crop Prot. 19(6), 375–384 (2000).Article
van Lenteren,J.C。没有杀虫剂的温室:事实还是幻想?。作物保护。19(6),375-384(2000)。文章
Google Scholar
谷歌学者
Stenberg, J. A. A conceptual framework for integrated pest management. Trends Plant Sci. Elsevier Ltd. https://doi.org/10.1016/j.tplants.2017.06.010 (2017).Jacobson, R. J., Croft, P. & Fenlon, J. Suppressing establishment of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) in cucumber crops by prophylactic release of Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae).
Stenberg,J.A。综合害虫管理的概念框架。趋势植物科学。爱思唯尔有限公司。https://doi.org/10.1016/j.tplants.2017.06.010(2017年)。Jacobson,R.J.,Croft,P。&Fenlon,J。通过预防性释放黄瓜钝绥螨(Acarina:植绥螨科),抑制黄瓜作物中西花蓟马(Thysanoptera:蓟马科)的建立。
Biocontrol Sci. Technol. 11(1), 1. https://doi.org/10.1080/09583150020029718 (2001).Article .
Biocontrol Sci. Technol. 11(1), 1. https://doi.org/10.1080/09583150020029718 (2001).Article .
Google Scholar
谷歌学者
Wraight, S. P., Lopes, R. B., & Faria, M. Microbial control of mite and insect pests of greenhouse crops, microbial control of insect and mite pests: From theory to practice. https://doi.org/10.1016/B978-0-12-803527-6.00016-0 (2017).Lacey, L. A. et al. Insect pathogens as biological control agents: Back to the future.
。https://doi.org/10.1016/B978-0-12-803527-6.00016-0(2017年)。Lacey,L.A.等人,《昆虫病原体作为生物防治剂:回到未来》。
J. Inverteb. Pathol. 132, 1. https://doi.org/10.1016/j.jip.2015.07.009 (2015).Article .
J. Inverteb. Pathol. 132, 1. https://doi.org/10.1016/j.jip.2015.07.009 (2015).Article .
CAS
中科院
Google Scholar
谷歌学者
Shipp, J. L., Zhang, Y., Hunt, D. W. A. & Ferguson, G. Influence of humidity and greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) for control of greenhouse arthropod pests. Environ. Entomol. 32(5), 1. https://doi.org/10.1603/0046-225X-32.5.1154 (2003).Article
Shipp,J.L.,Zhang,Y.,Hunt,D.W.A。和Ferguson,G。湿度和温室小气候对白僵菌(Balsamo)控制温室节肢动物害虫功效的影响。环境。Entomol。32(5),1。https://doi.org/10.1603/0046-225X-32.5.1154(2003年)。文章
Google Scholar
谷歌学者
Glare, T. et al. Have biopesticides come of age?. Trends Biotechnol. 30(5), 1. https://doi.org/10.1016/j.tibtech.2012.01.003 (2012).Article
Glare,T。等人。生物杀虫剂成熟了吗?。趋势生物技术。30(5),1。https://doi.org/10.1016/j.tibtech.2012.01.003(2012年)。文章
CAS
中科院
Google Scholar
谷歌学者
Feng, M. G., Chen, B. & Ying, S. H. Trials of Beauveria bassiana, Paecilomyces fumosoroseus and imidacloprid for management of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on greenhouse grown lettuce. Biocontrol. Sci. Tech. 14(6), 531–544 (2004).Article
Feng,M.G.,Chen,B。&Ying,S.H。白僵菌,烟曲霉和吡虫啉在温室生长的莴苣上管理Trialeurodes vaporariorum(同翅目:粉虱科)的试验。。科学。技术14(6),531-544(2004)。文章
Google Scholar
谷歌学者
Ayilara, M. S. et al. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 14, 1040901 (2023).Article
Ayilara,M.S.等人,《生物农药作为合成农药的有前途的替代品:微生物农药、植物农药和纳米生物农药的案例》。正面。微生物。141040901(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, C. S., Li, Z. Z. & Butt, T. M. Molecular studies of co-formulated strains of the entomopathogenic fungus Beauveria bassiana. J. Inverteb. Pathol. 80(1), 1. https://doi.org/10.1016/S0022-2011(02)00045-9 (2002).Article
Wang,C.S.,Li,Z.Z.&Butt,T.M.昆虫病原真菌白僵菌共同配制菌株的分子研究。J、 逆变器B。病理学。80(1),1。https://doi.org/10.1016/S0022-2011(02)00045-9(2002)。文章
CAS
中科院
Google Scholar
谷歌学者
Furlong, M. J. & Groden, E. Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid, and cyromazine. J. Econ. Entomol. 94(2), 1. https://doi.org/10.1603/0022-0493-94.2.344 (2001).Article .
Furlong,M.J。&Groden,E。评估科罗拉多马铃薯甲虫(鞘翅目:金龟子科)病原体白僵菌与杀虫剂吡虫啉和环丙氨嗪之间的协同相互作用。J、 经济。Entomol。。https://doi.org/10.1603/0022-0493-94.2.344(2001年)。文章。
Google Scholar
谷歌学者
Farenhorst, M., Mouatcho, J. C., Kikankie, C. K., Brooke, B. D. & Hunt, R. Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc. Natl. Acad. Sci. 106(41), 1. https://doi.org/10.1073/pnas.0908530106 (2009).Article
Farenhorst,M.,Mouatcho,J.C.,Kikankie,C.K.,Brooke,B.D。和Hunt,R。真菌感染对抗非洲疟疾蚊子的杀虫剂抗性。程序。纳特尔。阿卡德。科学。106(41),1。https://doi.org/10.1073/pnas.0908530106(2009年)。文章
Google Scholar
谷歌学者
Delnat, V., Janssens, L. & Stoks, R. Effects of predator cues and pesticide resistance on the toxicity of a (bio)pesticide mixture. Pest Manag. Sci. 76(4), 1448–1455. https://doi.org/10.1002/ps.5658 (2020).Article
Delnat,V.,Janssens,L。&Stoks,R。捕食者线索和农药抗性对(生物)农药混合物毒性的影响。害虫管理。科学。76(4),1448-1455年。https://doi.org/10.1002/ps.5658。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nian, X., He, Y., Lu, L. & Zhao, R. Evaluation of the time–concentration–mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis. Pest Manag. Sci. 71(2), 1. https://doi.org/10.1002/PS.3784 (2015).Article .
Nian,X.,He,Y.,Lu,L。&Zhao,R。评估小菜蛾幼虫对烟熏Isaria与杀虫剂β-氯氰菊酯和苏云金芽孢杆菌相互作用的时间-浓度-死亡率反应。害虫管理。科学。71(2),1。https://doi.org/10.1002/PS.3784(2015年)。文章。
Google Scholar
谷歌学者
Kumar, V., Francis, A., Avery, P. B., McKenzie, C. L. & Osborne, L. S. Assessing compatibility of Isaria fumosorosea and buprofezin for mitigation of Aleurodicus rugioperculatus (Hemiptera: Aleyrodidae): An invasive pest in the Florida landscape. J. Econ. Entomol. 111(3), 1069–1079 (2018).Article .
Kumar,V.,Francis,A.,Avery,P.B.,McKenzie,C.L。和Osborne,L.S。评估Isaria fumosorosea和buprofezin的相容性以缓解Aleurodicus rugioperculatus(半翅目:Aleyrodidae):佛罗里达州景观中的入侵性害虫。J、 经济。Entomol。111(3),1069-1079(2018)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Bielza, P. et al. Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Manag. Sci. 75(1), 1. https://doi.org/10.1002/ps.5144 (2019).Article
Bielza,P。等人。西班牙烟粉虱田间种群的螺旋体和螺旋体抗性。害虫管理。科学。75(1),1。https://doi.org/10.1002/ps.5144。文章
CAS
中科院
Google Scholar
谷歌学者
Karatolos, N. et al. Resistance to spiromesifen in Trialeurodes vaporariorum is associated with a single amino acid replacement in its target enzyme acetyl-coenzyme A carboxylase. Insect Mol. Biol. 21(3), 1. https://doi.org/10.1111/J.1365-2583.2012.01136.X (2012).Article
卡拉托洛斯(Karatolos,N.)等人(Trialeurodes vaporariorum)对螺旋霉烯的抗性与其靶酶乙酰辅酶a羧化酶中的单个氨基酸替代有关。昆虫分子生物学。21(3),1。https://doi.org/10.1111/J.1365-2583.2012.01136.X(2012年)。文章
Google Scholar
谷歌学者
Gestel, C. A. M., Jonker, M., Kammenga, J. E., Laskowski, R. & Svendsen, C. Mixture toxicity: Linking approaches from ecological and human toxicology 1st edn. (CRC Press, 2011).
Gestel,C.A.M.,Jonker,M.,Kammenga,J.E.,Laskowski,R。&Svendsen,C。混合物毒性:来自生态和人类毒理学的链接方法第1版。(CRC出版社,2011年)。
Google Scholar
谷歌学者
Jonker, M. J., Svendsen, C., Bedaux, J. J. M., Bongers, M. & Kammenga, J. E. Significance testing of synergistic/antagonistic, dose level dependant, or dose ratio dependant effects in mixture dose-response analysis. Environ. Toxicol. Chem. 24(10), 1. https://doi.org/10.1897/04-431R.1 (2005).Article .
。环境。毒理学。化学。24(10),1。https://doi.org/10.1897/04-431R.1(2005年)。文章。
Google Scholar
谷歌学者
Bliss, C. I. The toxicity of poisons applied jointly. Annu. J. Appl. Biol. 26(26), 1. https://doi.org/10.1111/j.1744-7348.1939.tb06990.x (1939).Article
Bliss,C.I。联合使用的毒物的毒性。年。J、 应用。生物学26(26),1。https://doi.org/10.1111/j.1744-7348.1939.tb06990.x(1939年)。文章
Google Scholar
谷歌学者
Dearlove, E. L. Multiple stressor effects in biological pest control: improving efficacy in challenging environments (Doctoral dissertation, University of Warwick) (2022).Orr, J. A. et al. Towards a unified study of multiple stressors: Divisions and common goals across research disciplines.
Dearlove,E.L。生物害虫防治中的多重压力源效应:在具有挑战性的环境中提高功效(沃里克大学博士论文)(2022)。Orr,J.A.等人,《走向多重压力源的统一研究:跨研究学科的划分和共同目标》。
Proc. R. Soc. B Biol. Sci. 287, 1. https://doi.org/10.1098/rspb.2020.0421 (2020).Article .
Proc. R. Soc. B Biol. Sci. 287, 1. https://doi.org/10.1098/rspb.2020.0421 (2020).Article .
Google Scholar
谷歌学者
Ali, S. et al. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Sci. Rep. 7(1), 1. https://doi.org/10.1038/srep46558 (2017).Article
Ali,S.等人。昆虫病原真菌Lecanicillium muscarium与杀虫剂苦参碱对烟粉虱(Gennadius)协同作用的毒理学和生化基础。科学。代表7(1),1。https://doi.org/10.1038/srep46558(2017年)。文章
CAS
中科院
Google Scholar
谷歌学者
Hesketh, H., Svendsen, C., & Hails, R. S. Defining the response of Mamestra brassicae to mixed infections. In 42nd Annual Meeting of the Society for Invertebrate Pathology, Park City, Utah, 16–20 Aug 2009. Society for Invertebrate Pathology (2009).Santos, T. T. M., Quintela, E. D., Mascarin, G.
Hesketh,H.,Svendsen,C.,&Hails,R.S。定义了Mamestra brassicae对混合感染的反应。在2009年8月16日至20日于犹他州帕克城举行的第42届无脊椎动物病理学会年会上。无脊椎动物病理学会(2009)。桑托斯,T.T.M.,昆特拉,E.D.,马斯卡林,G。
M. & Santana, M. V. Enhanced mortality of Bemisia tabaci nymphs by Isaria javanica combined with sublethal doses of chemical insecticides. J. Appl. Entomol. 142(6), 1. https://doi.org/10.1111/jen.12504 (2018).Article .
M、 &Santana,M.V。通过爪哇Isaria联合亚致死剂量的化学杀虫剂提高了烟粉虱若虫的死亡率。J、 应用。Entomol。142(6),1。https://doi.org/10.1111/jen.12504(2018年)。文章。
CAS
中科院
Google Scholar
谷歌学者
Wei, Q. Y. A method for evaluating the toxicity interaction of binary mixtures. Methods X 7, 101029 (2020).CAS
Wei,Q.Y。一种评估二元混合物毒性相互作用的方法。方法X 7101029(2020)。中科院
Google Scholar
谷歌学者
Ye, S. D., Dun, Y. H. & Feng, M. G. Time and concentration dependent interactions of Beauveria bassiana with sublethal rates of imidacloprid against the aphid pests Macrosiphoniella sanborni and Myzus persicae. Ann. Appl. Biol. 146(4), 459–468 (2005).Article
Ye,S.D.,Dun,Y.H.&Feng,M.G。白僵菌与吡虫啉对蚜虫Macrosiphoniella sanborni和Myzus persicae的亚致死率的时间和浓度依赖性相互作用。安。应用。生物学146(4),459-468(2005)。文章
Google Scholar
谷歌学者
Kpindou, O. D., Niassy, A., Badji, K. & Kooyman, C. Application of mixtures of Metarhizium anisopliae var acridum and cyhalothrin against the Senegalese grasshopper in Senegal. Int. J. Trop. Insect Sci. 28(3), 136–143 (2008).Article
。Int.J.Trop。昆虫科学。28(3),136-143(2008)。文章
CAS
中科院
Google Scholar
谷歌学者
Spence, E. L. et al. A standardised bioassay method using a bench-top spray tower to evaluate entomopathogenic fungi for control of the greenhouse whitefly Trialeurodes vaporariorum. Pest Manag. Sci. 76(7), 2513–2524 (2020).Article
Spence,E.L.等人。一种使用台式喷雾塔评估昆虫病原真菌的标准化生物测定方法,用于控制温室粉虱(Trialeurodes vaporariorum)。害虫管理。科学。76(7),2513-2524(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dara, S. K. The new integrated pest management paradigm for the modern age. J. Integr. Pest Manag. 10(1), 1–9. https://doi.org/10.1093/jipm/pmz010 (2019).Article
Dara,S.K。现代害虫综合管理新范式。J、 整数。害虫管理。10(1),1-9。https://doi.org/10.1093/jipm/pmz010。文章
Google Scholar
谷歌学者
Insecticide Resistance Action Committee (IRAC). Prevention and management of insecticide resistance in vectors and pests of public health importance. Manual produced by IRAC, Geneva, Switzerland. Available at http://www.irac-online.org. (Accessed: 20 September 2021) (2006).Ambethgar, V.
抗药性行动委员会(IRAC)。预防和管理具有公共卫生重要性的媒介和害虫的抗药性。手册由瑞士日内瓦IRAC编制。可在http://www.irac-online.org.(访问日期:2021年9月20日)(2006年)。安贝斯加,V。
Potential of entomopathogenic fungi in insecticide resistance management (IRM): A review. J. Biopesticides 2(2), 1 (2009).Article .
昆虫病原真菌在杀虫剂抗性管理(IRM)中的潜力:综述。J、 生物农药2(2),1(2009)。文章。
Google Scholar
谷歌学者
Bitsadze, N. et al. Joint action of Beauveria bassiana and the insect growth regulators diflubenzuron and novaluron, on the migratory locust, Locusta migratoria. J. Pest Sci. 86, 293–300 (2013).Article
Bitsadze,N。等人。白僵菌和昆虫生长调节剂除虫脲和新氟隆对飞蝗的联合作用。害虫科学杂志。86293-300(2013)。文章
Google Scholar
谷歌学者
Sain, S. K. et al. Compatibility of entomopathogenic fungi with insecticides and their efficacy for IPM of Bemisia tabaci in cotton. J. Pesticide Sci. 44(2), 97–105 (2019).Article
Sain,S.K.等人。昆虫病原真菌与杀虫剂的相容性及其对棉花烟粉虱综合防治的效果。J、 农药科学。44(2),97-105(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Bi, J. L. & Toscano, N. C. Efficacy of spiromesifen against greenhouse whitefly (Homoptera: Aleyrodidae) on strawberry. HortScience 42(2), 1. https://doi.org/10.21273/hortsci.42.2.285 (2007).Article
Bi,J.L.&Toscano,N.C.spiromesifen对草莓上温室粉虱(同翅目:粉虱科)的功效。HortScience 42(2),1。https://doi.org/10.21273/hortsci.42.2.285(2007年)。文章
Google Scholar
谷歌学者
Kim, J. J. & Roberts, D. W. The relationship between conidial dose, moulting and insect developmental stage on the susceptibility of cotton aphid, Aphis gossypii, to conidia of Lecanicillium attenuatum, an entomopathogenic fungus. Biocontrol Sci. Technol. 22, 319–331 (2012).Article
Kim,J.J.&Roberts,D.W。分生孢子剂量,蜕皮和昆虫发育阶段与棉蚜(蚜虫)对昆虫病原真菌Lecanicillium attenuatum分生孢子敏感性的关系。生物防治科学。技术。22319-331(2012)。文章
CAS
中科院
Google Scholar
谷歌学者
Boucias, D. G. The effects of imidacloprid on the termites Reticulitermes flavipes and its interaction with the mycopathogen Beauveria bassiana. Pflanzenschutz-Nachr. Bayer 49, 103–144 (1996).
。普兰岑舒茨Nachr。拜耳49103-144(1996)。
Google Scholar
谷歌学者
Jia, M. et al. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen). Sci. Rep. 6(1), 1. https://doi.org/10.1038/srep28424 (2016).Article
Jia,M.等人。致病真菌绿僵菌与杀虫剂氯虫苯甲酰胺在东亚飞蝗(Meyen)中协同作用的生化基础。科学。代表6(1),1。https://doi.org/10.1038/srep28424(2016年)。文章
CAS
中科院
Google Scholar
谷歌学者
Russell, C. W., Ugine, T. A. & Hajek, A. E. Interactions between imidacloprid and Metarhizium brunneum on adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) (Coleoptera: Cerambycidae). J. Inverteb. Pathol. 105(3), 1. https://doi.org/10.1016/j.jip.2010.08.009 (2010).Article .
Russell,C.W.,Ugine,T.A。&Hajek,A.E。吡虫啉和绿僵菌对成年亚洲长角甲虫(光肩星天牛(Motschulsky))(鞘翅目:天牛科)的相互作用。J、 逆变器B。病理学。105(3),1。https://doi.org/10.1016/j.jip.2010.08.009(2010年)。文章。
CAS
中科院
Google Scholar
谷歌学者
Loewe, S. Die quantitativen Probleme der Pharmakologie. Ergebnisse der Physiologie 27(1), 1. https://doi.org/10.1007/BF02322290 (1928).Article
Loewe,S.药理学的定量问题。生理学结果27(1),1。https://doi.org/10.1007/BF02322290(1928).文章
Google Scholar
谷歌学者
Fargues, J., Goettel, M. S., Smits, N., Ouedraogo, A. & Rougier, M. Effect of temperature on vegetative growth of Beauveria bassiana isolates from different origins. Mycologia 89(3), 1. https://doi.org/10.2307/3761032 (1997).Article
Fargues,J.,Goettel,M.S.,Smits,N.,Ouedraogo,A。&Rougier,M。温度对来自不同来源的白僵菌分离株营养生长的影响。真菌学89(3),1。https://doi.org/10.2307/3761032(1997年)。文章
Google Scholar
谷歌学者
Braga, G. U., Flint, S. D., Miller, C. D., Anderson, A. J. & Roberts, D. W. Variability in response to UV-B among species and strains of Metarhizium isolated from sites at latitudes from 61°N to 54°S. J. Invert. Pathol. 78(2), 98–108. https://doi.org/10.1006/jipa.2001.5048 (2001).Article .
Braga,G.U.,Flint,S.D.,Miller,C.D.,Anderson,A.J。&Roberts,D.W。从61°N至54°S纬度的地点分离的绿僵菌物种和菌株对UV-B的响应变异性。J、 反转。病理学。78(2),98-108。https://doi.org/10.1006/jipa.2001.5048(2001年)。文章。
CAS
中科院
Google Scholar
谷歌学者
Lacey, L. A. Microbial control of insect and mite pests : from theory to practice (Academic Press, 2017).
Lacey,L.A。昆虫和螨虫的微生物控制:从理论到实践(Academic Press,2017)。
Google Scholar
谷歌学者
Drummon, J., Heale, J. B. & Gillesepe, A. T. Germination and effect of reduced humidity on expression of pathogenicity in Verticillium lecanii against the glasshouse whitefly Trialeurodes vaporariorum. Ann. Appl. Biol. 111(1), 1. https://doi.org/10.1111/j.1744-7348.1987.tb01446.x (1987).Article .
Drummon,J.,Heale,J。B。和Gillesepe,A。T。发芽和湿度降低对蜡蚧轮枝菌对温室粉虱Trialeurodes vaporariorum致病性表达的影响。安。应用。生物学111(1),1。https://doi.org/10.1111/j.1744-7348.1987.tb01446.x(1987年)。文章。
Google Scholar
谷歌学者
Osborne, L. S. & Landa, Z. Biological control of whiteflies with entomopathogenic fungi. Florida Entomol. 75(4), 1. https://doi.org/10.2307/3496127 (1992).Article
Osborne,L.S。&Landa,Z。用昆虫病原真菌对粉虱进行生物防治。佛罗里达州Entomol。75(4),1。https://doi.org/10.2307/3496127(1992年)。文章
Google Scholar
谷歌学者
Scheepmaker, J. W. A. & Butt, T. M. Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocont. Sci. Technol. 20(5), 503–552 (2010).Article
。Biocont公司。科学。技术。20(5),503-552(2010)。文章
Google Scholar
谷歌学者
Ortiz-Urquiza, A. & Keyhani, N. O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 4(3), 1. https://doi.org/10.3390/INSECTS4030357 (2013).Article
Ortiz-Urquiza,A。&Keyhani,N.O。表面作用:昆虫病原真菌与昆虫角质层。昆虫4(3),1。https://doi.org/10.3390/INSECTS4030357(2013年)。文章
Google Scholar
谷歌学者
Schoolfield, R. M., Sharpe, P. J. H. & Magnuson, C. E. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88(4), 1. https://doi.org/10.1016/0022-5193(81)90246-0 (1981).Article
。J、 理论。生物学88(4),1。https://doi.org/10.1016/0022-5193(81)90246-0(1981)。文章
Google Scholar
谷歌学者
Zou, C., Li, L., Dong, T., Zhang, B. & Hu, Q. Joint action of the entomopathogenic fungus Isaria fumosorosea and four chemical insecticides against the whitefly Bemisia tabaci. Biocontrol Sci. Technol. 24(3), 1. https://doi.org/10.1080/09583157.2013.860427 (2014).Article
Zou,C.,Li,L.,Dong,T.,Zhang,B。&Hu,Q。昆虫病原真菌Isaria fumosorosea和四种化学杀虫剂对烟粉虱的联合作用。生物防治科学。技术。24(3),1。https://doi.org/10.1080/09583157.2013.860427(2014年)。文章
Google Scholar
谷歌学者
Meyling, N. V. et al. Implications of sequence and timing of exposure for synergy between the pyrethroid insecticide alpha-cypermethrin and the entomopathogenic fungus Beauveria bassiana. Pest Manag. Sci. 74(11), 2488–2495 (2018).Article
Meyling,N.V.等人。拟除虫菊酯杀虫剂α-氯氰菊酯和昆虫病原真菌白僵菌之间协同作用的暴露顺序和时间的影响。害虫管理。科学。74(11),2488-2495(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wari, D. et al. Augmentation and compatibility of Beauveria bassiana with pesticides against different growth stages of Bemisia tabaci (Gennadius); an in vitro and field approach. Pest Manag. Sci. 76, 1. https://doi.org/10.1002/ps.5881 (2020).Article
Wari,D。等人。白僵菌与杀虫剂对烟粉虱(Gennadius)不同生长阶段的增强和相容性;体外和现场方法。害虫管理。科学。76,1。https://doi.org/10.1002/ps.5881。文章
CAS
中科院
Google Scholar
谷歌学者
Ocampo-Hernández, J. A., Tamayo-Mejía, F., Tamez-Guerra, P., Gao, Y. & Guzman-Franco, A. Different host plant species modifies the susceptibility of Bactericera cockerelli to the entomopathogenic fungus Beauveria bassiana. J. Appl. Entomol. 143(9), 1. https://doi.org/10.1111/JEN.12680 (2019).Article .
Ocampo Hernández,J.A.,Tamayo MejíA,F.,Tamez-Guerra,P.,Gao,Y。&Guzman-Franco,A。不同的寄主植物物种改变了细菌对昆虫病原真菌白僵菌的敏感性。J、 应用。Entomol。143(9),1。https://doi.org/10.1111/JEN.12680。文章。
Google Scholar
谷歌学者
Schneider-Orelli, O. Practical entomology: an introduction to agricultural and forest entomology. In Practical entomology: An introduction to agricultural and forest entomology (2nd ed.(rev.)) (1947).Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-Response Analysis Using R. PLOS One 10, e0146021.
Schneider Orelli,O。实用昆虫学:农业和森林昆虫学简介。《实用昆虫学:农业和森林昆虫学导论》(第二版(修订版))(1947年)。Ritz,C.,Baty,F.,Streibig,J.C。和Gerhard,D。使用R.PLOS One 10,e0146021进行剂量反应分析。
https://doi.org/10.1371/journal.pone.0146021 (2015).Article .
https://doi.org/10.1371/journal.pone.0146021(2015年)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis study was funded by the Natural Environment Research Council (NERC) Industrial CASE (Collaborative Awards in Science and Engineering) studentship award granted to the Centre for Ecology and Hydrology (NERC grant reference: NE/P010490/1).The University of Warwick co-supervised the PhD and were the awarding University partner.
下载参考文献致谢本研究由自然环境研究委员会(NERC)工业案例(科学与工程合作奖)授予生态与水文中心的学生奖资助(NERC资助参考文献:NE/P010490/1)。华威大学共同监督博士学位,并成为授予博士学位的大学合作伙伴。
Additional funding and support as part of the award is provided by BASF (Industrial CASE Partner) and CAB International (Partner).Author informationAuthors and AffiliationsUK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UKEleanor L.
作为该奖项的一部分,巴斯夫(工业案例合作伙伴)和CAB国际(合作伙伴)提供了额外的资金和支持。作者信息作者和附属机构生态与水文中心,麦克莱恩大厦,本森巷,克罗马什-吉福德,沃林福德,牛津郡,OX10 8BB,UKEleanor L。
Dearlove, Claus Svendsen & Helen HeskethRSK ADAS Ltd. ADAS Gleadthorpe, Meden Vale, Mansfield, NG20 9PD, UKEleanor L. DearloveWarwick Crop Centre, School of Life Sciences, Wellesbourne Campus, The University of Warwick, Warwick, UKDavid ChandlerCABI, Bakeham Lane, Egham, TW20 9TY, UKSteve EdgingtonCertis Biologicals, Columbia, MD, USAShaun D.
Dearlove,Claus Svendsen&Helen HeskethRSK ADAS Ltd.ADAS Gleadthorpe,Meden Vale,Mansfield,NG20 9PD,Ukelenor L.DearloveWarwick作物中心,生命科学学院,Wellesbourne校区,沃里克大学,沃里克,UKDavid ChandlerCABI,Bakeham Lane,Egham,TW20 9TY,UKSteve EdgingtonCertis Biologicals,Columbia,MD,USAShaun D。
BerryBASF Plc, Woolpit, UKGareth MartinAuthorsEleanor L. DearloveView author publicationsYou can also search for this author in.
BerryBASF Plc,Woolpit,UKGareth MartinAuthorsEleanor L.DearloveView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarDavid ChandlerView author publicationsYou can also search for this author in
PubMed Google ScholarDavid ChandlerView作者出版物您也可以在
PubMed Google ScholarSteve EdgingtonView author publicationsYou can also search for this author in
PubMed Google ScholarSteve EdgingtonView作者出版物您也可以在
PubMed Google ScholarShaun D. BerryView author publicationsYou can also search for this author in
PubMed Google ScholarShaun D.BerryView作者出版物您也可以在
PubMed Google ScholarGareth MartinView author publicationsYou can also search for this author in
PubMed Google ScholarGareth MartinView作者出版物您也可以在
PubMed Google ScholarClaus SvendsenView author publicationsYou can also search for this author in
PubMed Google ScholarClaus SvendsenView作者出版物您也可以在
PubMed Google ScholarHelen HeskethView author publicationsYou can also search for this author in
PubMed Google ScholarContributionsELD conducted experiments within the manuscript, gathered data, conducted statistical and wrote the manuscript, with additional review from HH. All authors provided guidance on experimental design and context for impact of results. All authors reviewed the final manuscript and provided input to iterative review, prior to submission.Corresponding authorsCorrespondence to.
PubMed Google ScholarContributionsELD在手稿中进行了实验,收集了数据,进行了统计并撰写了手稿,并由HH进行了额外的审查。所有作者都为实验设计和结果影响的背景提供了指导。所有作者都审阅了最终稿件,并在提交之前为迭代审阅提供了输入。通讯作者通讯。
Eleanor L. Dearlove or Helen Hesketh.Ethics declarations
埃莉诺·迪尔洛夫或海伦·赫斯基。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Tables.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充表。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleDearlove, E.L., Chandler, D., Edgington, S. et al. Improved control of Trialeurodes vaporariorum using mixture combinations of entomopathogenic fungi and the chemical insecticide spiromesifen.
转载和许可本文引用本文Dearlove,E.L.,Chandler,D.,Edgington,S。等人使用昆虫病原真菌和化学杀虫剂spiromesifen的混合物改进了对Trialeurodes vaporariorum的控制。
Sci Rep 14, 15259 (2024). https://doi.org/10.1038/s41598-024-66051-8Download citationReceived: 16 November 2023Accepted: 26 June 2024Published: 03 July 2024DOI: https://doi.org/10.1038/s41598-024-66051-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1415259(2024)。https://doi.org/10.1038/s41598-024-66051-8Download引文接收日期:2023年11月16日接收日期:2024年6月26日发布日期:2024年7月3日OI:https://doi.org/10.1038/s41598-024-66051-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsMixTox model
关键词Mixtox模型
Trialeurodes vaporariorum
蒸汽三列菌
Microbial controlBiopesticideEntomopathogenic fungiInteractionsSynergyAntagonismAdditivityIPM
微生物控制生物农药致病菌相互作用synergyantagonismadditivityipm
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。