商务合作
动脉网APP
可切换为仅中文
AbstractTriple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival.
摘要三阴性乳腺癌(TNBC)是最具侵袭性的乳腺癌亚型,其靶向治疗选择有限。根据最近的报道,雌激素受体(ER)阴性乳腺癌中成纤维细胞生长因子诱导型14(Fn14)受体的过度表达与转移事件相关,我们发现Fn14在TNBC患者中特异性过表达,并与生存率低有关。
We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis. We further illustrate that such mechanisms activate TNBC-specific super enhancers (SE) to drive the transcriptional activation of cancer dependency genes via chromatin looping.
我们证明组成型Fn14信号重新连接TNBC的转录组和表观基因组景观,导致肿瘤生长和转移增强。我们进一步说明,这种机制激活TNBC特异性超增强子(SE),通过染色质环驱动癌症依赖性基因的转录激活。
In particular, we uncover the SE-driven upregulation of Nicotinamide phosphoribosyltransferase (NAMPT), which promotes NAD+ and ATP metabolic reprogramming critical for filopodia formation and metastasis. Collectively, our study details the complex mechanistic link between TWEAK/Fn14 signalling and TNBC metastasis, which reveals several vulnerabilities which could be pursued for the targeted treatment of TNBC patients..
特别是,我们揭示了SE驱动的烟酰胺磷酸核糖基转移酶(NAMPT)上调,其促进对丝状伪足形成和转移至关重要的NAD+和ATP代谢重编程。总的来说,我们的研究详细描述了TWEAK/Fn14信号传导与TNBC转移之间复杂的机制联系,揭示了TNBC患者靶向治疗可能存在的几个漏洞。。
IntroductionBreast cancer (BC) is the leading malignancy in women (which comprises 11.7% of total cases), accounting for 6.9% of all cancer related deaths globally1,2,3,4. Additionally, the heterogeneity of this disease makes it challenging for both diagnosis and treatment5,6. There are five distinct molecular subtypes of BC: Luminal A, Luminal B, HER2-enriched, Basal-like/Triple negative and Normal-like7,8,9.
引言乳腺癌(BC)是女性的主要恶性肿瘤(占总病例的11.7%),占全球所有癌症相关死亡的6.9%1,2,3,4。此外,这种疾病的异质性使其对诊断和治疗都具有挑战性5,6。。
Amongst them, TNBC is the most aggressive and heterogenous subtype that exhibits enhanced proliferative and metastatic capacity, poorer prognosis and higher disease recurrence compared to the other subtypes. In addition, TNBCs are insensitive to endocrine and HER2-targeted therapy due to the absence of all three hormonal receptors which limits treatment options to standard chemotherapeutic regimens, such as taxanes, anthracyclines and platinum-based agents, alongside recent combination treatment with immuno-therapeutics10,11,12.
其中,TNBC是最具侵袭性和异质性的亚型,与其他亚型相比,其表现出增强的增殖和转移能力,较差的预后和更高的疾病复发。此外,由于缺乏所有三种激素受体,TNBC对内分泌和HER2靶向治疗不敏感,这限制了标准化疗方案(如紫杉烷,蒽环类和铂类药物)的治疗选择,以及最近与免疫疗法的联合治疗10,11,12。
However, despite various treatment options, fewer than 30% of patients achieve pathologic complete response10,13. Consequently, there is an urgent need to identify effective molecular markers or driver factors specific to TNBC patients for targeted therapies.To discover new therapeutic targets, it is crucial to elucidate the oncogenic signalling mechanisms and their requisite gene regulatory programmes which sustain TNBC malignancy.
然而,尽管有各种治疗选择,但只有不到30%的患者达到病理完全缓解10,13。因此,迫切需要鉴定针对TNBC患者的有效分子标志物或驱动因子以进行靶向治疗。为了发现新的治疗靶点,阐明维持TNBC恶性肿瘤的致癌信号传导机制及其必需的基因调控程序至关重要。
The Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK)/Fibroblast growth factor-inducible 14 (Fn14) pathway is one such signalling cascade implicated in the pathogenesis of TNBC and other solid tumours. The TWEAK cytokine, TNFSF12, is a member of the TNF superfamily that is widely expressed in several tissues and cell types including fibroblasts, immune, mesenchymal, endothelial and tumour cell.
肿瘤坏死因子(TNF)样凋亡弱诱导剂(TWEAK)/成纤维细胞生长因子诱导型14(Fn14)途径是一种与TNBC和其他实体瘤的发病机制有关的信号级联反应。TWEAK细胞因子TNFSF12是TNF超家族的成员,其在几种组织和细胞类型中广泛表达,包括成纤维细胞,免疫细胞,间充质细胞,内皮细胞和肿瘤细胞。
Data availability
数据可用性
The ChIP-seq, RNA-seq, ATAC-seq and HiChIP data generated in this study have been deposited in the GEO (Gene Expression Omnibus) database under accession code GSE231483. Source data are provided with this paper.
本研究中产生的ChIP-seq,RNA-seq,ATAC-seq和HiChIP数据已保存在GEO(Gene Expression Omnibus)数据库中,登录号为GSE231483。本文提供了源数据。
ReferencesSung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71, 209–249 (2021).PubMed
ReferencesSung,H.等人,《2020年全球癌症统计:全球癌症协会对185个国家36种癌症的全球发病率和死亡率的估计》。CA:癌症J.临床。71209-249(2021)。PubMed出版社
Google Scholar
谷歌学者
Wu, H.-J. & Chu, P.-Y. Recent discoveries of macromolecule-and cell-based biomarkers and therapeutic implications in breast cancer. Int. J. Mol. Sci. 22, 636 (2021).Article
Wu,H.-J.&Chu,P.-Y。大分子和细胞生物标志物的最新发现以及乳腺癌的治疗意义。Int.J.Mol.Sci。22636(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA: Cancer J. Clin. 72, 7–33 (2022).PubMed
Siegel,R.L.,Miller,K.D.,Fuchs,H.E.&Jemal,A.癌症统计,2022年。CA:癌症J.临床。72,7-33(2022)。PubMed出版社
Google Scholar
谷歌学者
Yi, M. et al. Epidemiological trends of women’s cancers from 1990 to 2019 at the global, regional, and national levels: a population-based study. Biomark. Res. 9, 55 (2021).Article
Yi,M.等人,《1990年至2019年全球、区域和国家层面女性癌症的流行病学趋势:一项基于人群的研究》。生物标志物第9、55号决议(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lüönd, F., Tiede, S. & Christofori, G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br. J. cancer 125, 164–175 (2021).Article
Lönd,F.,Tiede,S。&Christofori,G。乳腺癌是恶性进展过程中肿瘤异质性和肿瘤细胞可塑性的一个例子。《癌症杂志》125164-175(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Polyak, K. Heterogeneity in breast cancer. J. Clin. Investig. 121, 3786–3788 (2011).Article
Polyak,K。乳腺癌的异质性。J、 临床。调查。1213786-3788(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. 100, 10393–10398 (2003).Article
Sotiriou,C.等人。基于人群研究的基因表达谱的乳腺癌分类和预后。程序。国家科学院。科学。10010393-10398(2003)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 1160 (2009).Article
Parker,J.S.等人基于内在亚型对乳腺癌风险预测进行了监督。J、 临床。Oncol公司。271160(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. 98, 10869–10874 (2001).Article
Sørlie,T。等人。乳腺癌的基因表达模式区分具有临床意义的肿瘤亚类。程序。国家科学院。科学。9810869-10874(2001)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, Y. et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol. 15, 121 (2022).Article
Li,Y.等人。三阴性乳腺癌治疗策略的最新进展。J、 血液学。Oncol公司。15121(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bianchini, G., De Angelis, C., Licata, L. & Gianni, L. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat. Rev. Clin. Oncol. 19, 91–113 (2022).Article
Bianchini,G.,De Angelis,C.,Licata,L。&Gianni,L。三阴性乳腺癌的治疗前景-扩大的选择,不断变化的需求。国家修订临床。Oncol公司。19,91-113(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E. & Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 13, 674–690 (2016).Article
Bianchini,G.,Balko,J.M.,Mayer,I.A.,Sanders,M.E。&Gianni,L。三阴性乳腺癌:异质性疾病的挑战和机遇。国家修订临床。Oncol公司。13674-690(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
von Minckwitz, G. et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 30, 1796–1804 (2012).Article
。J、 临床。Oncol公司。301796-1804(2012)。文章
Google Scholar
谷歌学者
Chicheportiche, Y., Fossati-Jimack, L., Moll, S., Ibnou-Zekri, N. & Izui, S. Down-regulated expression of TWEAK mRNA in acute and chronic inflammatory pathologies. Biochem. Biophys. Res. Commun. 279, 162–165 (2000).Article
Chicheportiche,Y.,Fossati-Jimack,L.,Moll,S.,Ibnou-Zekri,N。&Izui,S。在急性和慢性炎症病理中下调TWEAK mRNA的表达。生物化学。生物物理。公共资源。279162-165(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kawakita, T. et al. Functional expression of TWEAK in human hepatocellular carcinoma: possible implication in cell proliferation and tumor angiogenesis. Biochem. Biophys. Res. Commun. 318, 726–733 (2004).Article
川崎,T。等。TWEAK在人肝细胞癌中的功能表达:在细胞增殖和肿瘤血管生成中的可能意义。生物化学。生物物理。公共资源。318726-733(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kawakita, T. et al. Functional expression of TWEAK in human colonic adenocarcinoma cells. Int. J. Oncol. 26, 87–93 (2005).CAS
Kawakita,T。等人。TWEAK在人结肠腺癌细胞中的功能表达。内景J.Oncol。26,87-93(2005)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Girgenrath, M. et al. TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO J. 25, 5826–5839 (2006).Article
。EMBO J.255826–5839(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lynch, C. N. et al. TWEAK induces angiogenesis and proliferation of endothelial cells. J. Biol. Chem. 274, 8455–8459 (1999).Article
Lynch,C.N。等人,TWEAK诱导内皮细胞的血管生成和增殖。J、 生物。化学。2748455-8459(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chicheportiche, Y. et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J. Biol. Chem. 272, 32401–32410 (1997).Article
Chicheportiche,Y。等人TWEAK是肿瘤坏死因子家族中一种新的分泌配体,可弱诱导细胞凋亡。J、 生物。化学。27232401–32410(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bossen, C. et al. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J. Biol. Chem. 281, 13964–13971 (2006).Article
Bossen,C。等人。肿瘤坏死因子(TNF)和TNF受体家族成员在小鼠和人类中的相互作用。J、 生物。化学。28113964-13971(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tran, N. L. et al. The human Fn14 receptor gene is up-regulated in migrating glioma cells in vitro and overexpressed in advanced glial tumors. Am. J. Pathol. 162, 1313–1321 (2003).Article
Tran,N.L.等人。人Fn14受体基因在体外迁移的神经胶质瘤细胞中上调,在晚期神经胶质瘤中过表达。美国J.Pathol。1621313-1321(2003)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yin, J. et al. AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Res. 74, 4306–4317 (2014).Article
Yin,J。等人。AR调节的TWEAK-FN14途径促进前列腺癌骨转移。癌症研究744306-4317(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chao, D. T. et al. Expression of TweakR in breast cancer and preclinical activity of enavatuzumab, a humanized anti-TweakR mAb. J. Cancer Res. Clin. Oncol. 139, 315–325 (2013).Article
。J、 癌症研究临床。Oncol公司。139315–325(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cordido, A. et al. TWEAK signaling pathway blockade slows cyst growth and disease progression in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 32, 1913–1932 (2021).Article
在常染色体显性多囊肾病中,TWEAK信号通路阻断可减缓囊肿生长和疾病进展。J、 。321913-1932(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, Z. et al. TWEAK/Fn14 interactions are instrumental in the pathogenesis of nephritis in the chronic graft-versus-host model of systemic lupus erythematosus. J. Immunol. 179, 7949–7958 (2007).Article
Zhao,Z。等人。在系统性红斑狼疮的慢性移植物抗宿主模型中,TWEAK/Fn14相互作用有助于肾炎的发病机制。J、 免疫。1797949-7958(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Willis, A. L. et al. The fibroblast growth factor-inducible 14 receptor is highly expressed in HER2-positive breast tumors and regulates breast cancer cell invasive capacity. Mol. Cancer Res. 6, 725–734 (2008).Article
Willis,A.L.等人。成纤维细胞生长因子诱导型14受体在HER2阳性乳腺肿瘤中高度表达,并调节乳腺癌细胞的侵袭能力。Mol.Cancer Res.6725–734(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Enwere, E. K., LaCasse, E. C., Adam, N. J. & Korneluk, R. G. Role of the TWEAK-Fn14-cIAP1-NF-κB signaling axis in the regulation of myogenesis and muscle homeostasis. Front. Immunol. 5, 34 (2014).Article
Enwere,E.K.,LaCasse,E.C.,Adam,N.J。&Korneluk,R.G。TWEAK-Fn14-cIAP1-NF-κB信号轴在调节肌生成和肌肉稳态中的作用。正面。免疫。5,34(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vincent, C. et al. Pro‐inflammatory cytokines TNF‐related weak inducer of apoptosis (TWEAK) and TNFα induce the mitogen‐activated protein kinase (MAPK)‐dependent expression of sclerostin in human osteoblasts. J. Bone Miner. Res. 24, 1434–1449 (2009).Article
。J、 骨矿工。第241434-1449号决议(2009年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y., Zeng, W. & Xia, Y. TWEAK/Fn14 axis is an important player in fibrosis. J. Cell. Physiol. 236, 3304–3316 (2021).Article
Zhang,Y.,Zeng,W。&Xia,Y。TWEAK/Fn14轴是纤维化的重要参与者。J、 细胞。生理学。2363304-3316(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vince, J. E. et al. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1–TRAF2 complex to sensitize tumor cells to TNFα. J. Cell Biol. 182, 171–184 (2008).Article
Vince,J.E。等人,TWEAK-FN14信号传导诱导cIAP1-TRAF2复合物的溶酶体降解,使肿瘤细胞对TNFα敏感。J、 细胞生物学。182171-184(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cherry, E. M., Lee, D. W., Jung, J. U. & Sitcheran, R. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-kappaB-inducing kinase (NIK) and noncanonical NF-kappaB signaling. Mol. Cancer 14, 9 (2015).Article
Cherry,E.M.,Lee,D.W.,Jung,J.U。&Sitcheran,R。肿瘤坏死因子样弱凋亡诱导剂(TWEAK)通过诱导NF-κB诱导激酶(NIK)和非典型NF-κB信号传导促进神经胶质瘤细胞侵袭。分子癌症14,9(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kaltschmidt, C. et al. A role for NF-κB in organ specific cancer and cancer stem cells. Cancers 11, 655 (2019).Article
Kaltschmidt,C。等人。NF-κB在器官特异性癌症和癌症干细胞中的作用。癌症11655(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xie, X. et al. c-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun. Oncogene 36, 2599–2608 (2017).Article
Xie,X。等人。c-Jun N末端激酶通过激活c-Jun上调Notch1促进三阴性乳腺癌的干细胞表型。癌基因362599-2608(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huber, M. A. et al. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Investig. 114, 569–581 (2004).Article
在乳腺癌进展模型中,NF-κB对于上皮-间质转化和转移至关重要。J、 临床。调查。114569-581(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vleugel, M. M., Greijer, A. E., Bos, R., van der Wall, E. & van Diest, P. J. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum. Pathol. 37, 668–674 (2006).Article
Vleugel,M.M.,Greijer,A.E.,Bos,R.,van der Wall,E。&van Diest,P.J。c-Jun激活与浸润性乳腺癌的增殖和血管生成有关。哼。感伤。37668-674(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Franco, H. L. et al. Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res. 28, 159–170 (2018).Article
Franco,H.L.等人,增强子转录揭示了控制乳腺癌发病机制的亚型特异性基因表达程序。基因组研究28159-170(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brown, J. D. et al. NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol. Cell. 56, 219–231 (2014).Article
Brown,J.D。等人。NF-κB指导炎症和动脉粥样硬化中动态超增强子的形成。摩尔电池。56219-231(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Han, R. et al. Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence. Genome Biol. 19, 118 (2018).Article
Han,R。等人。功能性CRISPR筛选鉴定AP1相关增强子调节FOXF1以调节癌基因诱导的衰老。基因组生物学。19118(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seo, J. et al. AP-1 subunits converge promiscuously at enhancers to potentiate transcription. Genome Res. 31, 538–550 (2021).Article
Seo,J。等人。AP-1亚基在增强子上混杂地聚集以增强转录。基因组研究31538-550(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Michida, H. et al. The number of transcription factors at an enhancer determines switch-like gene expression. Cell Rep. 31, 107724 (2020).Article
Michida,H。等人。增强子上转录因子的数量决定了开关样基因的表达。Cell Rep.31107724(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, H. et al. Development of human serine protease-based therapeutics targeting Fn14 and identification of Fn14 as a new target overexpressed in TNBC. Mol. Cancer Ther. 13, 2688–2705 (2014).Article
Zhou,H.等人。靶向Fn14的基于人丝氨酸蛋白酶的治疗剂的开发以及Fn14作为TNBC中过表达的新靶标的鉴定。分子癌症治疗。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, K. et al. Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis 10, 66 (2021).Article
Xu,K。等人。单细胞RNA测序揭示了乳腺癌淋巴结转移的细胞异质性和转录组谱。肿瘤发生10,66(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, Y. et al. Non-canonical NF-kappaB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation. Nat. Cell Biol. 17, 1327–1338 (2015).Article
Li,Y。等人。非经典NF-κB信号传导和ETS1/2协同驱动C250T突变TERT启动子激活。自然细胞生物学。171327-1338(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dogra, C., Hall, S. L., Wedhas, N., Linkhart, T. A. & Kumar, A. Fibroblast growth factor inducible 14 (Fn14) is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes. Evidence for TWEAK-independent functions of Fn14 during myogenesis.
Dogra,C.,Hall,S.L.,Wedhas,N.,Linkhart,T.A。&Kumar,A。成纤维细胞生长因子诱导型14(Fn14)是成肌调节因子表达和成肌细胞分化为肌管所必需的。Fn14在肌生成过程中不依赖TWEAK功能的证据。
J. Biol. Chem. 282, 15000–15010 (2007).Article .
J.生物学。化学。282, 15000-15010 (2007).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dogra, C., Changotra, H., Mohan, S. & Kumar, A. Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-kappaB and degradation of MyoD protein. J. Biol. Chem. 281, 10327–10336 (2006).Article
Dogra,C.,Changotra,H.,Mohan,S。&Kumar,A。肿瘤坏死因子样凋亡弱诱导剂通过持续激活核因子κB和MyoD蛋白降解来抑制骨骼肌生成。J、 生物。化学。28110327-10336(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Deka, K. & Li, Y. Transcriptional regulation during aberrant activation of NF-κB signalling in cancer. Cells 12, 788 (2023).Article
Deka,K。&Li,Y。癌症中NF-κB信号异常激活期间的转录调控。细胞12788(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sim, N. & Li, Y. NF-kappaB/p52 augments ETS1 binding genome-wide to promote glioma progression. Commun. Biol. 6, 445 (2023).Article
Sim,N。&Li,Y。NF-κB/p52增强全基因组ETS1结合以促进神经胶质瘤进展。Commun公司。生物学6445(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ang, D. A. et al. Aberrant non-canonical NF-kappaB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat. Commun. 15, 2513 (2024).Article
Ang,D.A。等人。异常的非经典NF-κB信号传导重新编程表观基因组景观,以驱动多发性骨髓瘤中的致癌转录组。国家公社。152513(2024)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Di Stefano, V., Wang, B., Parobchak, N., Roche, N. & Rosen, T. RelB/p52-mediated NF-kappaB signaling alters histone acetylation to increase the abundance of corticotropin-releasing hormone in human placenta. Sci. Signal. 8, ra85 (2015).Article
Di Stefano,V.,Wang,B.,Parobchak,N.,Roche,N。&Rosen,T。RelB/p52介导的NF-κB信号传导改变组蛋白乙酰化以增加人胎盘中促肾上腺皮质激素释放激素的丰度。科学。信号。8,ra85(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Raisner, R., Bainer, R., Haverty, P. M., Benedetti, K. L. & Gascoigne, K. E. Super-enhancer acquisition drives oncogene expression in triple negative breast cancer. PLoS ONE 15, e0235343 (2020).Article
Raisner,R.,Bainer,R.,Haverty,P.M.,Benedetti,K.L。和Gascoigne,K.E。超级增强子获得驱动三阴性乳腺癌中的癌基因表达。PLoS ONE 15,e0235343(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zheng, L. et al. ELK4 promotes the development of gastric cancer by inducing M2 polarization of macrophages through regulation of the KDM5A-PJA2-KSR1 axis. J. Transl. Med. 19, 342 (2021).Article
Zheng,L。等人。ELK4通过调节KDM5A-PJA2-KSR1轴诱导巨噬细胞M2极化,从而促进胃癌的发展。J、 翻译。医学杂志19342(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, H. et al. Defining super-enhancer landscape in triple-negative breast cancer by multiomic profiling. Nat. Commun. 12, 2242 (2021).Article
Huang,H.等人。通过多组学分析定义三阴性乳腺癌中的超级增强子景观。国家公社。122242(2021)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, J. et al. Subtype-specific 3D genome alteration in acute myeloid leukaemia. Nature 611, 387–398 (2022).Article
Xu,J。等人。急性髓细胞白血病中亚型特异性3D基因组改变。自然611387-398(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).Article
Flavahan,W.A。等。IDH突变型神经胶质瘤中的绝缘子功能障碍和癌基因激活。自然529110-114(2016)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cheuk, I. W. et al. ITGAV targeting as a therapeutic approach for treatment of metastatic breast cancer. Am. J. Cancer Res. 10, 211–223 (2020).CAS
。《美国癌症杂志》第10211-223号(2020年)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marquis, C. et al. Chromosomally unstable tumor cells specifically require KIF18A for proliferation. Nat. Commun. 12, 1213 (2021).Article
Marquis,C。等人。染色体不稳定的肿瘤细胞特别需要KIF18A才能增殖。国家公社。1213(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, H. et al. Epigenetic regulation of NAMPT by NAMPT-AS drives metastatic progression in triple-negative breast cancer. Cancer Res. 79, 3347–3359 (2019).Article
Zhang,H。等人。NAMPT-AS对NAMPT的表观遗传调控驱动三阴性乳腺癌的转移进展。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hesari, Z. et al. Down-regulation of NAMPT expression by mir-206 reduces cell survival of breast cancer cells. Gene 673, 149–158 (2018).Article
Hesari,Z。等人。mir-206对NAMPT表达的下调降低了乳腺癌细胞的细胞存活率。基因673149-158(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Katsuoka, F. & Yamamoto, M. Small Maf proteins (MafF, MafG, MafK): History, structure and function. Gene 586, 197–205 (2016).Article
Katsuoka,F。&Yamamoto,M。小Maf蛋白(MafF,MafG,MafK):历史,结构和功能。基因586197-205(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, X. et al. Structural basis for reactivating the mutant TERT promoter by cooperative binding of p52 and ETS1. Nat. Commun. 9, 3183 (2018).Article
Xu,X。等人。通过p52和ETS1的协同结合重新激活突变TERT启动子的结构基础。国家公社。93183(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gardell, S. J. et al. Boosting NAD(+) with a small molecule that activates NAMPT. Nat. Commun. 10, 3241 (2019).Article
Gardell,S.J.等人用激活NAMPT的小分子促进NAD(+)。国家公社。103241(2019)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Braidy, N. et al. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid. Redox Signal. 30, 251–294 (2019).Article
Braidy,N.等人。烟酰胺腺嘌呤二核苷酸和相关前体作为年龄相关性退行性疾病治疗靶点的作用:原理,生物化学,药代动力学和结果。抗氧化剂。氧化还原信号。30251-294(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fiorillo, M., Ozsvari, B., Sotgia, F. & Lisanti, M. P. High ATP production fuels cancer drug resistance and metastasis: implications for mitochondrial ATP depletion therapy. Front. Oncol. 11, 740720 (2021).Article
Fiorillo,M.,Ozsvari,B.,Sotgia,F。&Lisanti,M.P。高ATP产生促进癌症耐药性和转移:对线粒体ATP耗竭疗法的影响。正面。Oncol公司。11740720(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mallavarapu, A. & Mitchison, T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146, 1097–1106 (1999).Article
Mallavarapu,A。&Mitchison,T。在丝状伪足尖端调节肌动蛋白细胞骨架组装控制其延伸和收缩。J、 细胞生物学。1461097-1106(1999)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Korn, E. D., Carlier, M. F. & Pantaloni, D. Actin polymerization and ATP hydrolysis. Science 238, 638–644 (1987).Article
Korn,E.D.,Carlier,M.F。和Pantaloni,D。肌动蛋白聚合和ATP水解。科学238638-644(1987)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lin, C. Y. et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530, 57–62 (2016).Article
Lin,C.Y.等人。活性髓母细胞瘤增强剂揭示了亚组特异性细胞起源。《自然》530,57-62(2016)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, R. W. et al. A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma. Nat. Commun. 13, 6041 (2022).Article
Zhou,R.W.等人。局部肿瘤微环境获得性超增强子诱导结直肠癌的致癌驱动因素。国家公社。136041(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, D. et al. Super-enhancer induced IL-20RA promotes proliferation/metastasis and immune evasion in colorectal cancer. Front. Oncol. 11, 724655 (2021).Article
Yu,D。等人。超级增强子诱导的IL-20RA促进结直肠癌的增殖/转移和免疫逃避。正面。Oncol公司。11724655(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jia, Y. et al. Myeloma-specific superenhancers affect genes of biological and clinical relevance in myeloma. Blood Cancer J. 11, 32 (2021).Article
Jia,Y。等人。骨髓瘤特异性超增强子影响骨髓瘤生物学和临床相关基因。《血癌杂志》11,32(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sullivan, W. J. et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell 175, 117–32.e21 (2018).Article
Sullivan,W.J。等人。细胞外基质重塑通过TXNIP去稳定化调节葡萄糖代谢。细胞175117-32.e21(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chuang, C. H. et al. Altered mitochondria functionality defines a metastatic cell state in lung cancer and creates an exploitable vulnerability. Cancer Res. 81, 567–579 (2021).Article
Chuang,C.H。等人。线粒体功能的改变定义了肺癌中的转移细胞状态,并产生了可利用的脆弱性。癌症研究81567-579(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lim, S. K. et al. Sustained activation of non-canonical NF-kappaB signalling drives glycolytic reprogramming in doxorubicin-resistant DLBCL. Leukemia 37, 441–452 (2023).Article
Lim,S.K.等人。非经典NF-κB信号传导的持续激活驱动多柔比星耐药DLBCL中的糖酵解重编程。白血病37441-452(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Semenza, G. L. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet Dev. 20, 51–56 (2010).Article
Semenza,G.L。HIF-1:癌症代谢的上游和下游。货币。奥平。Genet Dev.20,51-56(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dang, C. V., Le, A. & Gao, P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res. 15, 6479–6483 (2009).Article
Dang,C.V.,Le,A。&Gao,P.MYC诱导癌细胞能量代谢和治疗机会。临床。癌症研究156479-6483(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wong, K. K., Engelman, J. A. & Cantley, L. C. Targeting the PI3K signaling pathway in cancer. Curr. Opin. Genet. Dev. 20, 87–90 (2010).Article
Wong,K.K.,Engelman,J.A。和Cantley,L.C。靶向癌症中的PI3K信号传导途径。货币。奥平。基因。Dev.20,87–90(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shackelford, D. B. & Shaw, R. J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563–575 (2009).Article
Shackelford,D.B。&Shaw,R.J。LKB1-AMPK途径:肿瘤抑制中的代谢和生长控制。《国家癌症评论》9563-575(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nguyen, T. T. T. et al. HDAC inhibitors elicit metabolic reprogramming by targeting super-enhancers in glioblastoma models. J. Clin. Investig. 130, 3699–3716 (2020).Article
Nguyen,T.T.T.等人,HDAC抑制剂通过靶向胶质母细胞瘤模型中的超增强子来引发代谢重编程。J、 临床。调查。1303699-3716(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tan, B. et al. Inhibition of Nicotinamide Phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, leads to altered carbohydrate metabolism in cancer cells. J. Biol. Chem. 290, 15812–15824 (2015).Article
Tan,B。等人。抑制烟酰胺磷酸核糖基转移酶(NAMPT),一种NAD+生物合成所必需的酶,导致癌细胞中碳水化合物代谢的改变。J、 生物。化学。29015812-15824(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tan, B. et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J. Biol. Chem. 288, 3500–3511 (2013).Article
Tan,B.等人。烟酰胺磷酸核糖基转移酶(NAMPT)是NAD+生物合成所必需的酶,在人类癌细胞中的药理抑制作用:代谢基础和潜在的临床意义。J、 生物。化学。2883500–3511(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, S. J., Bi, T. Q., Qin, C. X., Yang, X. Q. & Pang, K. Expression of NAMPT is associated with breast invasive ductal carcinoma development and prognosis. Oncol. Lett. 15, 6648–6654 (2018).PubMed
Zhou,S.J.,Bi,T.Q.,Qin,C.X.,Yang,X.Q。&Pang,K。NAMPT的表达与乳腺浸润性导管癌的发展和预后有关。Oncol公司。利特。156648-6654(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gujar, A. D. et al. An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma. Proc. Natl Acad. Sci. USA 113, E8247–E8256 (2016).Article
Gujar,A.D。等人。NAD+依赖性转录程序控制胶质母细胞瘤的自我更新和辐射抗性。程序。国家科学院。科学。美国113,E8247–E8256(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lucena-Cacace, A., Otero-Albiol, D., Jimenez-Garcia, M. P., Munoz-Galvan, S. & Carnero, A. NAMPT is a potent oncogene in colon cancer progression that modulates cancer stem cell properties and resistance to therapy through Sirt1 and PARP. Clin. Cancer Res. 24, 1202–1215 (2018).Article .
Lucena-Cacace,A.,Otero-Albiol,D.,Jimenez-Garcia,M.P.,Munoz-Galvan,S。&Carnero,A.NAMPT是结肠癌进展中的有效致癌基因,可通过Sirt1和PARP调节癌症干细胞特性和对治疗的抵抗力。临床。癌症研究241202-1215(2018)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lucena-Cacace, A., Otero-Albiol, D., Jimenez-Garcia, M. P., Peinado-Serrano, J. & Carnero, A. NAMPT overexpression induces cancer stemness and defines a novel tumor signature for glioma prognosis. Oncotarget 8, 99514–99530 (2017).Article
Lucena-Cacace,A.,Otero-Albiol,D.,Jimenez-Garcia,M.P.,Peinado-Serrano,J。&Carnero,A。NAMPT过表达诱导癌症干性并定义了神经胶质瘤预后的新型肿瘤特征。Oncotarget 899514–99530(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fiorillo, M., Scatena, C., Naccarato, A. G., Sotgia, F. & Lisanti, M. P. Bedaquiline, an FDA-approved drug, inhibits mitochondrial ATP production and metastasis in vivo, by targeting the gamma subunit (ATP5F1C) of the ATP synthase. Cell Death Differ. 28, 2797–2817 (2021).Article
FDA批准的药物Fiorillo,M.,Scatena,C.,Naccarato,A.G.,Sotgia,F。&Lisanti,M.P。Bedaquiline通过靶向ATP合酶的γ亚基(ATP5F1C)来抑制体内线粒体ATP的产生和转移。细胞死亡不同。282797-2817(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zeng, Y. et al. Guiding irregular nuclear morphology on nanopillar arrays for malignancy differentiation in tumor cells. Nano Lett. 22, 7724–7733 (2022).Article
Zeng,Y.等。指导纳米柱阵列上不规则核形态在肿瘤细胞中的恶性分化。纳诺莱特。227724-7733(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Loo, S. Y. et al. Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer. Sci. Adv. 7, eabh2443 (2021).Article
Loo,S.Y.等人。脂肪酸氧化是调节细胞可塑性以驱动乳腺癌转移的可药物途径。科学。Adv.7,eabh2443(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article
Schindelin,J。等人。斐济:生物图像分析的开源平台。《自然方法》9676-682(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jacquemet, G. et al. FiloQuant reveals increased filopodia density during breast cancer progression. J. Cell Biol. 216, 3387–3403 (2017).Article
Jacquemet,G。等人FiloQuant揭示乳腺癌进展期间丝状伪足密度增加。J、 细胞生物学。2163387-3403(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Andrew S. FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article
Andrew S.FastQC:高通量序列数据的质量控制工具。http://www.bioinformatics.babraham.ac.uk/projects/fastqc(2010年)。Bolger,A.M.,Lohse,M。和Usadel,B。Trimmomatic:用于Illumina序列数据的柔性修剪器。生物信息学302114-2120(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article
Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article
Liao,Y.,Smyth,G.K。&Shi,W。featureCounts:一种有效的通用程序,用于将序列读数分配给基因组特征。生物信息学30923-930(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article
Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mi, H. et al. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 14, 703–721 (2019).Article
Mi,H.等人。使用PANTHER分类系统(v.14.0)进行大规模基因组和基因功能分析的协议更新。自然协议。14703-721(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thomas, P. D. et al. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).Article
Thomas,P.D.等人,《黑豹:使所有人都能获得基因组规模的系统发育学》。蛋白质科学。31,8-22(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article
。程序。国家科学院。科学。美国10215545–15550(2005)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).Article
Mootha,V.K.等人,参与氧化磷酸化的PGC-1α反应基因在人类糖尿病中协同下调。。34267-273(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).Article
Zhou,Y。et al。Metascape为系统级数据集的分析提供了面向生物学家的资源。国家公社。101523(2019)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wickham H. ggplot2: Elegant Graphics for Data Analysis (Cham: Springer International Publishing: Imprint: Springer, 2016).Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020).Article
Wickham H.ggplot2:用于数据分析的优雅图形(Cham:Springer International Publishing:Imprint:Springer,2016)。Goldman,M.J.等人。通过Xena平台可视化和解释癌症基因组学数据。美国国家生物技术公司。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2023).Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).Article .
Hao,Y。等人。用于综合,多模式和可扩展单细胞分析的词典学习。美国国家生物技术公司。42293-304(2023)。Aran,D。等人。基于参考的肺单细胞测序分析揭示了过渡性促纤维化巨噬细胞。自然免疫。20163-172(2019)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article
Langmead,B。&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article
Quinlan,A.R。&Hall,I.M。BEDTools:用于比较基因组特征的灵活实用程序套件。生物信息学26841-842(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stark S., Brown G. DiffBind: Differential Binding Analysis of ChIP-Seq Peak Data. 2011.Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).Article
Stark S.,Brown G.DiffBind:ChIP-Seq峰数据的差异结合分析。2011。Ramirez,F。等人。deepTools2:用于深度测序数据分析的下一代web服务器。核酸研究44,W160–W165(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).Article
McLean,C.Y.等人改进了顺式调控区的功能解释。美国国家生物技术公司。28495-501(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramirez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).Article
Ramirez,F。等人。高分辨率TAD揭示了果蝇基因组组织的DNA序列。国家公社。9189(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics 37, 422–423 (2021).Article
Lopez-Delisle,L。等人,《pyGenomeTracks:多变量基因组数据集的可重复图》。生物信息学37422-423(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).Article
Loven,J.等人。通过破坏超级增强子选择性抑制肿瘤癌基因。细胞153320-334(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).Article
Whyte,W.A.等人掌握了转录因子和介体,在关键的细胞身份基因上建立了超级增强子。细胞153307-319(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).Article
Corces,M.R.等人。改进的ATAC-seq协议减少了背景并能够询问冷冻组织。自然方法14959-962(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Barnett, D. W., Garrison, E. K., Quinlan, A. R., Stromberg, M. P. & Marth, G. T. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27, 1691–1692 (2011).Article
Barnett,D.W.,Garrison,E.K.,Quinlan,A.R.,Stromberg,M.P。&Marth,G.T。BamTools:用于分析和管理BAM文件的C++API和工具包。生物信息学271691-1692(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bentsen, M. et al. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat. Commun. 11, 4267 (2020).Article
Bentsen,M。等人。ATAC-seq足迹揭示了合子基因组激活过程中转录因子结合的动力学。国家公社。114267(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:13033997 [q-bioGN] 2013.Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10.Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ay, F. Identification of significant chromatin contacts from HiChIP data by FitHiChIP.
Li H.用BWA-MEM比对序列读数,克隆序列和组装重叠群。arXiv:13033997[q-bioGN]2013。Danecek,P。等人。SAMtools和BCFtools的十二年。Gigascience公司。2021年;10.Bhattacharyya,S.,Chandra,V.,Vijayanand,P。&Ay,F。通过FitHiChIP从HiChIP数据中鉴定重要的染色质接触。
Nat. Commun. 10, 4221 (2019).Article .
Nat.普通。104221(2019)。文章。
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lareau, C. A. & Aryee, M. J. diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data. Bioinformatics 34, 672–674 (2018).Article
Lareau,C.A。&Aryee,M.J.diffloop:用于从测序数据中识别和分析差异DNA环的计算框架。生物信息学34672-674(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis study is funded by the National Research Foundation (NRF) Singapore, under its Singapore NRF Fellowship (NRF-NRFF2018-04). In addition, we thank the Nanyang Assistant Professorship (NAP) Start-up-grant to Y.L.’s lab and Nanyang Technological University for the PhD scholarship funding of N.S.Author informationAuthors and AffiliationsSchool of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, SingaporeNicholas Sim, Jean-Michel Carter, Kamalakshi Deka, Suet-Mien Tan & Yinghui LiDivision of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, SingaporeBenita Kiat Tee Tan & Yirong SimDivision of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, SingaporeBenita Kiat Tee Tan & Yirong SimSingHealth Duke-NUS Breast Centre, Singapore, SingaporeBenita Kiat Tee Tan & Yirong SimAuthorsNicholas SimView author publicationsYou can also search for this author in.
下载参考文献致谢本研究由新加坡国家研究基金会(NRF)资助,由其新加坡NRF奖学金(NRF-NRFF2018-04)资助。此外,我们感谢南洋理工大学(NTU)生物科学学院(SBS)为Y.L.实验室和南洋理工大学提供的博士奖学金资助。作者信息作者和附属机构南洋理工大学(NTU),新加坡南洋大道60号,637551,新加坡人Nicholas Sim,Jean-Michel Carter,Kamalakshi Deka,Suet Mien Tan&Yinghui LiDivision of Surgery and Surgery Oncology,Department of Breast Surgery,National Cancer Centre Singapore,30 Hospital Blvd,Singapore,168583,SingaporeBenita Kiat Tee Tan&Yirong Sim Division of Surgery and Surgery Oncology新加坡总医院乳腺外科,新加坡第三医院大街31号,168753,新加坡Benita Kiat Tee Tan&Yirong SimSingHealth Duke NUS乳腺中心,新加坡Benita Kiat Tee Tan&Yirong Simauthors Nicholas SimView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarJean-Michel CarterView author publicationsYou can also search for this author in
PubMed谷歌学者Jean Michel CarterView作者出版物您也可以在
PubMed Google ScholarKamalakshi DekaView author publicationsYou can also search for this author in
PubMed Google ScholarKamalakshi DekaView作者出版物您也可以在
PubMed Google ScholarBenita Kiat Tee TanView author publicationsYou can also search for this author in
PubMed Google ScholarBenita Kiat Tee TanView作者出版物您也可以在
PubMed Google ScholarYirong SimView author publicationsYou can also search for this author in
PubMed Google ScholarSuet-Mien TanView author publicationsYou can also search for this author in
PubMed Google ScholarSuet Mien TanView作者出版物您也可以在
PubMed Google ScholarYinghui LiView author publicationsYou can also search for this author in
PubMed Google ScholarYinghui LiView作者出版物您也可以在
PubMed Google ScholarContributionsY.L. conceptualised the ideas to this manuscript and supervised the study. Y.L. and N.S. planned and devised the experiments. N.S. performed and analysed all molecular and cell biology experiments, with assistance from K.D. in western blotting, cell sorting, genotyping and microscopy.
PubMed谷歌学术贡献。五十、 概念化了这份手稿的想法,并监督了这项研究。Y、 L.和N.S.计划并设计了这些实验。N、 在K.D.的帮助下,美国进行并分析了所有分子和细胞生物学实验,包括蛋白质印迹,细胞分选,基因分型和显微镜检查。
B.K.T.T. and Y.S. contributed to the TNBC patient analysis and tissue samples. N.S. performed the tumour xenograft studies, while S.M.T. contributed the Rag−/− IL2γ−/− BALB/c model and technical expertise. N.S. performed the computational analyses and data visualisation, with input from J.M.C. in the RNA-seq, ATAC-seq and HiChIP analyses.
B、 K.T.T.和Y.S.为TNBC患者分析和组织样本做出了贡献。N、 S.进行了肿瘤异种移植研究,而S.M.T.贡献了Rag-/-IL2γ-/-BALB/c模型和技术专业知识。N、 美国进行了计算分析和数据可视化,J.M.C.在RNA-seq,ATAC-seq和HiChIP分析中提供了输入。
N.S. and Y.L. co-wrote the manuscript, with input from J.M.C., K.D., and Y.S.Corresponding authorCorrespondence to.
N、 S.和Y.L.共同撰写了手稿,J.M.C.,K.D。和Y.S.相应的作者回复。
Yinghui Li.Ethics declarations
李英辉。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Igor Bado, Luca Magnani, and the other, anonymous, reviewer for their contribution to the peer review of this work. A peer review file is available.
《自然通讯》感谢Igor Bado、Luca Magnani和另一位匿名审稿人对这项工作的同行评审所做的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileSource dataSource dataRights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件源数据源数据权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleSim, N., Carter, JM., Deka, K. et al. TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer.
转载和许可本文引用本文Sim,N.,Carter,JM。,Deka,K。等人。TWEAK/Fn14信号驱动的超增强子重编程促进三阴性乳腺癌中的促转移代谢重新连接。
Nat Commun 15, 5638 (2024). https://doi.org/10.1038/s41467-024-50071-zDownload citationReceived: 28 July 2023Accepted: 27 June 2024Published: 05 July 2024DOI: https://doi.org/10.1038/s41467-024-50071-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》155638(2024)。https://doi.org/10.1038/s41467-024-50071-zDownload引文接收日期:2023年7月28日接收日期:2024年6月27日发布日期:2024年7月5日OI:https://doi.org/10.1038/s41467-024-50071-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。