商务合作
动脉网APP
可切换为仅中文
AbstractThe paradigm for macrophage characterization has evolved from the simple M1/M2 dichotomy to a more complex model that encompasses the broad spectrum of macrophage phenotypic diversity, due to differences in ontogeny and/or local stimuli. We currently lack an in-depth pan-cancer single cell RNA-seq (scRNAseq) atlas of tumour-associated macrophages (TAMs) that fully captures this complexity.
摘要由于个体发育和/或局部刺激的差异,巨噬细胞表征的范例已经从简单的M1/M2二分法发展到更复杂的模型,该模型涵盖了广泛的巨噬细胞表型多样性。我们目前缺乏一个深入的肿瘤相关巨噬细胞(TAMs)泛癌单细胞RNA-seq(scRNAseq)图谱,可以充分捕捉这种复杂性。
In addition, an increased understanding of macrophage diversity could help to explain the variable responses of cancer patients to immunotherapy. Our atlas includes well established macrophage subsets as well as a number of additional ones. We associate macrophage composition with tumour phenotype and show macrophage subsets can vary between primary and metastatic tumours growing in sites like the liver.
此外,对巨噬细胞多样性的更多了解可能有助于解释癌症患者对免疫疗法的可变反应。我们的图谱包括完善的巨噬细胞亚群以及许多其他亚群。我们将巨噬细胞组成与肿瘤表型联系起来,并显示巨噬细胞亚群在肝脏等部位生长的原发性和转移性肿瘤之间可能有所不同。
We also examine macrophage-T cell functional cross talk and identify two subsets of TAMs associated with T cell activation. Analysis of TAM signatures in a large cohort of immune checkpoint inhibitor-treated patients (CPI1000 + ) identify multiple TAM subsets associated with response, including the presence of a subset of TAMs that upregulate collagen-related genes.
我们还检查了巨噬细胞-T细胞功能性串扰,并确定了与T细胞活化相关的TAM的两个子集。在一大批免疫检查点抑制剂治疗的患者(CPI1000+)中对TAM特征的分析确定了与反应相关的多个TAM亚群,包括存在上调胶原相关基因的TAM亚群。
Finally, we demonstrate the utility of our data as a resource and reference atlas for mapping of novel macrophage datasets using projection. Overall, these advances represent an important step in both macrophage classification and overcoming resistance to immunotherapies in cancer..
最后,我们展示了我们的数据作为资源和参考图谱的实用性,用于使用投影绘制新型巨噬细胞数据集。总体而言,这些进展代表了巨噬细胞分类和克服癌症免疫疗法耐药性的重要一步。。
IntroductionThe complex interplay between cancer-cell intrinsic factors and the tumour microenvironment (TME) determine the prognosis, progression and efficacy of treatment for cancer. Tumour-associated macrophages (TAMs) are a highly diverse and prominent component of this environment, and much like their functional diversity in the body1, whether as microglia in the brain, Kupffer cells in the liver and Langerhans cells lining the skin epithelium, they also form a diverse array of functions within the heterogeneous architecture of the tumour2.
引言癌细胞内在因素与肿瘤微环境(TME)之间复杂的相互作用决定了癌症治疗的预后,进展和疗效。肿瘤相关巨噬细胞(TAMs)是这种环境中高度多样化和突出的组成部分,就像它们在体内的功能多样性一样,无论是大脑中的小胶质细胞,肝脏中的库普弗细胞还是皮肤上皮衬里的朗格汉斯细胞,它们也在肿瘤的异质结构内形成多种功能2。
Specifically, TAMs have been shown to promote invasion of cancer cells into the surrounding tissues, vascularization of tumours, escape of cancer cells into tumour blood vessels, extravasation of cancer cells from the circulation into metastatic sites like the lungs, and suppression of anti-tumour immunity2,3,4.In most tumour types, the density of TAMs correlates with poor prognosis5,6,7,8, but in some like colorectal cancer the opposite is true9,10,11,12.
具体而言,TAM已被证明可促进癌细胞向周围组织的侵袭,肿瘤的血管形成,癌细胞逃逸到肿瘤血管中,癌细胞从循环外渗到肺部等转移部位,以及抑制抗肿瘤免疫2,3,4。在大多数肿瘤类型中,TAM的密度与预后不良相关5,6,7,8,但在一些类似结直肠癌的情况下,情况恰恰相反9,10,11,12。
Macrophage classification has historically followed a bipartite system named M1/M2, with M1 macrophages associated with inflammatory functionality, and M2 macrophages associated with anti-inflammatory properties. Whilst the paradigm for the role of macrophages in the TME has evolved with research, moving from a simpler M1/M2 dichotomy defined based on the inflammatory axis of TAMs in vitro13, to more complicated models reflecting the full spectrum of their functional diversity14,15, we currently lack a comprehensive atlas of TAM phenotypes that utilizes the full breadth of scRNAseq data available, with existing efforts focusing on broader subsets of immune cells such as all monocytes and their developmental derivatives (including macrophages), or all myeloid cells and lymphoid.
巨噬细胞分类历史上遵循称为M1/M2的二分系统,M1巨噬细胞与炎症功能相关,M2巨噬细胞与抗炎特性相关。虽然巨噬细胞在TME中的作用的范例随着研究而发展,从基于体外TAMs炎症轴定义的更简单的M1/M2二分法13转变为反映其功能多样性全谱的更复杂模型14,15,我们目前缺乏一个综合的TAM表型图谱,该图谱利用了可用的scRNAseq数据的全部范围,现有的努力集中在更广泛的免疫细胞亚群上,如所有单核细胞及其发育衍生物(包括巨噬细胞)或所有髓样细胞和淋巴样细胞。
Data availability
数据可用性
The scRNAseq atlas generated in this study has been deposited in Zenodo as a Seurat object under accession code 11222158. All other data are available in the article and its Supplementary files or from the corresponding author upon request. Source data are provided with this paper.
本研究中生成的scRNAseq图谱已作为Seurat对象存放在Zenodo,登录号为11222158。所有其他数据均可在文章及其补充文件中获得,或应要求从通讯作者处获得。本文提供了源数据。
Code availability
代码可用性
The code associated with this manuscript is available at https://github.com/alexcoulton/macrophage-atlas and under the following Zenodo https://doi.org/10.5281/zenodo.11221774.
与这份手稿相关的代码可以在https://github.com/alexcoulton/macrophage-atlas在下面的Zenodo下https://doi.org/10.5281/zenodo.11221774.
ReferencesLee, C. Z. W. & Ginhoux, F. Biology of resident tissue macrophages. Development 149, dev200270 (2022).Article
参考文献Lee,C.Z.W。&Ginhoux,F。常驻组织巨噬细胞的生物学。开发149,dev200270(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yang, M., McKay, D., Pollard, J. W. & Lewis, C. E. Diverse Functions of Macrophages in Different Tumor Microenvironments. Cancer Res. 78, 5492–5503 (2018).Article
Yang,M.,McKay,D.,Pollard,J.W.&Lewis,C.E。巨噬细胞在不同肿瘤微环境中的多种功能。癌症研究785492-5503(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, J. J. W. et al. Tumor-Associated Macrophages: The Double-Edged Sword in Cancer Progression. JCO 23, 953–964 (2005).Article
Chen,J。J。W。等。肿瘤相关巨噬细胞:癌症进展中的双刃剑。。文章
CAS
中科院
Google Scholar
谷歌学者
Inagaki, K. et al. Role of tumor-associated macrophages at the invasive front in human colorectal cancer progression. Cancer Sci. 112, 2692–2704 (2021).Article
Inagaki,K。等人。肿瘤相关巨噬细胞在人类结直肠癌进展中侵袭前沿的作用。癌症科学。1122692-2704(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hwang, I. et al. Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J. Transl. Med. 18, 443 (2020).Article
肿瘤相关巨噬细胞、血管生成和淋巴管生成标志物可预测非小细胞肺癌患者的预后。J、 翻译。医学杂志18443(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jeong, H., Hwang, I., Kang, S. H., Shin, H. C. & Kwon, S. Y. Tumor-Associated Macrophages as Potential Prognostic Biomarkers of Invasive Breast Cancer. J. Breast Cancer 22, 38–51 (2019).Article
Jeong,H.,Hwang,I.,Kang,S.H.,Shin,H.C。&Kwon,S.Y。肿瘤相关巨噬细胞作为浸润性乳腺癌的潜在预后生物标志物。J、 乳腺癌22,38-51(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).Article
Pittet,M.J.,Michielin,O。&Migliorini,D。肿瘤相关巨噬细胞的临床相关性。国家修订临床。Oncol公司。19402-421(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Xu, B. et al. Prognostic value of tumor infiltrating NK cells and macrophages in stage II+III esophageal cancer patients. Oncotarget 7, 74904–74916 (2016).Article
Xu,B.等。肿瘤浸润性NK细胞和巨噬细胞在II+III期食管癌患者中的预后价值。Oncotarget 774904–74916(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Khorana, A. A., Ryan, C. K., Cox, C., Eberly, S. & Sahasrabudhe, D. M. Vascular endothelial growth factor, CD68, and epidermal growth factor receptor expression and survival in patients with Stage II and Stage III colon carcinoma. Cancer 97, 960–968 (2003).Article
Khorana,A.A.,Ryan,C.K.,Cox,C.,Eberly,S。&Sahasrabudhe,D.M。血管内皮生长因子,CD68和表皮生长因子受体在II期和III期结肠癌患者中的表达和存活率。癌症97960-968(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Koelzer, V. H. et al. Phenotyping of tumor-associated macrophages in colorectal cancer: Impact on single cell invasion (tumor budding) and clinicopathological outcome. OncoImmunology 5, e1106677 (2016).Article
Koelzer,V.H.等人。结直肠癌中肿瘤相关巨噬细胞的表型:对单细胞侵袭(肿瘤出芽)和临床病理结果的影响。肿瘤免疫学5,e1106677(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, J. et al. Tumor-associated macrophage infiltration and prognosis in colorectal cancer: systematic review and meta-analysis. Int J. Colorectal Dis. 35, 1203–1210 (2020).Article
Li,J。等。结直肠癌中肿瘤相关巨噬细胞浸润和预后:系统综述和荟萃分析。Int J.结直肠疾病。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, Q. et al. The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J. Transl. Med. 8, 13 (2010).Article
Zhou,Q。等人。侵袭前沿巨噬细胞的密度与结肠癌的肝转移呈负相关。J、 翻译。医学杂志8,13(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 164, 6166–6173 (2000).Article
Mills,C.D.,Kincaid,K.,Alt,J.M.,Heilman,M.J。&Hill,A.M。M-1/M-2巨噬细胞和Th1/Th2范例。J、 免疫。1646166–6173(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ma, R.-Y., Black, A. & Qian, B.-Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 43, 546–563 (2022).Article
Ma,R.-Y.,Black,A。&Qian,B.-Z。在单细胞组学时代重新审视癌症中的巨噬细胞多样性。趋势免疫。43546-563(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nahrendorf, M. & Swirski, F. K. Abandoning M1/M2 for a network model of macrophage function. Circ. Res. 119, 414–417 (2016).Article
Nahrendorf,M。&Swirski,F.K。放弃M1/M2作为巨噬细胞功能的网络模型。保监会。第119414-417号决议(2016年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).Article
Cheng,S.等人。肿瘤浸润性骨髓细胞的泛癌单细胞转录图谱。细胞184792-809.e23(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nieto, P. et al. A single-cell tumor immune atlas for precision oncology. Genome Res 31, 1913–1926 (2021).Article
Nieto,P。等人。用于精确肿瘤学的单细胞肿瘤免疫图谱。基因组研究311913-1926(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).Article
Mulder,K.等人。健康和疾病中人类单核细胞和巨噬细胞的跨组织单细胞景观。豁免541883–1900.e5(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Azizi, E. et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell 174, 1293–1308.e36 (2018).Article
。细胞1741293-1308.e36(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Becker, W. R. et al. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat. Genet. 54, 985–995 (2022).Article
。纳特·吉内特。54985-995(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661.e5 (2021).Article
Bi,K。等人。晚期肾细胞癌免疫治疗期间的肿瘤和免疫重编程。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Biermann, J. et al. Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell 185, 2591–2608.e30 (2022).Article
Biermann,J.等人。剖析人类黑色素瘤脑转移的未经治疗的生态系统。细胞1852591-2608.e30(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Borcherding, N. et al. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics. Commun. Biol. 4, 122 (2021).Article
Borcherding,N.等人。通过单细胞基因组学绘制透明细胞肾癌中的免疫环境。Commun公司。生物学4122(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 39, 632–648.e8 (2021).Article
Braun,D.A.等人。肾细胞癌疾病进展阶段的进行性免疫功能障碍。癌细胞39632-648.e8(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chan, J. M. et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 39, 1479–1496.e18 (2021).Article
Chan,J.M.等人。人类小细胞肺癌图谱中可塑性,转移和免疫抑制的特征。癌细胞391479-1496.e18(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Che, L.-H. et al. A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy. Cell Discov. 7, 1–21 (2021).Article
Che,L.-H.等人。结直肠癌肝转移的单细胞图谱揭示了术前化疗对肿瘤微环境的重新编程。。7,1-21(2021)。文章
Google Scholar
谷歌学者
Durante, M. A. et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat. Commun. 11, 496 (2020).Article
Durante,M.A.等人的单细胞分析揭示了葡萄膜黑色素瘤新的进化复杂性。国家公社。11496(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jerby-Arnon, L. et al. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell 175, 984–997.e24 (2018).Article
Jerby Arnon,L。等人。癌细胞计划促进T细胞排斥和对检查点封锁的抵抗。细胞175984-997.e24(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Khaliq, A. M. et al. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol. 23, 113 (2022).Article
Khaliq,A.M.等人通过单细胞图谱改进结直肠癌分类和临床分层。基因组生物学。23113(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).Article
。国家公社。112285(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, 662–677.e6 (2021).Article
Krishna,C。等人。单细胞测序将ccRCC中的多区域免疫景观和组织驻留T细胞与肿瘤拓扑结构和治疗功效联系起来。癌细胞39662-677.e6(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39, 1594–1609.e12 (2021).Article
人类非小细胞肺癌病变的单细胞分析改进了肿瘤分类和患者分层。癌细胞391594-1609.e12(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, Z. et al. Liquid biopsy-based single-cell metabolic phenotyping of lung cancer patients for informative diagnostics. Nat. Commun. 10, 3856 (2019).Article
Li,Z.等人。基于液体活检的肺癌患者单细胞代谢表型分析,用于信息诊断。国家公社。103856(2019)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lu, Y. et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat. Commun. 13, 4594 (2022).Article
Lu,Y.等。原发性和转移性肝细胞癌多细胞生态系统的单细胞图谱。国家公社。134594(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Maynard, A. et al. Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing. Cell 182, 1232–1251.e22 (2020).Article
。细胞1821232-1251.e22(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).Article
Pelka,K.等人。人类结直肠癌的空间组织多细胞免疫中枢。细胞1844734-4752.e20(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).Article
Pombo-Antunes,A.R.等人。胶质母细胞瘤中髓样细胞在物种和疾病阶段的单细胞分析揭示了巨噬细胞的竞争和特化。自然神经科学。24595-610(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pu, W. et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat. Commun. 12, 6058 (2021).Article
Pu,W.等人。甲状腺乳头状癌发生和发展的肿瘤生态系统的单细胞转录组学分析。国家公社。126058(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res 30, 745–762 (2020).Article
Qian,J.等人。通过单细胞分析揭示的异质性肿瘤微环境的泛癌蓝图。Cell Res 30745–762(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sharma, A. et al. Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma. Cell 183, 377–394.e21 (2020).Article
Sharma,A。等人。内皮细胞的Onco胎儿重编程驱动肝细胞癌中的免疫抑制性巨噬细胞。细胞183377-394.e21(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wu, F. et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 12, 2540 (2021).Article
Wu,F。等。晚期非小细胞肺癌肿瘤异质性和微环境的单细胞分析。国家公社。122540(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet 53, 1334–1347 (2021).Article
Wu,S.Z.等人。人类乳腺癌的单细胞和空间分辨图谱。《国家遗传学》531334-1347(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, K. et al. Single-cell RNA sequencing reveals cell heterogeneity and transcriptome profile of breast cancer lymph node metastasis. Oncogenesis 10, 1–12 (2021).Article
Xu,K。等人。单细胞RNA测序揭示了乳腺癌淋巴结转移的细胞异质性和转录组谱。肿瘤发生10,1-12(2021)。文章
Google Scholar
谷歌学者
Zhang, K. et al. Longitudinal single-cell RNA-seq analysis reveals stress-promoted chemoresistance in metastatic ovarian cancer. Sci. Adv. 8, eabm1831 (2022).Article
Zhang,K。等人。纵向单细胞RNA-seq分析揭示了转移性卵巢癌中应激促进的化学抗性。科学。Adv.8,eabm1831(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, X. et al. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat. Commun. 12, 5291 (2021).Article
Zhang,X。等。通过单细胞转录组学分析解剖食管鳞状细胞癌生态系统。国家公社。125291(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593.e8 (2021).Article
Zhang,Y。等人。单细胞分析揭示了与三阴性乳腺癌中PD-L1阻断反应相关的关键免疫细胞亚群。癌细胞391578-1593.e8(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zheng, X. et al. Single-cell transcriptomic profiling unravels the adenoma-initiation role of protein tyrosine kinases during colorectal tumorigenesis. Sig Transduct. Target Ther. 7, 1–14 (2022).Article
Zheng,X。等人。单细胞转录组学分析揭示了蛋白酪氨酸激酶在结直肠肿瘤发生过程中的腺瘤起始作用。信号传输。目标Ther。7,1-14(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Zilionis, R. et al. Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. Immunity 50, 1317–1334.e10 (2019).Article
Zilionis,R。等人。人和小鼠肺癌的单细胞转录组学揭示了个体和物种之间保守的骨髓种群。免疫力501317-1334.e10(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).Article
Korsunsky,I。等人。单细胞数据与和谐的快速,灵敏和准确整合。自然方法161289-1296(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, Y. et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat. Commun. 11, 6322 (2020).Barrett, C. W. et al. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage.
Zhou,Y.等。晚期骨肉瘤瘤内异质性和免疫抑制微环境的单细胞RNA景观。国家公社。116322(2020)。Barrett,C.W。等人。硒蛋白P通过介导干性和氧化损伤来影响结肠炎诱导的肿瘤发生。
J. Clin. Invest 125, 2646–2660 (2015).Article .
J、 。Invest 1252646–2660(2015)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Serra, M., Columbano, A., Ammarah, U., Mazzone, M. & Menga, A. Understanding Metal Dynamics Between Cancer Cells and Macrophages: Competition or Synergism? Front. Oncol. 10, 646 (2020).Article
Serra,M.,Columbano,A.,Ammarah,U.,Mazzone,M。&Menga,A.了解癌细胞和巨噬细胞之间的金属动力学:竞争还是协同?正面。Oncol公司。10646(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pfeifhofer-Obermair, C., Tymoszuk, P., Petzer, V., Weiss, G. & Nairz, M. Iron in the Tumor Microenvironment—Connecting the Dots. Front. Oncol. 8, 549 (2018).Article
Pfeifhofer-Obermair,C.,Tymoszuk,P.,Petzer,V.,Weiss,G。&Nairz,M。连接点的肿瘤微环境中的铁。正面。Oncol公司。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vuletic, S., Dong, W., Wolfbauer, G., Tang, C. & Albers, J. J. PLTP regulates STAT3 and NFκB in differentiated THP1 cells and human monocyte-derived macrophages. Biochimica et. Biophysica Acta (BBA) - Mol. Cell Res. 1813, 1917–1924 (2011).Article
Vuletic,S.,Dong,W.,Wolfbauer,G.,Tang,C。&Albers,J。J。PLTP调节分化的THP1细胞和人单核细胞衍生的巨噬细胞中的STAT3和NFκB。Biochimica et.Biophysica Acta(BBA)-Mol.Cell Res.18131917–1924(2011)。文章
CAS
中科院
Google Scholar
谷歌学者
Wang, Y., Yan, K., Lin, J., Li, J. & Bi, J. Macrophage M2 Co-expression Factors Correlate With the Immune Microenvironment and Predict Outcome of Renal Clear Cell Carcinoma. Front. Genet. 12, 615655 (2021).Article
Wang,Y.,Yan,K.,Lin,J.,Li,J。&Bi,J。巨噬细胞M2共表达因子与免疫微环境相关并预测肾透明细胞癌的预后。正面。。1261655(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Van Lookeren Campagne, M., Wiesmann, C. & Brown, E. J. Macrophage complement receptors and pathogen clearance. Cell. Microbiol. 9, 2095–2102 (2007).Article
Van Lookeren Campagne,M.,Wiesmann,C。&Brown,E.J。巨噬细胞补体受体和病原体清除。细胞。。92095-2102(2007)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gao, L. et al. PLD4 promotes M1 macrophages to perform antitumor effects in colon cancer cells. Oncol. Rep. 37, 408–416 (2017).Article
Gao,L。等人,PLD4促进M1巨噬细胞在结肠癌细胞中发挥抗肿瘤作用。Oncol公司。代表37408-416(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kadomoto, S., Izumi, K. & Mizokami, A. The CCL20-CCR6 Axis in Cancer Progression. Int. J. Mol. Sci. 21, 5186 (2020).Article
Kadomoto,S.,Izumi,K。和Mizokami,A。癌症进展中的CCL20-CCR6轴。Int.J.Mol.Sci。215186(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, B. et al. Tumor-associated macrophage-derived CCL20 enhances the growth and metastasis of pancreatic cancer. Acta Biochimica et. Biophysica Sin. 48, 1067–1074 (2016).Article
Liu,B。等人。肿瘤相关巨噬细胞衍生的CCL20增强胰腺癌的生长和转移。生物化学学报和生物物理学报。481067-1074(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Sun, X. et al. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut 71, 129–147 (2022).Article
Sun,X。等人。炎性细胞衍生的CXCL3通过一种新的肌成纤维细胞劫持的癌症逃逸机制促进胰腺癌转移。肠道71129-147(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y., Du, W., Chen, Z. & Xiang, C. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Exp. Cell Res. 359, 449–457 (2017).Article
Zhang,Y.,Du,W.,Chen,Z。&Xiang,C。SPP1上调PD-L1介导巨噬细胞极化并促进肺腺癌的免疫逃逸。Exp.Cell Res.359449–457(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rowe, G. C. et al. PGC-1α Induces SPP1 to Activate Macrophages and Orchestrate Functional Angiogenesis in Skeletal Muscle. Circ. Res. 115, 504–517 (2014).Article
Rowe,G.C.等人,PGC-1α诱导SPP1激活巨噬细胞并协调骨骼肌中的功能性血管生成。保监会。第115504-517号决议(2014年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, L. et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer. Cell 181, 442–459.e29 (2020).Article
Zhang,L.等人。单细胞分析为结肠癌骨髓靶向治疗的机制提供了信息。细胞181442-459.e29(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gong, Y., Hart, E., Shchurin, A. & Hoover-Plow, J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J. Clin. Invest 118, 3012–3024 (2008).Article
Gong,Y.,Hart,E.,Shchurin,A。&Hoover Plow,J。炎性巨噬细胞迁移需要小鼠纤溶酶原激活MMP-9。J、 。Invest 1183012–3024(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van Kempen, L. C. L. & Coussens, L. M. MMP9 potentiates pulmonary metastasis formation. Cancer Cell 2, 251–252 (2002).Article
van Kempen,L.C.L。和Coussens,L.M.MMP9增强肺转移形成。癌细胞2251-252(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dakin, S. G. et al. Inflammation activation and resolution in human tendon disease. Sci. Transl. Med. 7, 311ra173 (2015).Article
Dakin,S.G.等人,《人类肌腱疾病的炎症激活和消退》。科学。翻译。医学杂志7311RA173(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiang, X., Wang, J., Lu, D. & Xu, X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Sig Transduct. Target Ther. 6, 1–12 (2021).Article
Xiang,X.,Wang,J.,Lu,D。&Xu,X。靶向肿瘤相关巨噬细胞以协同肿瘤免疫疗法。信号传输。目标Ther。6,1-12(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Xiong, D., Wang, Y. & You, M. A gene expression signature of TREM2hi macrophages and γδ T cells predicts immunotherapy response. Nat. Commun. 11, 5084 (2020).Article
Xiong,D.,Wang,Y。&You,M。TREM2hi巨噬细胞和γδT细胞的基因表达特征预测免疫治疗反应。国家公社。115084(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ulland, T. K. & Colonna, M. TREM2 — a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675 (2018).Article
Ulland,T.K。&Colonna,M.TREM2-小胶质细胞生物学和阿尔茨海默病的关键参与者。神经病学杂志。14667-675(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698.e14 (2019).Article
Jaitin,D.A。等人。脂质相关巨噬细胞以Trem2依赖性方式控制代谢稳态。细胞178686-698.e14(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Molgora, M. et al. TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy. Cell 182, 886–900.e17 (2020).Article
Molgora,M。等人。TREM2调节重塑肿瘤骨髓景观增强抗PD-1免疫疗法。细胞182886-900.e17(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vitek, M. P., Brown, C. M. & Colton, C. A. APOE genotype-specific differences in the innate immune response. Neurobiol. Aging 30, 1350–1360 (2009).Article
Vitek,M.P.,Brown,C.M。&Colton,C.A。先天免疫反应中APOE基因型特异性差异。神经生物学。年龄301350-1360(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ko, H.-L. et al. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for lung cancer: A marker phase I trial. Thorac. Cancer 5, 500–508 (2014).Article
Ko,H.-L.等人。载脂蛋白C1(APOC1)作为肺癌的新型诊断和预后生物标志物:标志物I期试验。胸部。癌症5500-508(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hao, X. et al. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol. 56, 102463 (2022).Article
Hao,X。等人。基于单细胞RNA测序,抑制APOC1通过ferroptosis途径促进M2向M1巨噬细胞的转化,并增强肝细胞癌中的抗PD1免疫疗法。氧化还原生物。56102463(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, J. et al. Heat Shock Proteins and Cancer. Trends Pharmacol. Sci. 38, 226–256 (2017).Article
Wu,J。等人。热休克蛋白与癌症。趋势药理学。科学。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rosati, A., Graziano, V., De Laurenzi, V., Pascale, M. & Turco, M. C. BAG3: a multifaceted protein that regulates major cell pathways. Cell Death Dis. 2, e141 (2011).Article
Rosati,A.,Graziano,V.,De Laurenzi,V.,Pascale,M。&Turco,M.C。BAG3:一种调节主要细胞途径的多方面蛋白质。细胞死亡Dis。2,e141(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915 (2021).Article
Buechler,M.B.,Fu,W。&Turley,S.J。成纤维细胞-巨噬细胞在健康,纤维化和癌症中的相互作用。免疫力54903-915(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cheng, W.-L. et al. The Role of EREG/EGFR Pathway in Tumor Progression. Int. J. Mol. Sci. 22, 12828 (2021).Article
Cheng,W.-L.等人。EREG/EGFR途径在肿瘤进展中的作用。Int.J.Mol.Sci。2212828(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pedersen, M. Ø., Larsen, A., Stoltenberg, M. & Penkowa, M. The role of metallothionein in oncogenesis and cancer prognosis. Prog. Histochem. Cytochem. 44, 29–64 (2009).Article
佩德森,M。,Larsen,A.,Stoltenberg,M。&Penkowa,M。金属硫蛋白在肿瘤发生和癌症预后中的作用。程序。组织化学。细胞化学。44,29-64(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Peng, B. et al. Ferroptosis-Related Gene MT1G as a Novel Biomarker Correlated With Prognosis and Immune Infiltration in Colorectal Cancer. Front Cell Dev. Biol. 10, 881447 (2022).Article
Peng,B。等。Ferroptosis相关基因MT1G作为与结直肠癌预后和免疫浸润相关的新型生物标志物。前细胞发育生物学。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xavier, C. P. R. et al. Chitinase 3-like-1 and fibronectin in the cargo of extracellular vesicles shed by human macrophages influence pancreatic cancer cellular response to gemcitabine. Cancer Lett. 501, 210–223 (2021).Article
Xavier,C.P.R.等人。人巨噬细胞脱落的细胞外囊泡货物中的几丁质酶3样-1和纤连蛋白影响胰腺癌细胞对吉西他滨的反应。癌症Lett。501210-223(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, W.-H. et al. The Overexpression of Fibronectin 1 Promotes Cancer Progression and Associated with M2 Macrophages Polarization in Head and Neck Squamous Cell Carcinoma Patients. Int J. Gen. Med 15, 5027–5042 (2022).Article
Zhou,W.-H.等人。纤维连接蛋白1的过度表达促进了头颈部鳞状细胞癌患者的癌症进展,并与M2巨噬细胞极化有关。Int J.Gen.Med 155027–5042(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ambartsumian, N., Klingelhöfer, J. & Grigorian, M. The Multifaceted S100A4 Protein in Cancer and Inflammation. in Calcium-Binding Proteins of the EF-Hand Superfamily: From Basics to Medical Applications (ed. Heizmann, C. W.) 339–365 (Springer, New York, NY). https://doi.org/10.1007/978-1-4939-9030-6_22 (2019).Bergamo, A.
Ambartsumian,N.,Klingelhöfer,J。&Grigorian,M。癌症和炎症中的多方面S100A4蛋白。EF手超家族的钙结合蛋白:从基础到医学应用(ed.Heizmann,C.W。)339-365(Springer,New York,NY)。https://doi.org/10.1007/978-1-4939-9030-6_22。贝加莫,A。
et al. Lysozyme-Induced Transcriptional Regulation of TNF-α Pathway Genes in Cells of the Monocyte Lineage. Int J. Mol. Sci. 20, 5502 (2019).Article .
溶菌酶诱导单核细胞系细胞中TNF-α途径基因的转录调控。Int J.Mol.Sci。205502(2019)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yabluchanskiy, A., Ma, Y., Iyer, R. P., Hall, M. E. & Lindsey, M. L. Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiol. (Bethesda) 28, 391–403 (2013).CAS
Yabluchanskiy,A.,Ma,Y.,Iyer,R.P.,Hall,M.E。&Lindsey,M.L。基质金属蛋白酶-9:心血管疾病中的多种功能。生理学。(贝塞斯达)28391-403(2013)。中科院
Google Scholar
谷歌学者
Wu, Z.-S. et al. Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int J. Cancer 122, 2050–2056 (2008).Article
Wu,Z.-S.等。MMP-9和TIMP-1血清和组织表达在乳腺癌中的预后意义。《国际癌症杂志》1222050-2056(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Phipson, B. et al. propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).Article
Phipson,B.等人,《螺旋桨:测试单细胞数据中细胞类型比例的差异》。生物信息学384720-4726(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Benchama, O. et al. Inhibition of triple negative breast cancer-associated inflammation and progression by N- acylethanolamine acid amide hydrolase (NAAA). Scientific Rep. 12, 22255 (2022).Komohara, Y., Fujiwara, Y., Ohnishi, K. & Takeya, M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy.
Benchama,O.等人。N-酰基乙醇胺酰胺水解酶(NAAA)对三阴性乳腺癌相关炎症和进展的抑制作用。科学代表122255(2022)。Komohara,Y.,Fujiwara,Y.,Ohnishi,K。&Takeya,M。肿瘤相关巨噬细胞:抗癌治疗的潜在治疗靶点。
Adv. Drug Deliv. Rev. 99, 180–185 (2016).Article .
高级药物输送。修订版99180–185(2016)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Noy, R. & Pollard, J. W. Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity 41, 49–61 (2014).Article
Noy,R。&Pollard,J。W。肿瘤相关巨噬细胞:从机制到治疗。豁免41,49-61(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chamseddine, A. N., Assi, T., Mir, O. & Chouaib, S. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. Pharmacol. Therapeutics 231, 107986 (2022).Article
Chamseddine,A.N.,Assi,T.,Mir,O。&Chouaib,S。调节肿瘤相关巨噬细胞以增强免疫检查点抑制剂的功效:TAM-pting方法。药理学。Therapeutics 231107986(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Jin, H. et al. Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics 9, 265–278 (2019).Article
Jin,H。等人。通过整合素β3/FAK途径靶向脂质代谢以克服EMT相关的耐药性,并使用legumain可激活的递送进行肿瘤相关的巨噬细胞复极化。Theranostics 9265-278(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xia, Y. et al. Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. Adv. Mater. 32, 2002054 (2020).Article
Xia,Y.等人。用于癌症免疫治疗和药物递送的工程巨噬细胞。高级材料。322002054(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).Article
Litchfield,K。等人。肿瘤和T细胞对检查点抑制敏感的内在机制的荟萃分析。细胞184596-614.e14(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article
Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Korotkevich, G. et al. Fast gene set enrichment analysis. 060012 Preprint at https://doi.org/10.1101/060012 (2021).Reschke, R. & Gajewski, T. F. CXCL9 and CXCL10 bring the heat to tumors. Sci. Immunol. 7, eabq6509 (2022).Article
Korotkevich,G。等人。快速基因组富集分析。060012预印本https://doi.org/10.1101/060012(2021年)。Reschke,R。&Gajewski,T.F。CXCL9和CXCL10为肿瘤带来热量。科学。免疫。7,eabq6509(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).Article
Caushi,J.X。等人。抗PD-1治疗的肺癌中新抗原特异性TIL的转录程序。自然596126-132(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).Article
He,S.等人。通过空间分子成像在固定组织中以亚细胞分辨率对RNA和蛋白质进行高倍成像。美国国家生物技术公司。401794-1806(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935.e29 (2022).Article
Luoma,A.M.等人。组织驻留记忆和循环T细胞是术前癌症免疫治疗的早期反应者。细胞1852918-2935.e29(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).Article
Martinez,F.O。&Gordon,S。巨噬细胞活化的M1和M2范例:重新评估的时间。F1000Prime Rep.6,13(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sly, L. M. & McKay, D. M. Macrophage immunotherapy: overcoming impediments to realize promise. Trends Immunol. 43, 959–968 (2022).Henze, A.-T. & Mazzone, M. The impact of hypoxia on tumor-associated macrophages. J. Clin. Invest 126, 3672–3679 (2016).Article
Sly,L.M。&McKay,D.M。巨噬细胞免疫疗法:克服障碍以实现承诺。趋势免疫。43959-968(2022)。Henze,A.-T.&Mazzone,M。缺氧对肿瘤相关巨噬细胞的影响。J、 。投资1263672–3679(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Etzerodt, A. et al. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J. Exp. Med. 217, e20191869 (2020).Article
Etzerodt,A。等人。网膜中的组织驻留巨噬细胞促进卵巢癌的转移扩散。J、 实验医学217,e20191869(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Luo, H. et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat. Commun. 13, 6619 (2022).Article
。国家公社。136619(2022年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tharp, K. M. Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. Nat. Cancer 1–18 https://doi.org/10.1038/s43018-024-00775-4 (2024)Song, P. et al. Relationship between the efficacy of immunotherapy and characteristics of specific tumor mutation genes in non‐small cell lung cancer patients.
Tharp,K.M。肿瘤相关巨噬细胞通过胶原沉积和乳腺癌微环境的代谢重编程来限制CD8+T细胞功能。自然癌症1-18https://doi.org/10.1038/s43018-024-00775-4。
Thorac. Cancer 11, 1647–1654 (2020).Article .
胸部。。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).Article
Hao,Y.等人。多模式单细胞数据的综合分析。细胞1843573-3587.e29(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chung, W. et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 8, 15081 (2017).Article
Chung,W。等人。单细胞RNA-seq能够在原发性乳腺癌中进行全面的肿瘤和免疫细胞分析。国家公社。815081(2017)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).Article
Hafemeister,C。&Satija,R。使用正则化负二项回归对单细胞RNA-seq数据进行归一化和方差稳定。基因组生物学。20296(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).Article
Aran,D。等人。基于参考的肺单细胞测序分析揭示了过渡性促纤维化巨噬细胞。自然免疫。20163-172(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mabbott, N. A., Baillie, J. K., Brown, H., Freeman, T. C. & Hume, D. A. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14, 632 (2013).Article
Mabbott,N.A.,Baillie,J.K.,Brown,H.,Freeman,T.C。&Hume,D.A。人类原代细胞的表达图谱:从共表达网络推断基因功能。BMC基因组学14632(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-cell gene signature scoring. Comput Struct. Biotechnol. J. 19, 3796–3798 (2021).Article
Andreatta,M。&Carmona,S.J。UCell:强大且可扩展的单细胞基因特征评分。计算机结构。生物技术。J、 193796-3798(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, L. et al. Tutorial: integrative computational analysis of bulk RNA-sequencing data to characterize tumor immunity using RIMA. Nat. Protoc. 18, 2404–2414 (2023).Article
Yang,L。等人。教程:使用RIMA对大量RNA测序数据进行综合计算分析,以表征肿瘤免疫力。自然协议。182404-2414(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Banchereau, R. et al. Molecular determinants of response to PD-L1 blockade across tumor types. Nat. Commun. 12, 3969 (2021).Article
Banchereau,R。等人。跨肿瘤类型对PD-L1阻断反应的分子决定因素。国家公社。123969(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hugo, W. et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 165, 35–44 (2016).Article
Hugo,W.等人。转移性黑色素瘤抗PD-1治疗反应的基因组和转录组学特征。细胞165,35-44(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, S. T. et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 24, 1449–1458 (2018).Article
Kim,S.T.等人。转移性胃癌对PD-1抑制的临床反应的综合分子表征。《自然医学》241449-1458(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019).Article
Liu,D.等。转移性黑色素瘤患者PD1阻断临床结果的综合分子和临床建模。《自然医学》251916-1927(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).Article
Mariathasan,S。等人。TGFβ通过有助于排除T细胞来减弱肿瘤对PD-L1阻断的反应。。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med 24, 749–757 (2018).Article
McDermott,D.F.等人。肾细胞癌中单独或联合贝伐单抗与舒尼替尼对atezolizumab反应的临床活性和分子相关性。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).Article
Miao,D.等。透明细胞肾细胞癌免疫检查点治疗反应的基因组相关性。科学359801-806(2018)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Patil, N. S. et al. Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell 40, 289–300.e4 (2022).Article
Patil,N.S.等人肿瘤内浆细胞预测非小细胞肺癌PD-L1阻断的结果。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Riaz, N. et al. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 171, 934–949.e16 (2017).Article
Riaz,N。等人。Nivolumab免疫治疗期间的肿瘤和微环境演变。细胞171934-949.e16(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).Article
Van Allen,E.M.等人。转移性黑色素瘤对CTLA-4阻断反应的基因组相关性。科学350207-211(2015)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arya, S., Kemp, S. E., Jefferis, G. & Mount, D. RANN: Fast Nearest Neighbour Search (Wraps ANN Library) Using L2 Metric. (2019).Coulton, A. et al. 2024. Macrophage Atlas, https://doi.org/10.5281/zenodo.11221774 (2024).Download referencesAcknowledgementsK. Litchfield is funded by the UK Medical Research Council (MR/P014712/1 and MR/V033077/1), the Rosetrees Trust and Cotswold Trust (A2437), and CRUK (C69256/A30194).
Arya,S.,Kemp,S.E.,Jefferis,G.&Mount,D.RANN:使用L2度量的快速最近邻搜索(Wraps ANN库)。(2019年)。Coulton,A。等人,2024年。巨噬细胞图谱,https://doi.org/10.5281/zenodo.11221774(2024年)。下载referencesAcknowledgementsK。Litchfield由英国医学研究委员会(MR/P014712/1和MR/V033077/1),Rosetrees Trust和Cotswold Trust(A2437)以及CRUK(C69256/A30194)资助。
A. Coulton is funded by the Melanoma Research Alliance (award reference 686061). C.E.L acknowledges grant support for her work from Prostate Cancer UK (RIA16-ST2-022). We are thankful to Joe Brock of the Francis Crick Institute, who produced the anatomical illustration used in Fig. 1.Author informationAuthor notesThese authors contributed equally: Claire E.
A、 库尔顿由黑色素瘤研究联盟资助(奖项参考号686061)。C、 E.L感谢英国前列腺癌协会(RIA16-ST2-022)对她的工作的资助。我们感谢弗朗西斯·克里克研究所的乔·布鲁克,他制作了图1中使用的解剖学插图。作者信息作者注意到这些作者做出了同样的贡献:克莱尔·E。
Lewis, Kevin Litchfield.Authors and AffiliationsThe Tumour Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, WC1E 6DD, UKAlexander Coulton, Jun Murai, Danwen Qian, Krupa Thakkar & Kevin LitchfieldDepartment of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield, Yorkshire, S10 2RX, UKClaire E.
刘易斯,凯文·利奇菲尔德。作者和附属机构伦敦大学学院癌症研究所肿瘤免疫基因组学和免疫监视(TIGI)实验室,WC1E 6DD,英国亚历山大·库尔顿,Jun Murai,Danwen Qian,Krupa Thakkar&Kevin Litchfield谢菲尔德大学医学院肿瘤学和代谢系,比奇山路,谢菲尔德,约克郡,S10 2RX,UKClaire E。
LewisAuthorsAlexander CoultonView author publicationsYou can also search for this author in.
LewisAuthorsAlexanderCoultonView作者出版物您也可以在中搜索此作者。
PubMed Google ScholarJun MuraiView author publicationsYou can also search for this author in
PubMed Google ScholarJun MuraiView作者出版物您也可以在
PubMed Google ScholarDanwen QianView author publicationsYou can also search for this author in
PubMed Google ScholarDanwen QianView作者出版物您也可以在
PubMed Google ScholarKrupa ThakkarView author publicationsYou can also search for this author in
PubMed Google ScholarKrupa ThakkarView作者出版物您也可以在
PubMed Google ScholarClaire E. LewisView author publicationsYou can also search for this author in
PubMed Google ScholarClaire E.LewisView作者出版物您也可以在
PubMed Google ScholarKevin LitchfieldView author publicationsYou can also search for this author in
PubMed Google ScholarKevin LitchfieldView作者出版物您也可以在
PubMed Google ScholarContributionsA.C. performed data collation, atlas construction, analysis, wrote the manuscript, produced figures. J.M. performed data collation, atlas construction and analysis. D.Q. assisted with the MANA score analysis. K.T. provided the CPI1000+ data. C.E.L.
PubMed谷歌学术贡献。C、 进行数据整理,图谱构建,分析,撰写手稿,生成数字。J、 M.进行数据整理,图谱构建和分析。D、 Q.协助进行MANA得分分析。K、 T.提供了CPI1000+数据。C、 E.L。
and K.L. provided supervision and oversight of the project.Corresponding authorsCorrespondence to.
K.L.对该项目进行监督。通讯作者通讯。
Claire E. Lewis or Kevin Litchfield.Ethics declarations
克莱尔·刘易斯或凯文·利奇菲尔德。道德宣言
Competing interests
相互竞争的利益
K.L. has the following disclosures (all unrelated to the current work): patent on indel burden and CPI response pending, patent on ctDNA minimal residual disease calling methods, patent pending on a lung cancer vaccine; speaker fees from Roche tissue diagnostics and Ellipses pharma; research funding from CRUK TDL/Ono/LifeArc alliance and Genesis Therapeutics; and consulting roles with Monopteros Therapeutics, Saga diagnostics, Kynos Therapeutics and Tempus Labs, Inc.
K、 L.有以下披露(均与当前工作无关):indel负担和CPI反应专利正在申请中,ctDNA最小残留疾病呼叫方法专利正在申请中,肺癌疫苗专利正在申请中;罗氏组织诊断公司和椭圆制药公司的演讲者费用;CRUK TDL/Ono/LifeArc联盟和Genesis Therapeutics的研究资金;并担任Monopteros Therapeutics,Saga diagnostics,Kynos Therapeutics和Tempus Labs,Inc.的咨询角色。
Again unrelated to this work, K.L. is currently employed by Isomorphic Labs. J.M. is an employee of Ono Pharmaceutical. The other authors declare no competing interests..
同样与这项工作无关,K.L.目前受雇于Isomorphic Labs。J、 M.是大野制药的员工。其他作者声明没有利益冲突。。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Brian Henick, Frederick Varn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢Brian Henick,Frederick Varn和另一位匿名审稿人对这项工作的同行评审做出的贡献。同行评审文件可用。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1-6Supplementary Data 7Reporting SummarySource dataSource DataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1-6补充数据7报告摘要源数据源数据权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleCoulton, A., Murai, J., Qian, D. et al. Using a pan-cancer atlas to investigate tumour associated macrophages as regulators of immunotherapy response.
转载和许可本文引用本文Coulton,A.,Murai,J.,Qian,D。等人使用泛癌图谱研究肿瘤相关巨噬细胞作为免疫治疗反应的调节剂。
Nat Commun 15, 5665 (2024). https://doi.org/10.1038/s41467-024-49885-8Download citationReceived: 27 February 2023Accepted: 24 June 2024Published: 06 July 2024DOI: https://doi.org/10.1038/s41467-024-49885-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Commun 155665(2024)。https://doi.org/10.1038/s41467-024-49885-8Download引文收到日期:2023年2月27日接受日期:2024年6月24日发布日期:2024年7月6日OI:https://doi.org/10.1038/s41467-024-49885-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
Cancer genomicsCancer microenvironmentGene regulation in immune cellsMonocytes and macrophagesTumour immunology
免疫细胞中的癌症基因组扫描微环境基因调控单核细胞和巨噬细胞免疫
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。