商务合作
动脉网APP
可切换为仅中文
AbstractTargeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2.
摘要靶向蛋白质降解(TPD)是一种新兴的治疗策略,它将受益于新的化学实体,可以募集更多种类的泛素E3连接酶来靶向蛋白质进行蛋白酶体降解。在这里,我们描述了一种TPD策略,涉及募集FBXO22以诱导组蛋白甲基转移酶和癌基因NSD2的降解。
UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain-of-function mutation p.E1099K, resulting in growth suppression, apoptosis and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 to recruit the SCFFBXO22 Cullin complex.
UNC8732促进FBXO22介导的NSD2在具有NSD2功能获得突变p.E1099K的急性淋巴细胞白血病细胞中的降解,从而导致生长抑制,细胞凋亡和耐药性逆转。UNC8732的伯胺被代谢成醛物质,该醛物质与FBXO22的C326结合以募集SCFFBXO22-Cullin复合物。
We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCFFBXO22. Overall, we present a potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a new FBXO22-recruitment strategy for TPD..
我们进一步证明,先前报道的靶向XIAP的含烷基胺降解剂类似地依赖于SCFFBXO22。总体而言,我们提出了一种有效的NSD2降解剂,用于探索NSD2疾病表型,并为TPD提供了一种新的FBXO22募集策略。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on Springer LinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: UNC8732 inhibits cell growth and restores GC sensitivity of NSD2 p.E1099K mutant ALL cells.Fig. 2: UNC8732 metabolism to the corresponding aldehyde drives NSD2 degradation.Fig. 3: FBXO22 is responsible for compound-mediated degradation of NSD2.Fig. 4: Aldehyde degraders bind FBXO22 in a cysteine 326-dependent manner.Fig.
图1:UNC8732抑制细胞生长并恢复NSD2 p.E1099K突变体ALL细胞的GC敏感性。图2:UNC8732代谢为相应的醛驱动NSD2降解。图3:FBXO22负责化合物介导的NSD2降解。图4:醛降解物以半胱氨酸326依赖性方式结合FBXO22。图。
5: A primary amine-containing degrader recruits the SCFFBXO22 complex for degradation of XIAP..
5: 含有伯胺的降解剂募集SCFFBXO22复合物用于降解XIAP。。
Data availability
数据可用性
All supporting data for this study can be found within the article, its extended data figures and Supplementary Information documents. All mass spectrometry data are available at massive.ucsd.edu—accession MSV000093206. The sequence of the pCDF-BirA vector is available at GenBank (accession JF914075.1).
这项研究的所有支持数据都可以在文章,其扩展数据和补充信息文件中找到。所有质谱数据均可从massive.ucsd.edu-accession MSV000093206获得。pCDF-BirA载体的序列可在GenBank(登录号JF914075.1)上获得。
Source data are provided with this paper..
本文提供了源数据。。
Code availability
代码可用性
Analysis code for further BioID data processing and visualization is available via Zenodo at https://doi.org/10.5281/zenodo.10930672 (ref. 52).
用于进一步生物数据处理和可视化的分析代码可通过Zenodo获得https://doi.org/10.5281/zenodo.10930672(参考文献52)。
ReferencesBékés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).PubMed
参考文献Békés,M.,Langley,D.R。&Crews,C.M。PROTAC靶向蛋白质降解物:过去是序幕。《药物目录》修订版。21181-200(2022)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Humphreys, L. M., Smith, P., Chen, Z., Fouad, S. & D’Angiolella, V. The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ. 28, 522–537 (2021).CAS
Humphreys,L.M.,Smith,P.,Chen,Z.,Fouad,S。&D'Angiolella,V。E3泛素连接酶在胶质母细胞瘤发展和进展中的作用。细胞死亡不同。28522-537(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kramer, L. T. & Zhang, X. Expanding the landscape of E3 ligases for targeted protein degradation. Curr. Res. Chem. Biol. 2, 100020 (2022).CAS
Kramer,L.T。&Zhang,X。扩展E3连接酶的景观,用于靶向蛋白质降解。货币。Res.化学。生物学210020(2022)。中科院
Google Scholar
谷歌学者
Schapira, M., Calabrese, M. F., Bullock, A. N. & Crews, C. M. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18, 949–963 (2019).CAS
Schapira,M.,Calabrese,M.F.,Bullock,A.N。和Crews,C.M。靶向蛋白质降解:扩展工具箱。《药物目录》修订版。18949-963(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sun, J. et al. Downregulation of miR-21 inhibits the malignant phenotype of pancreatic cancer cells by targeting VHL. Onco Targets Ther. 12, 7215–7226 (2019).CAS
Sun,J。等人。miR-21的下调通过靶向VHL抑制胰腺癌细胞的恶性表型。。127215-7226(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, J. et al. Tumor heterogeneity in VHL drives metastasis in clear cell renal cell carcinoma. Signal Transduct. Target Ther. 8, 155 (2023).CAS
。信号传输管。目标Ther。8155(2023)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gopalsamy, A. Selectivity through targeted protein degradation (TPD). J. Med. Chem. 65, 8113–8126 (2022).CAS
Gopalsamy,A。通过靶向蛋白质降解(TPD)的选择性。J、 医学化学。658113-8126(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hanley, R. P. et al. Discovery of a potent and selective targeted NSD2 degrader for the reduction of H3K36me2. J. Am. Chem. Soc. 145, 8188 (2023).
Hanley,R.P.等人发现了一种有效且选择性靶向的NSD2降解剂,用于还原H3K36me2。J、 美国化学。。
Google Scholar
谷歌学者
Meng, F. et al. Discovery of a first-in-class degrader for nuclear receptor binding SET domain protein 2 (NSD2) and Ikaros/Aiolos. J. Med. Chem. 65, 10611–10625 (2022).CAS
Meng,F.等人发现了核受体结合SET结构域蛋白2(NSD2)和Ikaros/Aiolos的一流降解剂。J、 医学化学。6510611-10625(2022)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
LegaardAndersson, J. et al. Discovery of NSD2‐degraders from novel and selective DEL hits. ChemBioChem 24, e202300515 (2023).CAS
LegaardAndersson,J。等人。从新型和选择性DEL命中中发现NSD2降解物。化学生物化学24,e202300515(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kuo, A. J. et al. NSD2 links dimethylation of Histone H3 at Lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).CAS
Kuo,A.J.等人,NSD2将组蛋白H3在赖氨酸36处的二甲基化与致癌编程联系起来。分子细胞44609-620(2011)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jaffe, J. D. et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat. Genet. 45, 1386–1391 (2013).CAS
Jaffe,J.D.等人。全球染色质分析揭示了小儿急性淋巴细胞白血病中的NSD2突变。纳特·吉内特。451386-1391(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sengupta, D. et al. NSD2 dimethylation at H3K36 promotes lung adenocarcinoma pathogenesis. Mol. Cell 81, 4481–4492.e9 (2021).CAS
Sengupta,D。等人。H3K36处的NSD2二甲基化促进肺腺癌的发病机制。分子细胞814481-4492.e9(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuan, S. et al. Global regulation of the histone mark H3K36me2 underlies epithelial plasticity and metastatic progression. Cancer Discov. 10, 854–871 (2020).CAS
Yuan,S.等人。组蛋白标记H3K36me2的全球调节是上皮可塑性和转移进展的基础。癌症发现。10854-871(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
den Besten, W. et al. Primary amine tethered small molecules promote the degradation of X-linked inhibitor of apoptosis protein. J. Am. Chem. Soc. 143, 10571–10575 (2021).CAS
den Besten,W。等人。伯胺束缚的小分子促进X连锁凋亡抑制蛋白的降解。J、 美国化学。Soc.14310571–10575(2021)。中科院
Google Scholar
谷歌学者
Dilworth, D. et al. A chemical probe targeting the PWWP domain alters NSD2 nucleolar localization. Nat. Chem. Biol. 18, 56–63 (2022).CAS
Dilworth,D。等人。靶向PWWP结构域的化学探针会改变NSD2核仁的定位。。生物学18,56-63(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Swaroop, A. et al. An activating mutation of the NSD2 histone methyltransferase drives oncogenic reprogramming in acute lymphocytic leukemia. Oncogene 38, 671–686 (2019).CAS
Swaroop,A。等人。NSD2组蛋白甲基转移酶的激活突变驱动急性淋巴细胞白血病的致癌重编程。癌基因38671-686(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, J. et al. PRC2 inhibitors overcome glucocorticoid resistance driven by NSD2 mutation in pediatric acute lymphoblastic leukemia. Cancer Discov. 12, 186–203 (2022).CAS
Li,J。等人。PRC2抑制剂克服了儿童急性淋巴细胞白血病中NSD2突变驱动的糖皮质激素抵抗。癌症发现。12186-203(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sato, K. et al. Structural basis of the regulation of the normal and oncogenic methylation of nucleosomal histone H3 Lys36 by NSD2. Nat. Commun. 12, 6605 (2021).CAS
Sato,K。等人。NSD2调节核小体组蛋白H3 Lys36正常和致癌甲基化的结构基础。国家公社。126605(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, W. et al. Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases. Nature 590, 498–503 (2021).CAS
Li,W。等人。NSD甲基转移酶对核小体H3K36甲基化的分子基础。自然590498-503(2021)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mandadapu, S. R. et al. Inhibition of norovirus 3CL protease by bisulfite adducts of transition state inhibitors. Bioorg. Med. Chem. Lett. 23, 62–65 (2013).CAS
Mandadapu,S.R.等人。过渡态抑制剂的亚硫酸氢盐加合物对诺如病毒3CL蛋白酶的抑制作用。生物组织医学化学。。23,62-65(2013)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gingras, A.-C., Abe, K. T. & Raught, B. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr. Opin. Chem. Biol. 48, 44–54 (2019).CAS
Gingras,A.-C.,Abe,K.T。&Raught,B。了解邻域:使用邻近依赖性生物素化来表征蛋白质复合物并绘制细胞器图。货币。奥平。化学。生物学48,44-54(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Baek, K. et al. Systemwide disassembly and assembly of SCF ubiquitin ligase complexes. Cell 186, 1895–1911.e21 (2023).CAS
Baek,K。等人。SCF泛素连接酶复合物的全系统拆卸和组装。细胞1861895-1911.e21(2023)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Horn-Ghetko, D. et al. Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly. Nature 590, 671–676 (2021).CAS
Horn Ghetko,D。等人。通过SCF–RBR E3–E3超级组装将泛素连接至F-box蛋白靶标。自然590671-676(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Machleidt, T. et al. NanoBRET—a novel BRET platform for the analysis of protein–protein interactions. ACS Chem. Biol. 10, 1797–1804 (2015).CAS
Machleidt,T。等人。NanoBRET-一种用于分析蛋白质-蛋白质相互作用的新型BRET平台。ACS化学。生物学101797-1804(2015)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vu, V., Szewczyk, M. M., Nie, D. Y., Arrowsmith, C. H. & Barsyte-Lovejoy, D. Validating small molecule chemical probes for biological discovery. Annu. Rev. Biochem. 91, 61–87 (2022).CAS
Vu,V.,Szewczyk,M.M.,Nie,D.Y.,Arrowsmith,C.H。和Barsyte-Lovejoy,D。验证用于生物发现的小分子化学探针。年。生物化学评论。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Masson, G. R. et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods 16, 595–602 (2019).CAS
Masson,G.R.等人。氢-氘交换质谱(HDX-MS)实验的执行、解释和报告建议。自然方法16595-602(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
James, E. I., Murphree, T. A., Vorauer, C., Engen, J. R. & Guttman, M. Advances in hydrogen/deuterium exchange mass spectrometry and the pursuit of challenging biological systems. Chem. Rev. 122, 7562–7623 (2022).CAS
James,E.I.,Murphree,T.A.,Vorauer,C.,Engen,J.R。&Guttman,M。氢/氘交换质谱的进展和对具有挑战性的生物系统的追求。化学。修订版1227562–7623(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bateman, A. et al. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).CAS
Bateman,A。等人。UniProt:2023年的通用蛋白质知识库。核酸研究51,D523–D531(2023)。中科院
Google Scholar
谷歌学者
Basu, A. A. et al. A CRISPR activation screen identifies FBXO22 as an E3 ligase supporting targeted protein degradation. Preprint at bioRxiv https://doi.org/10.1101/2023.09.15.557708 (2023).Lignitto, L. et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1.
Basu,A.A。等人,CRISPR激活筛选将FBXO22鉴定为支持靶向蛋白质降解的E3连接酶。bioRxiv预印本https://doi.org/10.1101/2023.09.15.557708(2023年)。Lignitto,L。等人。Nrf2激活通过抑制Bach1的降解来促进肺癌转移。
Cell 178, 316–329.e18 (2019).CAS .
细胞178316-329.e18(2019)。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, M. et al. Fbxo22 promotes cervical cancer progression via targeting p57Kip2 for ubiquitination and degradation. Cell Death Discov. 13, 805 (2022).CAS
Fbxo22通过靶向p57Kip2进行泛素化和降解来促进宫颈癌的进展。。13805(2022)。中科院
Google Scholar
谷歌学者
Ge, M.-K. et al. FBXO22 degrades nuclear PTEN to promote tumorigenesis. Nat. Commun. 11, 1720 (2020).CAS
Ge,M.-K.等人,FBXO22降解核PTEN以促进肿瘤发生。国家公社。111720(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cheng, J. et al. Emerging role of FBXO22 in carcinogenesis. Cell Death Discov. 6, 66 (2020).CAS
Cheng,J.等人。FBXO22在致癌作用中的新兴作用。。6,66(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, S. et al. Pan-cancer analyses reveal oncogenic role and prognostic value of F-Box only protein 22. Front. Oncol. 11, 790912 (2022).PubMed
Chen,S。等人。泛癌分析揭示了仅F-Box蛋白22的致癌作用和预后价值。正面。Oncol公司。11790912(2022)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, D. I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl Acad. Sci. USA 111, E2453–E2461 (2014).Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).CAS
Kim,D.I.等人。用邻近依赖性生物素化探测核孔复合物结构。程序。国家科学院。科学。美国111,E2453–E2461(2014)。Soucy,T.A。等人。NEDD8激活酶抑制剂作为治疗癌症的新方法。自然458732-736(2009)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Meier, F. et al. Parallel accumulation–serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J. Proteome Res. 14, 5378–5387 (2015).CAS
Meier,F。等人。并行累积-串行碎片(PASEF):通过捕获离子迁移装置中的同步扫描来提高测序速度和灵敏度。J、 蛋白质组学研究145378-5387(2015)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, X. et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat. Protoc. 13, 530–550 (2018).CAS
Zhang,X。等人。使用UbIA-MS在蛋白质组范围内鉴定泛素相互作用。Nat。Protoc。13530-550(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).CAS
Roux,K.J.,Kim,D.I.,Raida,M。&Burke,B。一种混杂的生物素连接酶融合蛋白可识别哺乳动物细胞中的近端和相互作用蛋白。J、 细胞生物学。。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Coyaud, E. et al. BioID-based identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 ligase substrates*. Mol. Cell. Proteomics 14, 1781–1795 (2015).CAS
Coyaud,E。等人。基于BioID的Skp-Cullin F-box(SCF)β-TrCP1/2 E3连接酶底物的鉴定*。摩尔电池。蛋白质组学141781-1795(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008).CAS
。生物信息学242534-2536(2008)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Craig, R. & Beavis, R. C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).CAS
Craig,R。&Beavis,R.C。串联:用串联质谱匹配蛋白质。生物信息学201466-1467(2004)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Eng, J. K., Jahan, T. A. & Hoopmann, M. R. Comet: an open-source MS/MS sequence database search tool. Proteomics 13, 22–24 (2013).CAS
Eng,J.K.,Jahan,T.A。和Hoopmann,M.R。Comet:一种开源的MS/MS序列数据库搜索工具。蛋白质组学13,22-24(2013)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Deutsch, E. W. et al. A guided tour of the Trans‐Proteomic Pipeline. Proteomics 10, 1150–1159 (2010).CAS
Deutsch,E.W.等人。反式蛋白质组学管道的导游。蛋白质组学101150-1159(2010)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, G. et al. ProHits: integrated software for mass spectrometry–based interaction proteomics. Nat. Biotechnol. 28, 1015–1017 (2010).CAS
Liu,G.等人。ProHits:基于质谱的相互作用蛋白质组学的集成软件。美国国家生物技术公司。281015-1017(2010)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Teo, G. et al. SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. J. Proteomics 100, 37–43 (2014).CAS
Teo,G。等人。SAINTexpress:INTeractome软件显着性分析中的改进和其他功能。J、 蛋白质组学100,37-43(2014)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hutchinson, A. & Seitova, A. Production of recombinant PRMT proteins using the Baculovirus expression vector system. J. Vis. Exp. 2021, e62510 (2021).
Hutchinson,A。&Seitova,A。使用杆状病毒表达载体系统生产重组PRMT蛋白。J、 可见。实验2021,e62510(2021)。
Google Scholar
谷歌学者
Wu, T. et al. Three essential resources to improve differential scanning fluorimetry (DSF) experiments. Preprint at bioRxiv https://doi.org/10.1101/2020.03.22.002543 (2020).Scott, D. C. et al. Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. Cell 166, 1198–1214.e24 (2016).CAS .
Wu,T.等人。改进差示扫描荧光法(DSF)实验的三个基本资源。bioRxiv预印本https://doi.org/10.1101/2020.03.22.002543(2020年)。Scott,D.C。等人。两种不同类型的E3连接酶协同作用以调节底物泛素化。细胞1661198-1214.e24(2016)。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Duda, D. M. et al. Structural insights into NEDD8 activation of Cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).CAS
Duda,D.M.等人。库林环连接酶NEDD8激活的结构见解:结合的构象控制。细胞134995-1006(2008)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
d0minicO/NSD2_BioID: NSD2 BioID. Zenodo https://doi.org/10.5281/zenodo.10930672 (2024).Download referencesAcknowledgementsThe authors thank the members of the James laboratory and Stephen Frye for helpful discussions and input throughout the project. The authors thank P. H. Buttery and J.
d0minicO/NSD2\u BioID:NSD2 BioID。泽诺多https://doi.org/10.5281/zenodo.10930672(2024年)。下载参考文献致谢作者感谢詹姆斯实验室(JamesLaboratory)和斯蒂芬·弗莱(StephenFrye)的成员在整个项目中的有益讨论和投入。作者感谢P.H.Buttery和J。
L. R. Sanchez for the review of experimental data. This work is supported by grants from the Canadian Institutes of Health Research (CIHR) (FDN154328, OGB190363) and the Princess Margaret Cancer Foundation to C.H.A., from the National Institutes of Health (NCI) (R01CA242305) to L.I.J., a Leukemia and Lymphoma Society Specialized Center for Research and Florida Department of Health Grant 22L03 to J.D.L., and grants from the CIHR (PJT156093) and Princess Margaret Cancer Foundation to B.R.
五十、 R.Sanchez用于审查实验数据。这项工作得到了加拿大卫生研究院(CIHR)(FDN154328,OGB190363)和玛格丽特公主癌症基金会(Princess Margaret Cancer Foundation)向C.H.A.的资助,美国国立卫生研究院(NCI)(R01CA242305)向L.I.J.的资助,白血病和淋巴瘤学会专门研究中心(Leukemia and Lymphoma Society Specialized Center for Research)和佛罗里达州卫生部(Florida Department of Health)向J.D.L.的资助22L03,以及CIHR(PJT156093)和玛格丽特公主癌症基金会向B.R.的资助。
D.Y.N. is supported by a Canada Graduate Scholarship – Doctoral Research Award from CIHR (494204) and a Doctoral Training Scholarship from Fonds de recherche du Québec – Santé (320128). J.R.T. is supported by the UNC Lineberger Comprehensive Cancer Center Cancer Epigenetics Training Program (5T32CA217824-05).
D、 Y.N.获得了加拿大研究生奖学金(CIHR授予的博士研究奖)(494204)和魁北克研究基金会(Fonds de recherche du Québec–Santé)授予的博士培训奖学金(320128)。J、 R.T.得到了UNC Lineberger综合癌症中心癌症表观遗传学培训计划(5T32CA217824-05)的支持。
D.B.-L. is supported by CRS grant 25418. D.W. is supported by the NSERC Discovery (RGPIN-480432) and NSERC Collaborative Research and Development (CRDPJ-504037) grants. Portions of this work have been supported by certain funds managed by Deerfield Management Company, L.P. Deerfield Management Company is a healthcare-focused investment management firm.
D、 B.-L.得到CRS grant 25418的支持。D、 W.得到了NSERC Discovery(RGPIN-480432)和NSERC Collaborative Research and Development(CRDPJ-504037)的资助。这项工作的一部分得到了迪尔菲尔德管理公司(L.P.)管理的某些基金的支持。迪尔菲尔德管理公司是一家专注于医疗保健的投资管理公司。
The Structural Genomics Consortium is a registered charity (no. 1097737) that receives funds from Bayer AG, Boehringer Ingelheim, BristolMyersSquibb, Genentech, Genome Canada through Ontario Genomics Institute (OGI-196), EU/EFPIA/OICR/McGill/KTH/Diamond Innovative Medicines Initiative 2 Joint Undertaking (EUbOPENGrant875510), Janssen,.
结构基因组学协会是一家注册慈善机构(编号1097737),通过安大略基因组学研究所(OGI-196),欧盟/EFPIA/OICR/McGill/KTH/Diamond Innovative Medicines Initiative 2 Joint Association(EUbOPENGrant875510),詹森,从拜耳公司,勃林格殷格翰,百时美施贵宝,Genentech,Genome Canada获得资金,。
PubMed Google ScholarJohn R. TaborView author publicationsYou can also search for this author in
PubMed谷歌学者John R.TaborView作者出版物您也可以在
PubMed Google ScholarJianping LiView author publicationsYou can also search for this author in
PubMed谷歌学者Jianping LiView作者出版物您也可以在
PubMed Google ScholarMaria KuteraView author publicationsYou can also search for this author in
PubMed Google ScholarMaria KuteraView作者出版物您也可以在
PubMed Google ScholarJonathan St-GermainView author publicationsYou can also search for this author in
PubMed Google ScholarJonathan St GermainView作者出版物您也可以在
PubMed Google ScholarRonan P. HanleyView author publicationsYou can also search for this author in
PubMed Google ScholarRonan P.HanleyView作者出版物您也可以在
PubMed Google ScholarEsther WolfView author publicationsYou can also search for this author in
PubMed Google ScholarEsther WolfView作者出版物您也可以在
PubMed Google ScholarEthan PaulakonisView author publicationsYou can also search for this author in
PubMed Google ScholarEthan PaulakonisView作者出版物您也可以在
PubMed Google ScholarTristan M. G. KenneyView author publicationsYou can also search for this author in
PubMed Google ScholarTristan M.G.KenneyView作者出版物您也可以在
PubMed Google ScholarShili DuanView author publicationsYou can also search for this author in
PubMed Google ScholarShili DuanView作者出版物您也可以在
PubMed Google ScholarSuman ShresthaView author publicationsYou can also search for this author in
PubMed Google ScholarSuman ShresthaView作者出版物您也可以在
PubMed Google ScholarDominic D. G. OwensView author publicationsYou can also search for this author in
PubMed Google ScholarDominic D.G.OwensView作者出版物您也可以在
PubMed Google ScholarMatthew E. R. MaitlandView author publicationsYou can also search for this author in
PubMed Google ScholarMatthew E.R.MaitlandView作者出版物您也可以在
PubMed Google ScholarAiling PonView author publicationsYou can also search for this author in
PubMed谷歌学术PonView作者出版物您也可以在
PubMed Google ScholarMagdalena SzewczykView author publicationsYou can also search for this author in
PubMed Google ScholarMagdalena SzewczykView作者出版物您也可以在
PubMed Google ScholarAnthony Joseph LambertoView author publicationsYou can also search for this author in
PubMed Google ScholarAnthony Joseph LambertoView作者出版物您也可以在
PubMed Google ScholarMichael MenesView author publicationsYou can also search for this author in
PubMed谷歌ScholarMichael MenesView作者出版物您也可以在
PubMed Google ScholarFengling LiView author publicationsYou can also search for this author in
PubMed Google ScholarFengling LiView作者出版物您也可以在
PubMed Google ScholarLinda Z. PennView author publicationsYou can also search for this author in
PubMed Google ScholarLinda Z.PennView作者出版物您也可以在
PubMed Google ScholarDalia Barsyte-LovejoyView author publicationsYou can also search for this author in
PubMed Google ScholarDalia Barsyte LovejoyView作者出版物您也可以在
PubMed Google ScholarNicholas G. BrownView author publicationsYou can also search for this author in
PubMed Google ScholarNicholas G.BrownView作者出版物您也可以在
PubMed Google ScholarAnthony M. BarsottiView author publicationsYou can also search for this author in
PubMed Google ScholarAndrew W. StamfordView author publicationsYou can also search for this author in
PubMed Google ScholarAndrew W.StamfordView作者出版物您也可以在
PubMed Google ScholarJon L. CollinsView author publicationsYou can also search for this author in
PubMed Google ScholarJon L.CollinsView作者出版物您也可以在
PubMed Google ScholarDerek J. WilsonView author publicationsYou can also search for this author in
PubMed Google ScholarDerek J.WilsonView作者出版物您也可以在
PubMed Google ScholarBrian RaughtView author publicationsYou can also search for this author in
PubMed谷歌学者RaughtView作者出版物您也可以在
PubMed Google ScholarJonathan D. LichtView author publicationsYou can also search for this author in
PubMed Google ScholarJonathanD.LichtView作者出版物您也可以在
PubMed Google ScholarLindsey I. JamesView author publicationsYou can also search for this author in
PubMed Google ScholarLindsey I.JamesView作者出版物您也可以在
PubMed Google ScholarCheryl H. ArrowsmithView author publicationsYou can also search for this author in
PubMed Google Scholarchyl H.ArrowsmithView作者出版物您也可以在
PubMed Google ScholarContributionsD.Y.N., J.L., A.P., M.S., A.J.L. and M.M. designed, performed and analyzed cellular experiments. J.R.T., R.P.H. and L.I.J. designed and synthesized the compounds. S.S., M.K., T.M.G.K., F.L. and D.Y.N. designed, performed and analyzed biophysical experiments.
PubMed谷歌学术贡献SD。Y、 N.,J.L.,A.P.,M.S.,A.J.L.和M.M.设计,执行和分析了细胞实验。J、 R.T.,R.P.H.和L.I.J.设计并合成了这些化合物。S、 S.,M.K.,T.M.G.K.,F.L.和D.Y.N.设计,执行和分析了生物物理实验。
S.D. and M.K. performed cloning and protein purification. J.S.-G., M.E.R.M., D.D.G.O. and D.Y.N. designed, performed and analyzed BioID and global proteomics experiments. E.W. and M.K. designed, performed and analyzed HDX-MS experiments. E.P. performed in vitro ubiquitination experiments. L.Z.P., D.B.-L., N.G.B., A.M.B., A.W.S., J.L.C., D.J.W., B.R., J.D.L., L.I.J.
S、 D.和M.K.进行了克隆和蛋白质纯化。J、 S.G.、M.E.R.M.、D.D.G.O.和D.Y.N.设计、执行和分析了BioID和全球蛋白质组学实验。E、 W.和M.K.设计,执行和分析了HDX-MS实验。E、 P.进行了体外泛素化实验。五十、 Z.P.,D.B.-L.,N.G.B.,A.M.B.,A.W.S.,J.L.C.,D.J.W.,B.R.,J.D.L.,L.I.J。
and C.H.A. provided supervision and/or funding. D.Y.N., J.R.T., L.I.J. and C.H.A. wrote the manuscript.Corresponding authorsCorrespondence to.
和C.H.A.提供监督和/或资金。D、 Y.N.,J.R.T.,L.I.J.和C.H.A.撰写了手稿。通讯作者通讯。
Lindsey I. James or Cheryl H. Arrowsmith.Ethics declarations
林赛I.詹姆斯或谢丽尔H.阿罗史密斯。道德宣言
Competing interests
相互竞争的利益
D.D.G.O. is an employee of Amphista Therapeutics, a company that is developing TPD therapeutic platforms. A.M.B. and A.W.S. are employees of Deerfield Management Company, a healthcare-focused investment management firm. The remaining authors declare no competing interests.
D、 D.G.O.是Amphista Therapeutics的员工,该公司正在开发TPD治疗平台。A、 M.B.和A.W.S.是Deerfield Management Company的员工,Deerfield Management Company是一家专注于医疗保健的投资管理公司。其余作者声明没有利益冲突。
Peer review
同行评审
Reviewer Recognition
审阅者认可
Nature Chemical Biology thanks Milka Kostic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然化学生物学》感谢Milka Kostic和另一位匿名审稿人为这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 UNC8732 inhibits cell growth and restores glucocorticoid sensitivity of NSD2 p.E1099K mutant ALL cells.(a): Total proteome analysis (label-free quantification) of U2OS cells treated with 2 µM UNC8732 or an equivalent volume of DMSO for 3 hours.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1 UNC8732抑制细胞生长并恢复NSD2 p.E1099K突变ALL细胞的糖皮质激素敏感性。(a) :用2µM UNC8732或等体积的DMSO处理3小时的U2OS细胞的总蛋白质组分析(无标记定量)。
Volcano plot of all quantified proteins (8240) with log2 fold change shown on the x-axis (dashed line equivalent to a 2-fold change) and -log10 adjusted p values shown on the y-axis (dashed line equivalent to p.adjusted = 0.05). Adjusted p-values were derived from Limma and DEP packages (see methods) and were adjusted using the Benjamini-Hochberg procedure.
所有定量蛋白质(8240)的火山图,x轴上显示log2倍变化(虚线相当于2倍变化)和y轴上显示的log10调整后的p值(虚线相当于p.adjusted=0.05)。调整后的p值来自Limma和DEP包(请参见方法),并使用Benjamini-Hochberg程序进行调整。
N=5 independent experiments. (b-d): Viability of isogenic RCH-ACV determined by CellTiter-Glo assay after treatment with varying concentrations of UNC8732 and UNC8884 for (b) 12 days, (c) 15 days, or (d) 21 days. (e-f): Apoptosis of isogenic RCH-ACV detected using annexin V/PI staining by flow cytometry after treatment with varying concentrations of UNC8732 and UNC8884 for (e) 15 days or (f) 21 days.
N=5个独立实验。。(e-f):在用不同浓度的UNC8732和UNC8884处理(e)15天或(f)21天后,通过流式细胞术使用膜联蛋白V/PI染色检测同基因RCH-ACV的凋亡。
(g-h): Viability of NSD2 mutant RCH-ACV cells determined by CellTiter-Glo after the pretreatment of varying concentrations of UNC8732 and UNC8884 for (g) 12 days or (h) 15 days followed by dexamethasone (1 µM) for 72 hours. (i-j): Apoptosis of NSD2 mutant RCH-ACV cell line detected using annexin V/PI staining by flow cytometry after the pretreatment of varying concentrations of UNC8732 and UNC8884 for (i) 12 days or (j) 15 days followed by dexamethasone (1 µM) for 72 hours.
(g-h):在不同浓度的UNC8732和UNC8884预处理(g)12天或(h)15天后,然后用地塞米松(1μM)预处理72小时后,通过CellTiter-Glo测定NSD2突变RCH-ACV细胞的活力。(i-j):在不同浓度的UNC8732和UNC8884预处理(i)12天或(j)15天后,通过流式细胞术使用膜联蛋白V/PI染色检测NSD2突变RCH-ACV细胞系的凋亡,然后是地塞米松(1μM)72小时。
Data represents the mean ± SEM from three biological replicates. The statistical significance was evaluated using the Two.
数据代表来自三个生物学重复的平均值±SEM。使用两者评估统计学显着性。
Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01660-yDownload citationReceived: 31 October 2023Accepted: 31 May 2024Published: 04 July 2024DOI: https://doi.org/10.1038/s41589-024-01660-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Chem Biol(2024)。https://doi.org/10.1038/s41589-024-01660-yDownload收到引文日期:2023年10月31日接受日期:2024年5月31日发布日期:2024年7月4日OI:https://doi.org/10.1038/s41589-024-01660-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供