商务合作
动脉网APP
可切换为仅中文
AbstractThe systematic determination of protein function is a key goal of modern biology, but remains challenging with current approaches. Here we present ORFtag, a versatile, cost-effective and highly efficient method for the massively parallel tagging and functional interrogation of proteins at the proteome scale.
。在这里,我们介绍了ORFtag,这是一种多功能,经济高效的方法,用于在蛋白质组规模上对蛋白质进行大规模并行标记和功能询问。
ORFtag uses retroviral vectors bearing a promoter, peptide tag and splice donor to generate fusions between the tag and endogenous open reading frames (ORFs). We demonstrate the utility of ORFtag through functional screens for transcriptional activators, repressors and posttranscriptional regulators in mouse embryonic stem cells.
。我们通过功能筛选小鼠胚胎干细胞中的转录激活因子,阻遏因子和转录后调节因子来证明ORFtag的实用性。
Each screen recovers known and identifies new regulators, including long ORFs inaccessible by other methods. Among other hits, we find that Zfp574 is a highly selective transcriptional activator and that oncogenic fusions often function as transactivators..
每个屏幕恢复已知的并识别新的监管机构,包括其他方法无法访问的长ORF。。。
MainProteins are central to almost all cellular processes, but their biochemical diversity often hinders systematic studies of protein function. Genetic loss-of-function screens—such as CRISPR–Cas9 and CRISPRi screens—are powerful methods for identifying genes involved in specific cellular processes, but typically do not provide direct insight into protein function1.
主要蛋白质是几乎所有细胞过程的核心,但它们的生化多样性往往阻碍蛋白质功能的系统研究。遗传功能丧失筛选(例如CRISPR-Cas9和CRISPRi筛选)是鉴定参与特定细胞过程的基因的有力方法,但通常不能直接了解蛋白质功能1。
They are also often hampered by functional redundancy and the essentiality of many genes. Conversely, sufficiency-based assays allow the direct determination of protein function2,3. However, current systematic methods rely on the delivery and expression of open reading frame (ORF) libraries (ORFeomes)4,5, which are not only costly and difficult to maintain, but also tend to favor shorter ORFs (<5 kb) due to limitations in DNA synthesis, cloning, viral packaging and delivery into cells2.
它们还经常受到功能冗余和许多基因的重要性的阻碍。相反,基于充分性的测定可以直接测定蛋白质功能2,3。然而,目前的系统方法依赖于开放阅读框(ORF)文库(ORFeomes)4,5的传递和表达,这不仅昂贵且难以维护,而且由于DNA合成,克隆,病毒包装和递送到细胞中的限制,倾向于支持较短的ORF(<5kb)。
Engineering of native gene locations can overcome these limitations6 and recent CRISPR–Cas9 techniques for systematic gene tagging have scaled to as many as 1,300 genes7,8,9,10,11,12,13, but achieving genome-wide coverage remains challenging. Here we present ORFtag, a versatile approach that allows for the massive, parallel and proteome-scale tagging and overexpression of endogenous genomically encoded ORFs.ResultsORFtag overviewORFtag is based on insertional elements such as retroviral vectors containing a constitutively active promoter, a selection gene and a functional tag of interest followed by a splice donor sequence (Fig.
天然基因位置的工程化可以克服这些限制6,最近用于系统基因标记的CRISPR-Cas9技术已经扩展到多达1300个基因7,8,9,10,11,12,13,但实现全基因组覆盖仍然具有挑战性。在这里,我们介绍了ORFtag,这是一种多功能方法,可以对内源性基因组编码的ORF进行大规模,平行和蛋白质组规模的标记和过表达。结果ORFTAG概述ORFTAG基于插入元件,例如含有组成型活性启动子,选择基因和感兴趣的功能标签的逆转录病毒载体,然后是剪接供体序列(图)。
1a and Extended Data Fig. 1). Upon large-scale transduction of cultured cells, ORFtag cassettes randomly integrate into the genome and drive the transcription of nearby endogenous gene loci by splicing of the functional tag to splice-acceptor sites downstream of the integration site, creating near N-.
1a和扩展数据图1)。在大规模转导培养细胞后,ORFtag盒随机整合到基因组中,并通过将功能标签剪接到整合位点下游的剪接受体位点来驱动附近内源基因位点的转录,从而产生近N-。
Data availability
数据可用性
The raw sequencing data generated in this study are available from the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE225972. These data were aligned to the mouse reference genome (mm10) available at https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001635.20/.
这项研究中产生的原始测序数据可从Gene Expression Omnibus(GEO)获得(https://www.ncbi.nlm.nih.gov/geo/)登记号为GSE225972。这些数据与小鼠参考基因组(mm10)进行了比对https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001635.20/.
The annotations for the mouse genome were sourced from GENCODE (v.M25, https://www.gencodegenes.org/mouse/release_M25.html) and Ensembl (v.100, https://nov2020.archive.ensembl.org/Mus_musculus/Info/Annotation). Previously published datasets referenced and used in this study are detailed in the Methods section and are available as follows: GEO accession number GSE99971 (RNA-seq)23; list of transcription factor genes24; list of genes containing activation or repressive domains2; list of hits in the ORFeome activator screen25; list of genes containing RNA-binding domains26; list of fusion oncoproteins27; human–mouse orthologs28 and manually curated Pfam-A domains.
小鼠基因组的注释来自GENCODE(v.M25,https://www.gencodegenes.org/mouse/release_M25.html)和Ensembl(v.100,https://nov2020.archive.ensembl.org/Mus_musculus/Info/Annotation)。本研究中引用和使用的先前发布的数据集在方法部分有详细说明,可获得如下:GEO登录号GSE99971(RNA-seq)23;转录因子基因列表24;包含激活或抑制域2的基因列表;ORFeome activator屏幕中的点击列表25;含有RNA结合域的基因列表26;融合癌蛋白列表27;人-小鼠直系同源物28和手动策划的Pfam-A域。
No restrictions on data availability apply. Source data are provided with this paper..
数据可用性不受限制。本文提供了源数据。。
Code availability
代码可用性
All custom scripts that were generated for this study were made publicly available at https://github.com/vloubiere/ORFtag_2024.
为这项研究生成的所有自定义脚本都可以在https://github.com/vloubiere/ORFtag_2024.
ReferencesNemčko, F. & Stark, A. Proteome-scale identification of transcriptional activators in human cells. Mol. Cell 82, 497–499 (2022).Article
参考文献Nemčko,F。&Stark,A。蛋白质组规模鉴定人类细胞中的转录激活因子。分子细胞82497-499(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Alerasool, N., Leng, H., Lin, Z. Y., Gingras, A. C. & Taipale, M. Identification and functional characterization of transcriptional activators in human cells. Mol. Cell 82, 677–695.e7 (2022).Article
Alerasool,N.,Leng,H.,Lin,Z.Y.,Gingras,A.C。&Taipale,M。人类细胞中转录激活因子的鉴定和功能表征。分子细胞82677-695.e7(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Luo, E. C. et al. Large-scale tethered function assays identify factors that regulate mRNA stability and translation. Nat. Struct. Mol. Biol. 27, 989–1000 (2020).Article
Luo,E.C.等人。大规模栓系功能测定确定了调节mRNA稳定性和翻译的因素。自然结构。分子生物学。27989-1000(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wiemann, S. et al. The ORFeome Collaboration: a genome-scale human ORF-clone resource. Nat. Methods 13, 191–192 (2016).Article
。自然方法13191-192(2016)。文章
Google Scholar
谷歌学者
Yang, X. et al. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 8, 659–661 (2011).Article
Yang,X。等人。人类ORF的公共基因组规模慢病毒表达文库。《自然方法》8659-661(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jarvik, J. W., Adler, S. A., Telmer, C. A., Subramaniam, V. & Lopez, A. J. CD-tagging: a new approach to gene and protein discovery and analysis. Biotechniques 20, 896–904 (1996).Article
Jarvik,J.W.,Adler,S.A.,Telmer,C.A.,Subramaniam,V。&Lopez,A.J。CD标签:基因和蛋白质发现和分析的新方法。生物技术20896-904(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Reicher, A., Koren, A. & Kubicek, S. Pooled protein tagging, cellular imaging, and in situ sequencing for monitoring drug action in real time. Genome Res. 30, 1846–1855 (2020).Article
Reicher,A.,Koren,A。&Kubicek,S。汇集蛋白质标签,细胞成像和原位测序,用于实时监测药物作用。基因组研究301846-1855(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Serebrenik, Y. V., Sansbury, S. E., Kumar, S. S., Henao-Mejia, J. & Shalem, O. Efficient and flexible tagging of endogenous genes by homology-independent intron targeting. Genome Res. 29, 1322–1328 (2019).Article
Serebrenik,Y.V.,Sansbury,S.E.,Kumar,S.S.,Henao-Mejia,J。&Shalem,O。通过不依赖同源性的内含子靶向高效灵活地标记内源基因。基因组研究291322-1328(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schmid-Burgk, J. L., Höning, K., Ebert, T. S. & Hornung, V. CRISPaint allows modular base-specific gene tagging using a ligase-4-dependent mechanism. Nat. Commun. 7, 12338 (2016).Article
。国家公社。712338(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).Article
Yarnall,M.T.N.等人使用CRISPR定向整合酶拖放大序列的基因组插入而不进行双链DNA切割。美国国家生物技术公司。41500–512(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sansbury, S. E., Serebrenik, Y. V., Lapidot, T., Burslem, G. M. & Shalem, O. Pooled tagging and hydrophobic targeting of endogenous proteins for unbiased mapping of unfolded protein responses. Preprint at bioRxiv https://doi.org/10.1101/2023.07.13.548611 (2023).Cho, N. H. et al. OpenCell: Endogenous tagging for the cartography of human cellular organization.
Sansbury,S.E.,Serebrenik,Y.V.,Lapidot,T.,Burslem,G.M。&Shalem,O。合并标记和疏水靶向内源蛋白质,以无偏定位未折叠的蛋白质反应。bioRxiv预印本https://doi.org/10.1101/2023.07.13.548611(2023年)。Cho,N.H.等人,《开放细胞:人类细胞组织制图的内源性标记》。
Science 375, eabi6983 (2022).Article .
科学375,eabi6983(2022)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Reicher, A. et al. Pooled multicolour tagging for visualizing subcellular protein dynamics. Nat. Cell Biol. https://doi.org/10.1038/s41556-024-01407-w (2024).Article
Reicher,A。等人。用于可视化亚细胞蛋白质动力学的混合多色标记。自然细胞生物学。https://doi.org/10.1038/s41556-024-01407-w(2024年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Elling, U. et al. A reversible haploid mouse embryonic stem cell biobank resource for functional genomics. Nature 550, 114–118 (2017).Article
Elling,U.等人。用于功能基因组学的可逆单倍体小鼠胚胎干细胞生物库资源。《自然》550114-118(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moussa, H. F. et al. Canonical PRC1 controls sequence-independent propagation of Polycomb-mediated gene silencing. Nat. Commun. 10, 1931 (2019).Article
Moussa,H.F。等人,经典PRC1控制Polycomb介导的基因沉默的序列非依赖性繁殖。国家公社。101931(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haberle, V. et al. Transcriptional cofactors display specificity for distinct types of core promoters. Nature 570, 122–126 (2019).Article
Haberle,V。等人。转录辅因子对不同类型的核心启动子显示出特异性。自然570122-126(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Neumayr, C. et al. Differential cofactor dependencies define distinct types of human enhancers. Nature 606, 406–413 (2022).Article
Neumayr,C。等人。差异辅因子依赖性定义了不同类型的人类增强子。自然606406-413(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Serebreni, L. et al. Functionally distinct promoter classes initiate transcription via different mechanisms reflected in focused versus dispersed initiation patterns. EMBO J. 42, e113519 (2023).Article
Serebreni,L。等人。功能不同的启动子类别通过聚焦与分散启动模式中反映的不同机制启动转录。EMBO J.42,e113519(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hendy, O. et al. Developmental and housekeeping transcriptional programs in Drosophila require distinct chromatin remodelers. Mol. Cell 82, 3598–3612.e7 (2022).Article
果蝇的发育和管家转录程序需要不同的染色质重塑剂。分子细胞823598–3612.e7(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).Article
Lawrence,M.等人。用于计算和注释基因组范围的软件。PLoS计算机。生物学杂志9,e1003118(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article
Langmead,B。&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357-359(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).Article
。Gigascience 10,giab008(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Herzog, V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017).Article
Herzog,V.A。等人。硫醇连接的RNA烷基化以评估表达动力学。自然方法141198-1204(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).Article
Lambert,S.A.等人,《人类转录因子》。细胞172650-665(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Soto, L. F. et al. Compendium of human transcription factor effector domains. Mol. Cell 82, 514–526 (2022).Article
Soto,L.F.等人,《人类转录因子效应域纲要》。分子细胞82514-526(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).Article
Hentze,M.W.,Castello,A.,Schwarzl,T。&Preiss,T。一个勇敢的RNA结合蛋白新世界。Nat。Rev。Mol。Cell Biol。19327-341(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019).Article
Tate,J.G.等人,《COSMIC:癌症中体细胞突变的目录》。核酸研究47,D941–D947(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Blake, J. A. et al. Mouse Genome Database (MGD): knowledgebase for mouse-human comparative biology. Nucleic Acids Res. 49, D981–D987 (2021).Article
Blake,J.A。等人。小鼠基因组数据库(MGD):小鼠-人类比较生物学知识库。核酸研究49,D981–D987(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, 211–222 (2009).Article
。核酸研究38211-222(2009)。文章
Google Scholar
谷歌学者
Forrest, A. R. R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).Article
Forrest,A.R.R.等人,一个启动子水平的哺乳动物表达图谱。《自然》507462-470(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).Article
Langmead,B.,Trapnell,C.,Pop,M。&Salzberg,S.L。超快和记忆有效的短DNA序列与人类基因组的比对。基因组生物学。10,R25(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article
Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank the IMP/IMBA/GMI and the Max Perutz Laboratories core facilities, especially flow cytometry teams, for providing outstanding support. F.N. was supported by a Boehringer Ingelheim Fonds PhD fellowship. V.L. was supported by Human Frontier Science Program (grant no.
下载参考文献致谢我们感谢IMP/IMBA/GMI和Max Perutz实验室核心设施,特别是流式细胞仪团队提供的出色支持。F、 。五、 L.得到了人类前沿科学计划(批准号:。
LT000926/2020) and European Molecular Biology Organisation (grant no. 790-2019) postdoctoral fellowships. Research in the Ameres group is supported by the European Union/European Research Council (ERC) (RiboTrace, grant no. CoG-866166) and the Austrian Science Fund (FWF, grant no. 10.55776/F80). Research in the Stark group is supported by the Austrian Science Fund (FWF, grant nos.
LT000926/2020)和欧洲分子生物学组织(批准号790-2019)博士后奖学金。Ameres小组的研究得到了欧盟/欧洲研究理事会(ERC)(RiboTrace,批准号CoG-866166)和奥地利科学基金(FWF,批准号10.55776/F80)的支持。斯塔克小组的研究得到了奥地利科学基金(FWF)的支持。
10.55776/P29613, 10.55776/P33157, 10.55776/P36971 and 10.55776/PAT3564423). Basic research at the IMP is supported by Boehringer Ingelheim GmbH and the Austrian Research Promotion Agency (FFG, grant no. FO999902549). Research in Brennecke group is funded by the Austrian Academy of Sciences and the European Community (grant no.
。IMP的基础研究得到了勃林格殷格翰有限公司和奥地利研究促进局(FFG,批准号FO99902549)的支持。布伦内克集团的研究由奥地利科学院和欧洲共同体资助(批准号:。
ERC-2015-CoG-682181). NGS was done at the Vienna Biocenter Core Facilities GmbH Next-Generation Sequencing Unit. For the purpose of Open Access, we have applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission.Author informationAuthor notesRamesh YelagandulaPresent address: Laboratory of Epigenetics, Cell Fate and Disease, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, IndiaNina FaschingPresent address: QUANTRO Therapeutics GmbH, Vienna, AustriaThese authors contributed equally: Filip Nemčko, Moritz Himmelsbach.Authors and AffiliationsResearch Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, AustriaFilip Nemčko, Vincent Loubiere, Michaela Pagani & Alexander StarkVi.
ERC-2015-CoG-682181)。NGS是在维也纳生物中心核心设施有限公司下一代测序单元完成的。出于开放获取的目的,我们已将CC公共版权许可证应用于本次提交产生的任何作者接受的手稿版本。作者信息作者注释Ramesh YelagandulaPresent地址:表观遗传学,细胞命运和疾病实验室,DNA指纹和诊断中心,印度海得拉巴FaschingPresent地址:QUANTRO Therapeutics GmbH,Vienna,Australia这些作者做出了同样的贡献:Filip Nemčko,Moritz Himmelsbach。作者和附属机构分子病理学研究所(IMP),维也纳生物中心(VBC),维也纳,AustriaFilip Nemčko,Vincent Loubiere,Michaela Pagani&Alexander StarkVi。
PubMed Google ScholarMoritz HimmelsbachView author publicationsYou can also search for this author in
PubMed Google Scholarmaritz HimmelsbachView作者出版物您也可以在
PubMed Google ScholarVincent LoubiereView author publicationsYou can also search for this author in
PubMed谷歌学者Vincent LoubiereView作者出版物您也可以在
PubMed Google ScholarRamesh YelagandulaView author publicationsYou can also search for this author in
PubMed Google ScholarRamesh YelagandulaView作者出版物您也可以在
PubMed Google ScholarMichaela PaganiView author publicationsYou can also search for this author in
PubMed Google Scholarmamichaela PaganiView作者出版物您也可以在
PubMed Google ScholarNina FaschingView author publicationsYou can also search for this author in
PubMed Google ScholarJulius BrenneckeView author publicationsYou can also search for this author in
PubMed Google ScholarJulius BrenneckeView作者出版物您也可以在
PubMed Google ScholarUlrich EllingView author publicationsYou can also search for this author in
PubMed Google ScholarUlrich EllingView作者出版物您也可以在
PubMed Google ScholarAlexander StarkView author publicationsYou can also search for this author in
PubMed Google ScholarAlexander StarkView作者出版物您也可以在
PubMed Google ScholarStefan L. AmeresView author publicationsYou can also search for this author in
PubMed Google ScholarStefan L.AmeresView作者出版物您也可以在
PubMed Google ScholarContributionsF.N. and M.H. implemented the ORFtag method and protocols. F.N. performed the activator screen, M.H. the PTGR screen and R.Y. and V.L. the repressor screen. F.N., M.H. and R.Y. performed candidate validation experiments. F.N. performed all Zfp574 follow-up experiments.
PubMed谷歌学术贡献。N、 和M.H.实施了ORFtag方法和协议。F、 N.进行了激活剂筛选,M.H.进行了PTGR筛选,R.Y.和V.L.进行了阻遏物筛选。F、 N.,M.H.和R.Y.进行了候选验证实验。F、 N.进行了所有Zfp574后续实验。
V.L., F.N. and A.S. developed the bioinformatic pipeline. V.L. and F.N. performed NGS data and downstream analyses. N.F. and M.P. helped with the experiments. U.E. and S.L.A conceptualized the ORFtag approach. S.L.A., A.S., U.E. and J.B. coordinated and supervised the work. All authors wrote the paper.Corresponding authorsCorrespondence to.
五、 L.,F.N.和A.S.开发了生物信息学管道。五、 L.和F.N.进行了NGS数据和下游分析。N、 F.和M.P.帮助进行了实验。U、 E.和S.L.A将ORFtag方法概念化。S、 洛杉矶、美国、阿联酋和J.B.协调并监督了这项工作。所有作者都写了这篇论文。通讯作者通讯。
Julius Brennecke, Ulrich Elling, Alexander Stark or Stefan L. Ameres.Ethics declarations
朱利叶斯·布伦内克(Julius Brennecke)、乌尔里希·埃林(Ulrich Elling)、亚历山大·斯塔克(Alexander Stark)或斯特凡·L·阿米尔斯(Stefan L.Ameres)。道德宣言
Competing interests
相互竞争的利益
S.L.A. is cofounder, advisor and member of the board of QUANTRO Therapeutics GmbH. U.E. is cofounder of JLP Health and VIVERITA Therapeutics, Managing Director of VIVERITA Discovery and advisor to TANGO Therapeutics. N.F. is employed by QUANTRO Therapeutics GmbH. The other authors declare no competing interests..
S、 L.A.是QUANTRO Therapeutics GmbH的联合创始人、顾问和董事会成员。U.E.是JLP Health和VIVERITA Therapeutics的联合创始人,VIVERITA Discovery的常务董事和TANGO Therapeutics的顾问。N、 F.受雇于QUANTRO Therapeutics GmbH。其他作者声明没有利益冲突。。
Peer review
同行评审
Peer review information
同行评审信息
Nature Methods thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Lei Tang, in collaboration with the Nature Methods team.
Nature Methods感谢匿名审稿人对这项工作的同行评审做出的贡献。主要处理编辑:Lei Tang,与Nature Methods团队合作。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Overview of the ORFtag screening method.a, Detailed schematic illustrating Activator and Repressor ORFtag screens (top) and PTGR ORFtag screen (bottom).
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1 ORFtag筛选方法概述。a,详细示意图,说明激活剂和阻遏物ORFtag筛选(顶部)和PTGR ORFtag筛选(底部)。
b, Graphical depiction of the ORFtag screening protocol. c, Visual representation of the inverse PCR followed by next-generation sequencing (iPCR-NGS) protocol.Extended Data Fig. 2 Validation of the ORFtag approach.a, Percentage of in-frame products for both background and selected samples across three reading frames based on ORFtag Activator screens performed with each of the three viruses separately.
b、 ORFtag筛选协议的图形描述。c、 反向PCR的视觉表示,然后是下一代测序(iPCR NGS)方案。。
b, Distribution of sequences right downstream of the ORFtag cassette for background (left) and selected samples (right) based on ORFtag-targeted RNA-seq. Identity of spliced exons is shown below. c, Proportion of in-frame products for exon-spliced products from (b). d, Schematic of in-frame splicing events as determined by Sanger sequencing of five clones expressing ORFtag cassettes encoding Frame1 (red) or Frame2 (green).
b、 基于ORFtag靶向RNA-seq的背景(左)和选定样品(右)的ORFtag盒右下游序列的分布。剪接外显子的身份如下所示。c、 来自(b)的外显子剪接产物的框内产物比例。d、 通过Sanger测序五个表达编码Frame1(红色)或Frame2(绿色)的ORFtag盒的克隆确定的框内剪接事件的示意图。
e, GFP expression and the proportion of GFP-positive cells are compared between the Activator reporter cell line alone and in cases of ORFtag screening with TetR (with recruitment) or λN (with no recruitment) functional tags. f, Density plots represent GFP levels in pre-sorted GFP positive cells, derived from an Activator ORFtag screen, over a 5-day period in the presence (red) or absence (blue) of Doxycycline.
e、 比较单独的激活剂报告细胞系和使用TetR(有募集)或λN(无募集)功能标签进行ORFtag筛选的情况下,GFP表达和GFP阳性细胞的比例。f、 密度图表示在存在(红色)或不存在(蓝色)强力霉素的情况下,在5天的时间内,来自激活剂ORFtag筛选的预先分选的GFP阳性细胞中的GFP水平。
Parental non-activated reporter cell line is shown as control (grey).Extended Data Fig. 3 Analysis of ORFtag hits.a, STRING protein-protein interaction networks between activator/ repressor/ PTGR hits. Node c.
亲本未激活的报告细胞系显示为对照(灰色)。扩展数据图3 ORFtag命中的分析。a,激活剂/阻遏物/PTGR命中之间的STRING蛋白质-蛋白质相互作用网络。节点c。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleNemčko, F., Himmelsbach, M., Loubiere, V. et al. Proteome-scale tagging and functional screening in mammalian cells by ORFtag.
转载和许可本文引用本文Nemčko,F.,Himmelsbach,M.,Loubiere,V。等人。通过ORFtag在哺乳动物细胞中进行蛋白质组规模标记和功能筛选。
Nat Methods (2024). https://doi.org/10.1038/s41592-024-02339-xDownload citationReceived: 25 September 2023Accepted: 10 June 2024Published: 05 July 2024DOI: https://doi.org/10.1038/s41592-024-02339-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat方法(2024)。https://doi.org/10.1038/s41592-024-02339-xDownload引文接收日期:2023年9月25日接收日期:2024年6月10日发布日期:2024年7月5日OI:https://doi.org/10.1038/s41592-024-02339-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
Genetic mappingHigh-throughput screeningMolecular engineeringSynthetic biology
遗传作图高通量筛选分子工程合成生物学