商务合作
动脉网APP
可切换为仅中文
AbstractThe biological response to biomaterials plays a crucial role in selecting suitable materials for the formulation and development of tissue engineering platforms. Biodegradation is one of the properties that is considered in selecting appropriate biomaterials for biomedical applications. Biodegradation is the process of breaking down large molecules into smaller molecules with/without the aid of catalytic enzymes.
摘要对生物材料的生物反应在选择合适的材料用于组织工程平台的制备和开发中起着至关重要的作用。生物降解是为生物医学应用选择合适的生物材料时考虑的特性之一。生物降解是在有/没有催化酶的帮助下将大分子分解成小分子的过程。
The biodegradation process is crucial in the chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) process of biomaterials and small molecules in the body. Degradation of biomaterials can be followed by assessing the physical, mechanical, and chemical attributes of biomaterials.
生物降解过程在体内生物材料和小分子的化学吸收,分布,代谢,排泄和毒性(ADMET)过程中至关重要。生物材料的降解可以通过评估生物材料的物理,机械和化学属性来完成。
There are several techniques/parameters that can be targeted when studying the degradation of biomaterials, with gravimetric analysis, surface erosion, and morphological changes being the largely employed techniques. However, the techniques present a few limitations, such as technical errors and material solubility being mistaken for degradation, and these techniques can infer but not confirm degradation as they do not provide the chemical composition of fragmenting/fragmented molecules.
在研究生物材料的降解时,可以针对几种技术/参数,其中重量分析,表面侵蚀和形态变化是主要使用的技术。然而,这些技术存在一些局限性,例如技术错误和材料溶解度被误认为降解,并且这些技术可以推断但不能确认降解,因为它们不提供碎片/碎片分子的化学组成。
The American Society for Testing and Materials (ASTM) guidelines provide techniques and parameters for assessing biodegradation. However, the ASTM guidelines for degradation assessment approaches and techniques need to be updated to provide sufficient evidence to draw conclusive decisions regarding the degradation of biomaterials.
美国材料与试验协会(ASTM)指南提供了评估生物降解的技术和参数。然而,需要更新ASTM降解评估方法和技术指南,以提供足够的证据,就生物材料的降解做出结论性决定。
In this review, the degradation assessment approaches and techniques are critically reviewed about their advantages and disadvantages, and to provide suggestions on how they can still play a role in assessing the degradation of biomaterials. Th.
在这篇综述中,对降解评估方法和技术的优缺点进行了批判性的回顾,并就它们如何在评估生物材料降解中发挥作用提出了建议。第。
IntroductionBiodegradation is the biological catalytic reaction of reducing complex macromolecules into smaller, less complex molecular structures (by-products)1. Biodegradable materials have been widely used in the biomedical field due to their tuneable nature. Biomaterials’ tunability includes, but is not limited to chemical, physical, mechanical, and biological functionalisation tailored for a wide range of applications in the biomedical field such as drug delivery, tissue engineering, and wound healing2,3,4.
简介生物降解是将复杂的大分子还原成较小,较不复杂的分子结构(副产物)的生物催化反应1。生物可降解材料由于其可调节性质而被广泛用于生物医学领域。生物材料的可调性包括但不限于化学,物理,机械和生物功能化,适用于生物医学领域的广泛应用,如药物输送,组织工程和伤口愈合2,3,4。
The processing of biomaterials allows for the development of solid and liquid-based formulations. Biomaterials in the biomedical field can be processed via a wide range of approaches to produce solid formulations such as polymeric sutures2, nanoparticles5,6, scaffolds7,8, and fibres9. The liquid-based biomaterial formulations include, but are not limited to hydrogels, gels, suspensions, and foam.
生物材料的加工允许开发基于固体和液体的制剂。生物医学领域的生物材料可以通过多种方法进行加工,以生产固体制剂,如聚合物缝合线2,纳米粒子5,6,支架7,8和纤维9。基于液体的生物材料制剂包括但不限于水凝胶,凝胶,悬浮液和泡沫。
The differences in biomaterial physical forms suggest that different degradation assessment approaches should be employed to assess the biomaterial degradation processes.The mechanism of degradation, the formed by-products, and the desirable properties of biomaterials are well-documented10,11,12,13.
生物材料物理形式的差异表明,应采用不同的降解评估方法来评估生物材料的降解过程。生物材料的降解机理,形成的副产物和理想的性能已有文献记载10,11,12,13。
However, in vitro, and in vivo assessment of biomaterial biodegradation approaches remain a matter of concern given that the approaches employed to evaluate biodegradation present several limitations. Conventional in vitro approaches for assessing the biodegradation of biomaterials include physical, chemical, and mechanical characterisation of biomaterials.
然而,生物材料生物降解方法的体外和体内评估仍然是一个令人担忧的问题,因为用于评估生物降解的方法存在一些局限性。用于评估生物材料生物降解的常规体外方法包括生物材料的物理,化学和机械表征。
Biomaterial degradation can occur via three interconnected processes, and it can be assessed by monitoring these processes namely physical, chemical, and mechanical changes. Biomaterials have characteristic functional gro.
生物材料降解可以通过三个相互关联的过程发生,并且可以通过监测这些过程(即物理,化学和机械变化)来评估。生物材料具有特征性的功能gro。
Code availability
代码可用性
No codes were generated or analysed during the current study.
在当前的研究中没有生成或分析代码。
ReferencesAlexander, M. Biodegradation and bioremediation, Gulf Professional Publishing (1999).Palmese, L. L., Thapa, R. K., Sullivan, M. O. & Kiick, K. L. J. C. O. I. C. E. Hybrid hydrogels for biomedical applications. Curr. Opin. Chem. Eng. 24, 143–157 (2019).Article
参考文献Alexander,M.《生物降解与生物修复》,海湾专业出版社(1999)。Palmese,L.L.,Thapa,R.K.,Sullivan,M.O.&Kiick,K.L.J.C.O.I.C.E.用于生物医学应用的混合水凝胶。。奥平。化学。工程24143-157(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mndlovu, H. et al. Bioplatform fabrication approaches affecting chitosan-based interpolymer complex properties and performance as wound dressings. Molecules 25, 222 (2020).Article
。分子25222(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mndlovu, H. et al. Development of a fluid-absorptive alginate-chitosan bioplatform for potential application as a wound dressing. Carbohydr. Polym. 222, 114988 (2019).Article
Mndlovu,H。等人开发了一种液体吸收性藻酸盐-壳聚糖生物平台,可作为伤口敷料的潜在应用。碳水化合物。Polym公司。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ojo, O. A. et al. Nanoparticles and their biomedical applications. Biointerface Res. Appl. Chem. 11, 8431–8445 (2021).CAS
Ojo,O.A.等人,《纳米粒子及其生物医学应用》。生物界面研究应用。化学。118431–8445(2021)。中科院
Google Scholar
谷歌学者
Rezić, I. J. P. Nanoparticles for biomedical application and their synthesis. Polymers 14, 4961 (2022).Article
Rezić,I。J。P。用于生物医学应用的纳米颗粒及其合成。聚合物144961(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Szymczyk-Ziółkowska, P. et al. A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern. Biomed. Eng. 40, 624–638 (2020).Article
Szymczyk Ziółkowska,P.等人。使用增材制造技术制造生物医学应用的聚合物支架的综述。生物群落。生物医学。。文章
Google Scholar
谷歌学者
Varma, M. V., Kandasubramanian, B. & Ibrahim, S. M. 3D printed scaffolds for biomedical applications. Mater. Chem. Phys. 255, 123642 (2020).Article
Varma,M.V.,Kandasubramanian,B。&Ibrahim,S.M。用于生物医学应用的3D打印支架。。化学。物理。255123642(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Kong, B. et al. Tailoring micro/nano-fibers for biomedical applications. Bioact. Mater. 19, 328–347 (2023).CAS
Kong,B.等人。为生物医学应用定制微/纳米纤维。生物CT。。19328-347(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nair, L. S. & Laurencin, C. T. J. P. I. P. S. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007).Article
Nair,L.S。&Laurencin,C.T.J.P.I.P.S。可生物降解聚合物作为生物材料。程序。Polym公司。科学。32762-798(2007)。文章
CAS
中科院
Google Scholar
谷歌学者
Cakmak, O. K. J. C. E., Sustainability. Biodegradable polymers—a review on properties, processing, and degradation mechanism. Circ. Econ. Sustain. 4, 339–362 (2024).Article
Cakmak,O.K.J.C.E.,可持续性。生物可降解聚合物-性能,加工和降解机理的综述。保监会。经济。维持。4339-362(2024)。文章
Google Scholar
谷歌学者
Lloyd, A. W. J. M. D. T. Interfacial bioengineering to enhance surface biocompatibility. Med. Device Technol. 13, 18–21 (2002).PubMed
Lloyd,A.W.J.M.D.T.界面生物工程,以增强表面生物相容性。医疗设备技术。13,18-21(2002)。PubMed出版社
Google Scholar
谷歌学者
Mierzwa-Hersztek, M., Gondek, K., Kopeć, M. J. J. O. P. & Environment, T. Degradation of polyethylene and biocomponent-derived polymer materials: an overview. J. Polym. Environ. 27, 600–611 (2019).Article
Mierzwa Hersztek,M.,Gondek,K.,Kopeć,M。J。J。O。P。和Environment,T。聚乙烯和生物组分衍生聚合物材料的降解:概述。J、 Polym公司。环境。27600-611(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Ghaffar, A., Schoenmakers, P. & Van Der Wal, S. J. C. R. I. A. C. Methods for the chemical analysis of degradable synthetic polymeric biomaterials. Crit. Rev. Anal. Chem. 44, 23–40 (2014).Article
Ghaffar,A.,Schoenmakers,P。&Van Der Wal,S.J.C.R.I.A.C.可降解合成聚合物生物材料化学分析方法。暴击。修订版肛门。化学。44,23-40(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cordes, E. & Bull, H. J. C. R. Mechanism and catalysis for hydrolysis of acetals, ketals, and ortho esters. Chem. Rev. 74, 581–603 (1974).Article
Cordes,E。&Bull,H。J。C。R。缩醛,缩酮和邻位酯水解的机理和催化作用。化学。第74581-603版(1974年)。文章
CAS
中科院
Google Scholar
谷歌学者
Göpferich, A. J. T. B. S. J. C. Mechanisms of polymer degradation and erosion. Biomaterials: Silver Jubilee Compendium, 117–128 (1996)Shi, M. et al. Cracks outrun erosion in degradable polymers. Extrem. Mech. Lett. 40, 100978 (2020).Article
Göpferich,A.J.T.B.S.J.C.聚合物降解和侵蚀的机制。生物材料:银禧简编,117-128(1996)Shi,M。等人。可降解聚合物中的裂缝超过侵蚀。极端。机械。。40100978(2020)。文章
Google Scholar
谷歌学者
Veskova, J., Sbordone, F. & Frisch, H. Trends in polymer degradation across all scales. Macromol. Chem. Phys. 223, 2100472 (2022).Article
Veskova,J.,Sbordone,F。&Frisch,H。各种规模的聚合物降解趋势。大分子。化学。物理。2232100472(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Bartnikowski, M., Dargaville, T. R., Ivanovski, S. & Hutmacher, D. W. J. P. I. P. S. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 96, 1–20 (2019).Article
Bartnikowski,M.,Dargaville,T.R.,Ivanovski,S.&Hutmacher,D.W.J.P.I.P.S.聚己内酯在化学,几何和环境中的降解机制。程序。Polym公司。科学。96,1-20(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Basu, A. & Domb, A. J. Recent advances in polyanhydride based biomaterials. Adv. Mater. 30, 1706815 (2018).Article
Basu,A。&Domb,A.J。聚酸酐基生物材料的最新进展。高级材料。301706815(2018)。文章
Google Scholar
谷歌学者
Lin, Y., Kouznetsova, T. B. & Craig, S. L. J. J. O. T. A. C. S. Mechanically gated degradable polymers. JACS 142, 2105–2109 (2020).Article
Lin,Y.,Kouznetsova,T.B。和Craig,S.L.J.J.O.T.A.C.S。机械门控可降解聚合物。JACS 1422105–2109(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Pirsa, S. & Aghbolagh Sharifi, K. J. J. O. C. L. A review of the applications of bioproteins in the preparation of biodegradable films and polymers. J. Chem. Lett. 1, 47–58 (2020).
Pirsa,S。&Aghbolagh-Sharifi,K.J.J.O.C.L。生物蛋白在制备可生物降解薄膜和聚合物中的应用综述。J、 化学。。1,47-58(2020)。
Google Scholar
谷歌学者
Su, S. & Kang, P. M. J. N. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials 10, 656 (2020).Article
Su,S。&Kang,P。M。J。N。纳米医学中可生物降解纳米材料的系统综述。纳米材料10656(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alizadeh-Osgouei, M., Li, Y. & Wen, C. J. B. M. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact. Mater. 4, 22–36 (2019).PubMed
Alizadeh Osgouei,M.,Li,Y。&Wen,C。J。B。M。生物可降解合成聚合物-陶瓷复合材料及其生物医学应用制造的综合评论。生物CT。。4,22-36(2019)。PubMed出版社
Google Scholar
谷歌学者
Hodge, J. G., Zamierowski, D. S., Robinson, J. L. & Mellott, A. J. J. B. R. Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomater. Res. 26, 50 (2022).Article
Hodge,J.G.,Zamierowski,D.S.,Robinson,J.L。和Mellott,A.J.J.B.R。评估聚合物生物材料以改进下一代伤口敷料设计。生物计。第26、50(2022)号决议。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klimek, K. & Ginalska, G. J. P. Proteins and peptides as important modifiers of the polymer scaffolds for tissue engineering applications—a review. Polymers 12, 844 (2020).Article
Klimek,K。&Ginalska,G。J。P。蛋白质和肽作为组织工程应用聚合物支架的重要修饰剂-综述。聚合物12844(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, L., Wang, C., Wu, S., Fan, Y. & Li, X. J. B. S. Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater. Sci. 8, 2714–2733 (2020).Article
Wang,L.,Wang,C.,Wu,S.,Fan,Y.&Li,X.J.B.S.生物材料力学性能对降解性,细胞行为和信号通路的影响:当前进展和挑战。生物计。科学。82714-2733(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jana, A., Das, M. & Balla, V. K. J. J. O. B. M. R. P. A. In vitro and in vivo degradation assessment and preventive measures of biodegradable Mg alloys for biomedical applications. J. Biomed. Mater. Res. Part A 110, 462–487 (2022).Article
Jana,A.,Das,M。&Balla,V.K.J.J.O.B.M.R.P.A。用于生物医学应用的可生物降解镁合金的体外和体内降解评估和预防措施。J、 生物医学。。决议A部分110462-487(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Ye, S. et al. Evaluating platelet activation related to the degradation of biomaterials using molecular markers. Colloids Surf. B: Biointerfaces 184, 110516 (2019).Article
。胶体表面B:生物界面184110516(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, F. & King, M. W. J. A. H. M. Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Adv. Healthc. Mater. 9, 1901358 (2020).Article
Zhang,F.&King,M.W.J.A.H.M。可生物降解聚合物是组织工程支架设计中的关键参与者。健康顾问。。91901358(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Kasper, C., Witte, F. & Pörtner, R. Tissue engineering III: cell-surface interactions for tissue culture. (Springer, 2012).Amukarimi, S. & Mozafari, M. J. M. Biodegradable magnesium‐based biomaterials: an overview of challenges and opportunities. MedComm. 2, 123–144 (2021).Article
Kasper,C.,Witte,F。&Pörtner,R。组织工程III:组织培养的细胞表面相互作用。(斯普林格,2012)。Amukarimi,S。和Mozafari,M。J。M。可生物降解镁基生物材料:挑战和机遇概述。医疗通讯。2123-144(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Niu, W. & Pan, J. J. J. O. T. M. B. O. B. M. A model of polymer degradation and erosion for finite element analysis of bioresorbable implants. J. Mech. Behav. Biomed. Mater. 112, 104022 (2020).Article
Niu,W。&Pan,J。J。J。O。T。M。B。O。B。M。用于生物可吸收植入物有限元分析的聚合物降解和侵蚀模型。J、 机械。行为。生物医学。。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Woodard, L. N. & Grunlan, M. A. Hydrolytic degradation and erosion of polyester biomaterials. ACS Publications. ACS Publications. (2018).Coury, A. J. Chemical and biochemical degradation of polymers intended to be biostable. In Biomaterials Science. 4th edn, (eds Wagner, W. R., Sakiyama-Elbert, S.
Woodard,L.N。和Grunlan,M.A。聚酯生物材料的水解降解和侵蚀。ACS出版物。ACS出版物。(2018年)。Coury,A.J。旨在生物稳定的聚合物的化学和生物化学降解。在生物材料科学中。第四版(eds Wagner,W.R.,Sakiyama Elbert,S。
E., Zhang, G., & Yaszemski, M. J.) 919–940 (Academic Press, Amsterdam, The Netherlands, 2020).Kowalczuk, D. & Pitucha, M. J. M. Application of FTIR method for the assessment of immobilization of active substances in the matrix of biomedical materials. Materials 12, 2972 (2019).Article .
E、 ,Zhang,G.,&Yaszemski,M.J。)919-940(学术出版社,荷兰阿姆斯特丹,2020)。Kowalczuk,D。和Pitucha,M。J。M。FTIR方法在评估生物医用材料基质中活性物质固定化中的应用。材料122972(2019)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, J. et al. 1H-NMR-based metabolic analysis on biocompatibility of dental biomaterials. Process Biochem. 114, 163–173 (2020).Hammershøj, R., Birch, H., Redman, A. D. & Mayer, P. Mixture effects on biodegradation kinetics of hydrocarbons in surface water: Increasing concentrations inhibited degradation whereas multiple substrates did not.
Zhou,J。等。基于1H NMR的牙科生物材料生物相容性代谢分析。过程生物化学。114163-173(2020)。Hammershøj,R.,Birch,H.,Redman,A.D。&Mayer,P。混合物对地表水中碳氢化合物生物降解动力学的影响:浓度的增加抑制了降解,而多种底物则没有。
Environ. Sci. Technol. 53, 3087–3094 (2019).Article .
环境。科学。。533087-3094(2019)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Alam, R. et al. Biodegradation and metabolic pathway of anthraquinone dyes by Trametes hirsuta D7 immobilized in light expanded clay aggregate and cytotoxicity assessment. J. Hazard. Mater. 405, 124176 (2021).Article
Alam,R.等人。固定在轻质膨胀粘土聚集体中的陆地栓菌D7对蒽醌染料的生物降解和代谢途径以及细胞毒性评估。J、 。。405124176(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, L. et al. Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue. Optik 184, 324–329 (2019b).Article
Chen,L。等人。黄芩根提取物中氧化锌纳米颗粒的绿色合成及其使用亚甲基蓝的光催化降解活性。Optik 184324-329(2019b)。文章
CAS
中科院
Google Scholar
谷歌学者
Rohrer, J. S. High-performance anion-exchange chromatography with pulsed amperometric detection for carbohydrate and glycoconjugate analyses. Biochemistry 78, 697–709 (2021).Baidurah, S. J. P. Methods of analyses for biodegradable polymers: a review. Polymers 14, 4928 (2022).Article .
Rohrer,J.S。高效阴离子交换色谱法,脉冲安培检测,用于碳水化合物和糖缀合物分析。生物化学78697-709(2021)。Baidurah,S.J.P。可生物降解聚合物的分析方法:综述。聚合物144928(2022)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kliem, S., Kreutzbruck, M. & Bonten, C. J. M. Review on the biological degradation of polymers in various environments. Materials 13, 4586 (2020).Article
Kliem,S.,Kreutzbruck,M。&Bonten,C.J.M。综述聚合物在各种环境中的生物降解。材料134586(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Naghieh, S., Sarker, M., Sharma, N., Barhoumi, Z. & Chen, X. J. A. S. Printability of 3D printed hydrogel scaffolds: Influence of hydrogel composition and printing parameters. Appl. Sci. 10, 292 (2019).Article
Naghieh,S.,Sarker,M.,Sharma,N.,Barhoumi,Z.&Chen,X.J.A.S.3D打印水凝胶支架的印刷适性:水凝胶组成和印刷参数的影响。应用。科学。10292(2019)。文章
Google Scholar
谷歌学者
Lau, C. M. L., Jahanmir, G. & Chau, Y. J. A. B. Local environment-dependent kinetics of ester hydrolysis revealed by direct 1H NMR measurement of degrading hydrogels. Acta Biomater. 101, 219–226 (2020).Article
Lau,C.M.L.,Jahanmir,G。&Chau,Y.J.A.B。通过降解水凝胶的直接1H NMR测量揭示了酯水解的局部环境依赖性动力学。生物计量学报。101219-226(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yoon, D. M. & Fisher, J. P. J. B. M. Natural and synthetic polymeric scaffolds. J. Biomed. Mater. 257–283 (2021).Affat, S. S. Classifications, advantages, disadvantages, toxicity effects of natural and synthetic dyes: a review. Univ. Thi-Qar J. Sci. 8, 130–135 (2021).
Yoon,D.M。&Fisher,J.P.J.B.M。天然和合成聚合物支架。J、 生物医学。。257-283(2021)。Affat,S.S.分类,优点,缺点,天然和合成染料的毒性作用:综述。Thi Qar J.Sci大学。8130-135(2021)。
Google Scholar
谷歌学者
Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2020).Article
Li,C.等人。面向临床翻译的可生物降解植入式装置的设计。自然修订材料。5,61-81(2020)。文章
Google Scholar
谷歌学者
Samir, A., Ashour, F. H., Hakim, A. A. & Bassyouni, M. J. N. M. D. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. 6, 68 (2022).Article
Samir,A.,Ashour,F.H.,Hakim,A.A。和Bassyouni,M.J.N.M.D。可持续应用的可生物降解聚合物的最新进展。npj材料。降解。6,68(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Guo, L. et al. The role of natural polymers in bone tissue engineering. J. Control. Release 338, 571–582 (2021).Article
郭,L。等。天然聚合物在骨组织工程中的作用。控制杂志。版本338571–582(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bao, Z., Xian, C., Yuan, Q., Liu, G. & Wu, J. J. A. H. M. Natural polymer‐based hydrogels with enhanced mechanical performances: preparation, structure, and property. Adv. Healthc. Mater. 8, 1900670 (2019).Article
Bao,Z.,Xian,C.,Yuan,Q.,Liu,G。&Wu,J。J。A。H。M.具有增强机械性能的天然聚合物基水凝胶:制备,结构和性能。健康顾问。。81900670(2019)。文章
Google Scholar
谷歌学者
Si, W., Chen, Y. P., Zhang, J., Chen, Z.-Y. & Chung, H. Y. J. F. C. Antioxidant activities of ginger extract and its constituents toward lipids. Food Chem. 239, 1117–1125 (2018).Article
Si,W.,Chen,Y.P.,Zhang,J.,Chen,Z.-Y.&Chung,H.Y.J.F.C.生姜提取物及其成分对脂质的抗氧化活性。食品化学。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mendoza-Munoz, N. et al. Solid lipid nanoparticles: an approach to improve oral drug delivery. J. Pharm. Pharm. Sci. 24, 509–532 (2021).Article
Mendoza-Munoz,N.等人。固体脂质纳米粒:改善口服药物递送的方法。J、 药学科学。24509-532(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. & Mahanti, N. K. Application of biodegradable polymers in food packaging industry: a comprehensive review. J. Packag. Technol. Res. 3, 77–96 (2019).Article
Mangaraj,S.,Yadav,A.,Bal,L.M.,Dash,S。&Mahanti,N.K。可生物降解聚合物在食品包装工业中的应用:全面综述。J、 。技术。第3、77-96号决议(2019年)。文章
Google Scholar
谷歌学者
Walker, J. et al. In vitro degradation and erosion behavior of commercial PLGAs used for controlled drug delivery. Drug Deliv. Transl. Res. 13, 237–251 (2023).Article
Walker,J.等人。用于控制药物递送的商业PLGA的体外降解和侵蚀行为。药物输送。翻译。第13237-251号决议(2023年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shaikh, S., Yaqoob, M. & Aggarwal, P. J. C. R. I. F. S. An overview of biodegradable packaging in food industry. Curr. Res. Food Sci. 4, 503–520 (2021).Article
Shaikh,S.,Yaqoob,M。&Aggarwal,P.J.C.R.I.F.S。食品工业中可生物降解包装的概述。。Res.食品科学。4503-520(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chocholata, P. et al. In situ hydroxyapatite synthesis enhances biocompatibility of PVA/HA hydrogels. Int. J. Mol. Sci. 22, 9335 (2021).Article
Chocholata,P。等人。原位羟基磷灰石合成增强PVA/HA水凝胶的生物相容性。Int.J.Mol.Sci。229335(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bashir, S. et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers 12, 2702 (2020).Article
Bashir,S.等人。水凝胶的基本概念:合成,性质及其应用。聚合物122702(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hosseini, S. S., Taheri, S., Zadhoush, A. & Mehrabani‐Zeinabad, A. J. J. O. A. P. S. Hydrolytic degradation of poly (ethylene terephthalate). J. Appl. Polym. Sci. 103, 2304–2309 (2007).Article
Hosseini,S.S.,Taheri,S.,Zadhoush,A.&Mehrabani-Zeinabad,A.J.J.O.A.P.S.聚对苯二甲酸乙二醇酯的水解降解。J、 应用。Polym公司。科学。1032304-2309(2007)。文章
CAS
中科院
Google Scholar
谷歌学者
Xu, L., Crawford, K. & Gorman, C. B. J. M. Effects of temperature and pH on the degradation of poly (lactic acid) brushes. Macromolecules 44, 4777–4782 (2011).Article
Xu,L.,Crawford,K。&Gorman,C.B.J.M。温度和pH值对聚(乳酸)刷降解的影响。大分子444777–4782(2011)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhuo, S. et al. pH-sensitive biomaterials for drug delivery. Molecules 25, 5649 (2020).Article
Zhuo,S.等人。用于药物递送的pH敏感生物材料。分子255649(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Juuti, H. et al. The effect of pH on the degradation of biodegradable poly (L-lactide-co-glycolide) 80/20 urethral stent material in vitro. J. Endourol. 26, 701–705 (2012).Article
Juuti,H。等人。pH值对可生物降解聚(L-丙交酯-共-乙交酯)80/20尿道支架材料体外降解的影响。J、 Endourol。26701-705(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, L. et al. Biomechanical studies on biomaterial degradation and co-cultured cells: mechanisms, potential applications, challenges and prospects. J. Mater. Chem. B 7, 7439–7459 (2019).Article
Wang,L.等人。生物材料降解和共培养细胞的生物力学研究:机制,潜在应用,挑战和前景。J、 马特。化学。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zheng, B., Zhang, Z., Chen, F., Luo, X. & Mcclements, D. J. J. F. H. Impact of delivery system type on curcumin stability: Comparison of curcumin degradation in aqueous solutions, emulsions, and hydrogel beads. Int. Food Res. J. 71, 187–197 (2017).CAS
Zheng,B.,Zhang,Z.,Chen,F.,Luo,X.&Mcclements,D.J.J.F.H.递送系统类型对姜黄素稳定性的影响:姜黄素在水溶液,乳液和水凝胶珠中降解的比较。《国际食品研究杂志》71187-197(2017)。中科院
Google Scholar
谷歌学者
Wach, R. A., Mitomo, H., Yoshii, F. & Kume, T. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives. No. JAERI-CONF--2001-005. (2001)Nagasawa, N., Mitomo, H., Yoshii, F. & Kume, T. Radiation-induced degradation of sodium alginate. Polym. Degrad. Stab. 69, 279–285 (2000).Article .
Wach,R.A.,Mitomo,H.,Yoshii,F。&Kume,T。纤维素衍生物生物可降解聚合物水凝胶的辐射加工。编号:JAERI-CONF——2001-005。(2001)Nagasawa,N.,Mitomo,H.,Yoshii,F。&Kume,T。辐射诱导的海藻酸钠降解。Polym公司。降解。刺。69279-285(2000)。文章。
CAS
中科院
Google Scholar
谷歌学者
Kumar, P., Pillay, V. & Choonara, Y. E. J. S. R. Macroporous chitosan/methoxypoly (ethylene glycol) based cryosponges with unique morphology for tissue engineering applications. Sci. Rep. 11, 1–20 (2021).
Kumar,P.,Pillay,V。&Choonara,Y。E。J。S。R。大孔壳聚糖/甲氧基聚(乙二醇)基冷冻海绵,具有独特的形态,可用于组织工程应用。科学。代表11,1-20(2021)。
Google Scholar
谷歌学者
Terzopoulou, Z. et al. Biocompatible synthetic polymers for tissue engineering purposes. Biomacromolecules 23, 1841–1863 (2022).Article
Terzopoulou,Z.等人。用于组织工程目的的生物相容性合成聚合物。生物大分子231841-1863(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dirauf, M., Muljajew, I., Weber, C. & Schubert, U. S. J. P. I. P. S. Recent advances in degradable synthetic polymers for biomedical applications‐Beyond polyesters. Prog. Polym. Sci. 129, 101547 (2022).Article
Dirauf,M.,Muljajew,I.,Weber,C。&Schubert,U.S.J.P.I.P.S。用于生物医学应用的可降解合成聚合物的最新进展-超越聚酯。程序。Polym公司。科学。129101547(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Pantani, R., Sorrentino, A. J. P. D. & Stability. Influence of crystallinity on the biodegradation rate of injection-moulded poly (lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 98, 1089–1096 (2013).Article
Pantani,R.,Sorrentino,A.J.P.D.&稳定性。结晶度对受控堆肥条件下注射成型聚乳酸样品生物降解速率的影响。Polym公司。降解。刺。981089-1096(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
Domb, A. J. & Khan, W. Biodegradable polymers as drug carrier systems. Biomedical Polymers. CRC Press (2020).Antti, G., Pentti, P. & Hanna, K. J. U. S. Ultrasonic degradation of aqueous carboxymethylcellulose: effect of viscosity, molecular mass, and concentration. Ultrason. Sonochem.
Domb,A.J。&Khan,W。可生物降解聚合物作为药物载体系统。生物医学聚合物。CRC出版社(2020年)。Antti,G.,Pentti,P。&Hanna,K。J。U。S。羧甲基纤维素水溶液的超声波降解:粘度,分子量和浓度的影响。超声波。Sonochem公司。
15, 644–648 (2008).Article .
15644-648(2008)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Smith, R. C., Leung, A., Kim, B.-S. & Hammond, P. T. J. C. O. M. Hydrophobic effects in the critical destabilization and release dynamics of degradable multilayer films. Chem. Mater. 21, 1108–1115 (2009).Article
Smith,R.C.,Leung,A.,Kim,B.-S.&Hammond,P.T.J.C.O.M。可降解多层膜临界失稳和释放动力学中的疏水效应。化学。。211108-1115(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lei, H. et al. Ester bond: chemically labile yet mechanically stable. ACS Nano 17, 16870–16878 (2023a).Article
Lei,H。等人。酯键:化学不稳定但机械稳定。ACS Nano 1716870–16878(2023a)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhong, Z. et al. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s. J. Control. Release 109, 317–329 (2005).Article
Zhong,Z.等人。基于超支化聚(酯胺)s.J.对照的多功能可降解非病毒基因载体家族。发布109317–329(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Von Burkersroda, F., Schedl, L. & Göpferich, A. J. B. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23, 4221–4231 (2002).Article
Von Burkersroda,F.,Schedl,L。&Göpferich,A.J.B。为什么可降解聚合物会发生表面侵蚀或本体侵蚀。生物材料234221-4231(2002)。文章
Google Scholar
谷歌学者
Chen, C. et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Biomaterials 221, 119414 (2019a).Article
Chen,C.等人。通过形状优化策略设计的可生物降解镁血管支架的体内和体外评估。生物材料221119414(2019a)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grzebieniarz, W., Biswas, D., Roy, S., Jamróz, E. J. F. P. & Life, S. Advances in biopolymer-based multi-layer film preparations and food packaging applications. Food Packag. Shelf Life 35, 101033 (2023).Article
Grzebieniarz,W.,Biswas,D.,Roy,S.,Jamróz,E。J。F。P。和Life,S。基于生物聚合物的多层薄膜制剂和食品包装应用的进展。食品包装。保质期35101033(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Zadpoor, A. A. J. B. S. Meta-biomaterials. Biomater. Sci. 8, 18–38 (2020).Article
Zadpoor,A.A.J.B.S.Meta生物材料。生物物质。Sci。8, 18-38 (2020).文章
CAS
中科院
Google Scholar
谷歌学者
Chen, W., Palazzo, A., Hennink, W. E. & Kok, R. J. J. M. P. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol. Pharm. 14, 459–467 (2017).Article
Chen,W.,Palazzo,A.,Hennink,W.E.&Kok,R.J.J.M.P.粒径对载吉非替尼PLGA微球载药和释放动力学的影响。Mol.Pharm.14459-467(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lucas, N. et al. Polymer biodegradation: mechanisms and estimation techniques–a review. Chemosphere 73, 429–442 (2008).Article
Lucas,N.等人,《聚合物生物降解:机理和估算技术——综述》。化学圈73429-442(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yang, G., Phua, S. Z. F., Bindra, A. K. & Zhao, Y. J. A. M. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv. Mater. 31, 1805730 (2019).Article
Yang,G.,Phua,S.Z.F.,Bindra,A.K。&Zhao,Y.J.A.M。用于生物医学应用的无机纳米颗粒的降解性和清除率。高级材料。311805730(2019)。文章
Google Scholar
谷歌学者
Loh, X. J., Goh, S. H. & Li, J. J. B. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly [(R)-3-hydroxybutyrate], poly (ethylene glycol), and poly (propylene glycol). Biomaterials 28, 4113–4123 (2007).Article
Loh,X.J.,Goh,S.H。&Li,J.J.B。由聚[(R)-3-羟基丁酸酯],聚(乙二醇)和聚(丙二醇)组成的热凝胶聚氨酯共聚物的水解降解和蛋白质释放研究。生物材料284113-4123(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Assegehegn, G., Brito-De La Fuente, E., Franco, J. M. & Gallegos, C. J. J. O. P. S. The importance of understanding the freezing step and its impact on freeze-drying process performance. J. Pharm. Sci. 108, 1378–1395 (2019).Article
Assegehegn,G.,Brito De La Fuente,E.,Franco,J.M。&Gallegos,C.J.J.O.P.S。了解冷冻步骤的重要性及其对冷冻干燥过程性能的影响。J、 药物科学。1081378-1395(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gaidhani, K. A., Harwalkar, M., Bhambere, D. & Nirgude, P. S. J. W. J. O. P. R. Lyophilization/freeze drying–a review. World J. Pharm. Res. 4, 516–543 (2015).CAS
Gaidhani,K.A.,Harwalkar,M.,Bhambere,D。和Nirgude,P.S.J.W.J.O.P.R。冻干/冷冻干燥-综述。《世界药学杂志》第4516-543号(2015年)。中科院
Google Scholar
谷歌学者
Hazarika, U. & Gosztola, B. J. A. S. P. T. A. Lyophilization and its effects on the essential oil content and composition of herbs and spices–a review. Acta Sci. Pol. Technol. Aliment. 19, 467–473 (2020).CAS
Hazarika,U.&Gosztola,B.J.A.S.P.T.A.冻干及其对草药和香料精油含量和组成的影响-综述。科学学报。波尔。技术。。19467-473(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, X., Li, Y., Ma, Z., He, D. & Li, H. J. B. M. Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioact. Mater. 6, 3692–3704 (2021).CAS
Zhang,X.,Li,Y.,Ma,Z.,He,D。&Li,H.J.B.M。调节海藻酸钠/生物玻璃水凝胶的降解以改善组织浸润并促进伤口愈合。生物CT。。。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mylonaki, I., Allémann, E., Delie, F. & Jordan, O. J. J. O. C. R. Imaging the porous structure in the core of degrading PLGA microparticles: the effect of molecular weight. J. Control. Release 286, 231–239 (2018).Article
Mylonaki,I.,Allémann,E.,Delie,F.&Jordan,O.J.J.O.C.R.对降解PLGA微粒核心中的多孔结构进行成像:分子量的影响。J、 控制。版本286231-239(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, S. et al. Degradation behavior in vitro of carbon nanotubes (CNTs)/poly (lactic acid)(PLA) composite suture. Polymers 11, 1015 (2019).Article
Liu,S.等人。碳纳米管(CNTs)/聚乳酸(PLA)复合缝合线的体外降解行为。聚合物111015(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ahire, J. J., Neppalli, R., Heunis, T. D., Van Reenen, A. J. & Dicks, L. M. J. C. M. 2, 3-dihydroxybenzoic acid electrospun into poly (d, l-lactide)(PDLLA)/poly (ethylene oxide)(PEO) nanofibers inhibited the growth of Gram-positive and Gram-negative bacteria. Curr. Microbiol. 69, 587–593 (2014).Article .
Ahire,J.J.,Neppalli,R.,Heunis,T.D.,Van Reenen,A.J.&Dicks,L.M.J.C.M.2,3-二羟基苯甲酸电纺成聚(D,L-丙交酯)(PDLLA)/聚(环氧乙烷)(PEO)纳米纤维抑制革兰氏阳性菌和革兰氏阴性菌的生长。。69587-593(2014)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Biondi, M. et al. Bioactivated collagen-based scaffolds embedding protein-releasing biodegradable microspheres: tuning of protein release kinetics. J. Mater. Sci.: Mater. Med. 20, 2117–2128 (2009).CAS
Biondi,M.等人。嵌入蛋白质释放可生物降解微球的生物活化胶原基支架:蛋白质释放动力学的调节。J、 马特。科学:。医学杂志202117-2128(2009)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jiang, K., Shen, M. & Xu, W. J. I. J. O. N. Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. Int. J. Nanomed. 13, 2561 (2018).Article
Jiang,K.,Shen,M。&Xu,W。J。I。J。O。N。精氨酸,甘氨酸,天冬氨酸肽修饰的紫杉醇和姜黄素共载脂质体治疗肺癌:体外/体内评估。内景J.Nanomed。132561(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Du Toit, L. C. et al. In vitro, in vivo, and in silico evaluation of the bioresponsive behavior of an intelligent intraocular implant. Pharm. Res. 31, 607–634 (2014).Article
Du Toit,L.C.等人对智能眼内植入物的生物反应行为进行了体外,体内和计算机评估。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kumar, P., Choonara, Y. E., Du Toit, L. C., Singh, N. & Pillay, V. J. P. In vitro and in silico analyses of nicotine release from a gelisphere-loaded compressed polymeric matrix for potential Parkinson’s disease interventions. Pharmaceutics 10, 233 (2018).Article
。Pharmaceutics 10233(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Omranian, S. R. et al. Assessing the potential of application of titanium dioxide for photocatalytic degradation of deposited soot on asphalt pavement surfaces. Constr. Build. Mater. 350, 128859 (2022).Article
Omranian,S.R.等人,评估二氧化钛应用于光催化降解沥青路面表面沉积的烟尘的潜力。。构建。。350128859(2022)。文章
Google Scholar
谷歌学者
Franck, A. & Germany, T. J. T. I. New Castle, DE, USA An004 viscoelasticity and dynamic mechanical testing. TA Instruments, New Castle, DE, USA AN004 (1993).Datta, D., Halder, G. J. P. S. & Protection, E. Effect of media on degradability, physico-mechanical and optical properties of synthesized polyolefinic and PLA film in comparison with casted potato/corn starch biofilm.
Franck,A.&Germany,T.J.T.I.New Castle,DE,USA An004粘弹性和动态力学测试。TA Instruments,New Castle,DE,USA AN004(1993)。Datta,D.,Halder,G。J。P。S。&Protection,E。与浇铸马铃薯/玉米淀粉生物膜相比,培养基对合成聚烯烃和PLA膜的降解性,物理机械和光学性质的影响。
Process Saf. Environ. Prot. 124, 39–62 (2019).Article .
过程安全。环境。保护。124,39-62(2019)。文章。
CAS
中科院
Google Scholar
谷歌学者
Maurya, A. K., De Souza, F. M., Dawsey, T. & Gupta, R. K. J. P. C. Biodegradable polymers and composites: recent development and challenges. Polym. Compos. 45, 2896–2918 (2024).Article
Maurya,A.K.,De Souza,F.M.,Dawsey,T。&Gupta,R.K.J.P.C。生物可降解聚合物和复合材料:最新发展和挑战。Polym公司。Compos公司。452896-2918(2024)。文章
CAS
中科院
Google Scholar
谷歌学者
Tibbitt, M. W., Kloxin, A. M., Sawicki, L. A. & Anseth, K. S. J. M. Mechanical properties and degradation of chain and step-polymerized photodegradable hydrogels. Macromolecules 46, 2785–2792 (2013).Article
Tibbitt,M.W.,Kloxin,A.M.,Sawicki,L.A。&Anseth,K.S.J.M。链和分步聚合的光降解水凝胶的机械性能和降解。大分子462785-2792(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Adib, A. A. et al. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering. Biofabrication 12, 045006 (2020).Article
Adib,A.A.等人,《用于体内组织工程的基于GelMA的生物材料的直写3D打印和表征》。生物制造12045006(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Parlato, M., Reichert, S., Barney, N. & Murphy, W. L. J. M. B. Poly (ethylene glycol) hydrogels with adaptable mechanical and degradation properties for use in biomedical applications. Macromol. Biosci. 14, 687–698 (2014).Article
Parlato,M.,Reichert,S.,Barney,N。&Murphy,W.L.J.M.B。聚(乙二醇)水凝胶具有适应性的机械和降解性能,用于生物医学应用。大分子。生物科学。14687-698(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Augustine, R., Kalarikkal, N. & Thomas, S. Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. J. Polym. Mater. Polym. Biomater. 65, 28–37 (2016).Article
Augustine,R.,Kalarikkal,N。&Thomas,S。氧化锌纳米颗粒对模拟体液中电纺聚己内酯膜体外降解的影响。J、 Polym公司。。Polym公司。生物计。65,28-37(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Hong, Y. et al. Tailoring the degradation kinetics of poly (ester carbonate urethane) urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31, 4249–4258 (2010).Article
Hong,Y.等人。为组织工程支架定制聚(酯碳酸酯-聚氨酯)脲热塑性弹性体的降解动力学。生物材料314249-4258(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, B., Martín, C., Kurapati, R. & Bianco, A. J. C. S. R. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chem. Soc. Rev. 49, 6224–6247 (2020).Article
Ma,B.,Martín,C.,Kurapati,R。&Bianco,A.J.C.S.R。设计降解:化学官能化如何增强2D材料的生物降解性和安全性。化学。Soc.Rev.496224–6247(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Martín, C., Kostarelos, K., Prato, M. & Bianco, A. J. C. C. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chem. Commun. 55, 5540–5546 (2019).Article
Martín,C.,Kostarelos,K.,Prato,M。&Bianco,A.J.C.C。2D材料的生物相容性和生物降解性:石墨烯及其后。化学。Commun公司。555540-5546(2019)。文章
Google Scholar
谷歌学者
Li, Y. et al. Surface coating‐dependent cytotoxicity and degradation of graphene derivatives: towards the design of non‐toxic, degradable nano‐graphene. Small 10, 1544–1554 (2014).Article
Li,Y.等人。石墨烯衍生物的表面涂层依赖性细胞毒性和降解:走向无毒,可降解的纳米石墨烯的设计。小型101544-1554(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Prabhakar, R. L., Brocchini, S. & Knowles, J. C. J. B. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass—polycaprolactone composites. Biomaterials 26, 2209–2218 (2005).Article
Prabhakar,R.L.,Brocchini,S.&Knowles,J.C.J.B.玻璃成分对磷酸盐-玻璃-聚己内酯复合材料降解性能和离子释放特性的影响。生物材料262209-2218(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, L. et al. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials 33, 2734–2745 (2012).Article
Zhou,L.等人。pH敏感的可生物降解聚氨酯的降解和生物相容性,用于细胞内多功能抗肿瘤药物递送。生物材料332734-2745(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aduba, D. C. Jr et al. Vat photopolymerization 3D printing of acid-cleavable PEG-methacrylate networks for biomaterial applications. J. Mater. Today Commun. 19, 204–211 (2019).Article
Aduba,D.C.Jr等人。用于生物材料应用的酸可裂解PEG-甲基丙烯酸酯网络的还原光聚合3D打印。J、 马特。今天是Commun。19204-211(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Vanrolleghem, P. A. Published. Principles of respirometry in activated sludge wastewater treatment. Proceedings International Workshop on Recent Development in Respirometry for Wastewater Treatment Plant Monitoring and Control. Taiwan: Taipei (2002).Reisman, L. et al. Respirometry and cell viability studies for sustainable polyesters and their hydrolysis products.
Vanrolleghem,P.A。出版。活性污泥废水处理中的呼吸测定原理。污水处理厂监测和控制呼吸计量学最新发展国际研讨会论文集。。Reisman,L.等人。可持续聚酯及其水解产物的呼吸测定和细胞活力研究。
ACS Sustain. Chem. Eng. 9, 2736–2744 (2021).Article .
ACS维持。化学。工程92736-2744(2021)。文章。
CAS
中科院
Google Scholar
谷歌学者
Lueckgen, A. et al. Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration. Biomaterials 217, 119294 (2019).Article
Lueckgen,A。等人。酶促降解藻酸盐水凝胶促进细胞扩散和体内组织浸润。生物材料217119294(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Magnin, A., Pollet, E., Phalip, V. & Avérous, L. J. B. A. Evaluation of biological degradation of polyurethanes. Biotechnol. Adv. 39, 107457 (2020).Article
Magnin,A.,Pollet,E.,Phalip,V。&Avérous,L.J.B.A。聚氨酯生物降解的评估。生物技术。Adv.39107457(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bitter, T. J. A. B. A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962).Article
Bitter,T.J.A.B。一种改进的糖醛酸-咔唑反应。肛门。生物化学。4330-334(1962)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jeon, O. et al. Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydr. Polym. 70, 251–257 (2007).Article
Jeon,O.等人。在不同交联密度下交联的透明质酸水凝胶的力学性能和降解行为。碳水化合物。Polym公司。70251-257(2007)。文章
CAS
中科院
Google Scholar
谷歌学者
Necas, J., Bartosikova, L., Brauner, P. & Kolar, J. J. V. M. Hyaluronic acid (hyaluronan): a review. Vet. Med. 53, 397–411 (2008).Article
。兽医。医学53397-411(2008)。文章
CAS
中科院
Google Scholar
谷歌学者
Wu, W. et al. Formation and degradation tracking of a composite hydrogel based on UCNPs@ PDA. Macromolecules 53, 2430–2440 (2020).Article
Wu,W。等人。基于UCNPs@PDA的复合水凝胶的形成和降解跟踪。大分子532430–2440(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Chen, X. et al. Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri‐modal bioimaging. Small Methods 4, 2000310 (2020).Article
Chen,X。等人。使用三模式生物成像可视化可注射和热敏水凝胶的体内进化。小方法4200310(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Dong, X. et al. Thermosensitive porphyrin-incorporated hydrogel with four-arm PEG-PCL copolymer (II): doxorubicin loaded hydrogel as a dual fluorescent drug delivery system for simultaneous imaging tracking in vivo. Drug Deliv. 24, 641–650 (2017).Article
Dong,X。等人。具有四臂PEG-PCL共聚物的热敏卟啉掺入水凝胶(II):负载阿霉素的水凝胶作为双荧光药物递送系统,用于体内同时成像追踪。药物输送。24641-650(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, S. H. et al. NIR fluorescence for monitoring in vivo scaffold degradation along with stem cell tracking in bone tissue engineering. J. Biomater. 258, 120267 (2020).Article
Kim,S.H.等人。用于监测体内支架降解的NIR荧光以及骨组织工程中的干细胞追踪。J。Biomater。258120267(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Lei, X. et al. Biodegradable polyurethane scaffolds in regeneration therapy: characterization and in vivo real-time degradation monitoring by grafted fluorescent tracer. ACS Appl. Mater. Interfaces 16, 111–126 (2023b).Article
Lei,X。等人。再生疗法中的可生物降解聚氨酯支架:通过接枝荧光示踪剂进行表征和体内实时降解监测。ACS应用。。接口16111-126(2023b)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Achanta, P. S. et al. Quantum mechanical NMR full spin analysis in pharmaceutical identity testing and quality control. J. Pharm. Biomed. Anal. 192, 113601 (2021).Article
Achanta,P.S.等人。药物特性测试和质量控制中的量子力学NMR全自旋分析。J、 生物医学药学。肛门。192113601(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saalwächter, K. Applications of NMR in polymer characterization–an introduction. RSC, (2019).Li, M., Xu, W. & Su, Y. J. T. T. I. A. C. Solid-state NMR spectroscopy in pharmaceutical sciences. TrAC Trends Anal. Chem. 135, 116152 (2021).Article
Saalwächter,K。核磁共振在聚合物表征中的应用-简介。RSC,(2019)。Li,M.,Xu,W.&Su,Y.J.T.T.I.A.C。药物科学中的固态NMR光谱。TrAC趋势分析。化学。135116152(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Rosato, A. et al. Enzymatic degradation of the most common aliphatic bio-polyesters and evaluation of the mechanisms involved: an extended study. Polymers 14, 1850 (2022).Article
Rosato,A。等人。最常见的脂肪族生物聚酯的酶促降解和所涉及机制的评估:扩展研究。聚合物141850(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hosseini Chenani, F. et al. Green synthesis and characterization of poly (glycerol‐azelaic acid) and its nanocomposites for applications in regenerative medicine. J. Appl. Polym. Sci. 138, 50563 (2021).Article
Hosseini-Chenani,F。等人。用于再生医学的聚(甘油-壬二酸)及其纳米复合材料的绿色合成和表征。J、 应用。Polym公司。科学。13850563(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Maggio, R. M., Calvo, N. L., Vignaduzzo, S. E. & Kaufman, T. S. Pharmaceutical impurities and degradation products: uses and applications of NMR techniques. J. Pharm. Biomed. Anal. 101, 102–122 (2014).Article
Maggio,R.M.,Calvo,N.L.,Vignaduzzo,S.E。&Kaufman,T.S。药物杂质和降解产物:NMR技术的用途和应用。J、 生物医学药学。肛门。101102-122(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Barth, H. G. Chromatography fundamentals, part IX: light scattering detectors for size-exclusion chromatography. LC-GC North Am. 38, 569–576 (2020).CAS
Barth,H.G.色谱基本原理,第九部分:尺寸排阻色谱的光散射检测器。LC-GC North Am.38569–576(2020)。中科院
Google Scholar
谷歌学者
Metarapi, D., ŠAla, M., Vogel-Mikuš, K., ŠElih, V. S. & Van Elteren, J. T. J. A. C. Nanoparticle analysis in biomaterials using laser ablation− single particle− inductively coupled plasma mass spectrometry. Anal. Chem. 91, 6200–6205 (2019).Article
Metarapi,D.,ŠAla,M.,Vogel-Mikuš,K.,ŠElih,V.S.&Van Elteren,J.T.J.A.C.使用激光消融-单粒子-电感耦合等离子体质谱法对生物材料中的纳米粒子进行分析。肛门。化学。916200–6205(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, J., Li, Z. & Zhu, H. J. A. C. B. E. Adsorption and photocatalytic degradation of sulfamethoxazole by a novel composite hydrogel with visible light irradiation. Appl. Catal. B: Environ. 217, 603–614 (2017).Article
Yang,J.,Li,Z.&Zhu,H.J.A.C.B.E.新型复合水凝胶在可见光照射下对磺胺甲恶唑的吸附和光催化降解。应用。加泰罗尼亚。B: 环境。217603-614(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Jiang, H. et al. Biomaterial-based metal-phthalocyanine/metal oxide microspheres for photocatalytic degradation of organic pollutants under visible light. Colloids Surf. A: Physicochem. Eng. Asp. 675, 132051 (2023).Article
Jiang,H.等人。基于生物材料的金属酞菁/金属氧化物微球,用于可见光下光催化降解有机污染物。胶体表面A:物理化学。工程Asp。675132051(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Van Hove, A. H., Beltejar, M.-J. G. & Benoit, D. S. J. B. Development and in vitro assessment of enzymatically-responsive poly (ethylene glycol) hydrogels for the delivery of therapeutic peptides. Biomaterials 35, 9719–9730 (2014).Article
Van Hove,A.H.,Beltejar,M.-J.G.&Benoit,D.S.J.B.用于递送治疗性肽的酶响应性聚乙二醇水凝胶的开发和体外评估。生物材料359719-9730(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hendrickson, J. J. J. O. A. P. S. Basic gel‐permeation chromatography studies. I. Polymer degradation. J. Appl. Polym. Sci. 11, 1419–1430 (1967).Article
Hendrickson,J.J.J.O.A.P.S.基本凝胶渗透色谱研究。一、 聚合物降解。J、 应用。Polym公司。科学。。文章
CAS
中科院
Google Scholar
谷歌学者
Rydholm, A. E., Held, N. L., Bowman, C. N. & Anseth, K. S. J. M. Gel permeation chromatography characterization of the chain length distributions in thiol− acrylate photopolymer networks. Macromolecules 39, 7882–7888 (2006).Article
Rydholm,A.E.,Hold,N.L.,Bowman,C.N。&Anseth,K.S.J.M。凝胶渗透色谱法表征巯基丙烯酸酯光聚合物网络中链长分布。大分子397882-7888(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tawagi, E., Vollett, K. D., Szulc, D. A., Santerre, J. P. & Cheng, H. L. M. J. J. O. M. R. I. In vivo MRI tracking of degradable polyurethane hydrogel degradation in situ using a manganese porphyrin contrast agent. J. Magn. Reson. Imaging 58, 1139–1150 (2023).Article
Tawagi,E.,Vollett,K.D.,Szulc,D.A.,Santerre,J.P.&Cheng,H.L.M.J.J.O.M.R.I.使用锰卟啉造影剂原位降解可降解聚氨酯水凝胶的体内MRI追踪。J、 马格纳。雷森。成像581139-1150(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Van Geuns, R.-J. M. et al. Basic principles of magnetic resonance imaging. Prog. Cardiovasc. Dis. 42, 149–156 (1999).Article
。程序。心血管。Dis。42149-156(1999)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wallyn, J., Anton, N., Akram, S. & Vandamme, T. F. J. P. R. Biomedical imaging: principles, technologies, clinical aspects, contrast agents, limitations and future trends in nanomedicines. Pharm. Res. 36, 1–31 (2019).Article
Wallyn,J.,Anton,N.,Akram,S.&Vandamme,T.F.J.P.R。生物医学成像:纳米医学的原理,技术,临床方面,造影剂,局限性和未来趋势。《药学》第36号决议,第1-31页(2019年)。文章
CAS
中科院
Google Scholar
谷歌学者
Grover, V. P. et al. Magnetic resonance imaging: principles and techniques: lessons for clinicians. J. Clin. Exp. Hepatol. 5, 246–255 (2015).Article
Grover,V.P.等人,《磁共振成像:原理和技术:临床医生的课程》。J、 。实验肝病。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hamideh, R. A. et al. Biodegradable MRI visible drug eluting stent reinforced by metal organic frameworks. Adv. Healthc. Mater. 9, 2000136 (2020).Article
Hamideh,R.A.等人。金属有机骨架增强的可生物降解MRI可见药物洗脱支架。健康顾问。。92000136(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Shazeeb, M. S. et al. Assessment of in vivo degradation profiles of hyaluronic acid hydrogels using temporal evolution of chemical exchange saturation transfer (CEST) MRI. Biomaterials 178, 326–338 (2018).Article
Shazeeb,M.S.等人,《使用化学交换饱和转移(CEST)MRI的时间演变评估透明质酸水凝胶的体内降解曲线》,《生物材料》178326–338(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yaşayan, G., Karaca, G., Akgüner, Z. P., Bal Öztürk, A. J. I. J. O. P. M. & Biomaterials, P. Chitosan/collagen composite films as wound dressings encapsulating allantoin and lidocaine hydrochloride. J. Polym. Mater. Polym. Biomater. 70, 623–635 (2021).Article
。J、 Polym公司。。Polym公司。生物计。70623-635(2021)。文章
Google Scholar
谷歌学者
Kostka, L. et al. HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials 235, 119728 (2020).Article
Kostka,L。等人。基于HPMA的星形聚合物生物材料,具有可调节的结构和可生物降解性,适用于向实体瘤的晚期药物递送。生物材料235119728(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Al-Sibani, M., Al-Harrasi, A. & Neubert, R. H. H. Evaluation of in-vitro degradation rate of hyaluronic acid-based hydrogel cross-linked with 1, 4-butanediol diglycidyl ether (BDDE) using RP-HPLC and UV–Vis spectroscopy. J. Drug. Deliv. Sci. Technol. 29, 24–30 (2015).Article
Al Sibani,M.,Al Harrasi,A。&Neubert,R.H.H。使用RP-HPLC和UV-Vis光谱评估与1,4-丁二醇二缩水甘油醚(BDDE)交联的透明质酸水凝胶的体外降解速率。J、 药物。交付。科学。技术。29,24-30(2015)。文章
CAS
中科院
Google Scholar
谷歌学者
Mariana, F. et al. Isothermal titration calorimetry—a new method for the quantification of microbial degradation of trace pollutants. J. Microbiol. Methods 82, 42–48 (2010).Article
Mariana,F.等人。等温滴定量热法——一种定量微生物降解痕量污染物的新方法。J、 微生物。方法82,42-48(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gudeangadi, P. G. et al. Poly (alanine-nylon-alanine) as a bioplastic: chemoenzymatic synthesis, thermal properties and biological degradation effects. Polym. Chem. 11, 4920–4927 (2020).Article
Gudeangadi,P.G.等人。聚(丙氨酸-尼龙-丙氨酸)作为生物塑料:化学酶合成,热性能和生物降解效应。Polym公司。化学。114920-4927(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Li, D. et al. Effect of polymer topology and residue chirality on biodegradability of polypeptide hydrogels. ACS Biomater. Sci. Eng. 8, 626–637 (2022).Article
Li,D。等人。聚合物拓扑结构和残基手性对多肽水凝胶生物降解性的影响。ACS生物计。科学。工程8626-637(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mukherjee, S., Ray, S. & Thakur, R. J. I. J. O. P. S. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 71, 349 (2009).Article
Mukherjee,S.,Ray,S。&Thakur,R.J.I.J.O.P.S。固体脂质纳米颗粒:药物递送系统中的现代制剂方法。印度J.Pharm.Sci。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gentile, P., Chiono, V., Carmagnola, I. & Hatton, P. V. J. I. J. O. M. S. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15, 3640–3659 (2014).Article
Gentile,P.,Chiono,V.,Carmagnola,I。&Hatton,P.V.J.I.J.O.M.S。基于聚(乳酸-共-乙醇酸)的骨组织工程生物材料概述。Int.J.Mol.Sci。153640–3659(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ghanbarzadeh, B. & Almasi, H. Biodegradable Polymers. Biodegradation - Life of Science. InTech. Available at: https://doi.org/10.5772/56230.Teodorescu, M., Bercea, M. & Morariu, S. J. P. R. Biomaterials of poly (vinyl alcohol) and natural polymers. Polym. Rev. 58, 247–287 (2018).Article .
Ghanbarzadeh,B。&Almasi,H。可生物降解聚合物。生物降解-科学的生命。因泰克。网址:https://doi.org/10.5772/56230.Teodorescu,M.,Bercea,M。&Morariu,S.J.P.R。聚乙烯醇和天然聚合物的生物材料。Polym公司。第58247-287版(2018)。文章。
CAS
中科院
Google Scholar
谷歌学者
Fahmy, A. et al. Poly (vinyl alcohol)-hyaluronic acid membranes for wound dressing applications: synthesis and in vitro bio-evaluations. J. Braz. Chem. Soc. 26, 1466–1474 (2015).CAS
Fahmy,A。等人。用于伤口敷料应用的聚乙烯醇-透明质酸膜:合成和体外生物评估。J、 钎焊。化学。Soc.261466–1474(2015)。中科院
Google Scholar
谷歌学者
Ogueri, K. S., Jafari, T., Escobar Ivirico, J. L., Laurencin, C. T. J. R. E. & Medicine, T. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen. Eng. Transl. Med. 5, 128–154 (2019).Article
Ogueri,K.S.,Jafari,T.,Escobar-Ivirico,J.L.,Laurencin,C.T.J.R.E。和Medicine,T。用于基于支架的骨再生工程的聚合物生物材料。Regen。工程翻译。医学5128-154(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chou, S.-F. & Woodrow, K. A. J. J. O. T. M. B. O. B. M. Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J. Mech. Behav. Biomed. Mater. 65, 724–733 (2017).Article
Chou,S.-F.&Woodrow,K.A.J.J.O.T.M.B.O.B.M.机械性能与PCL和PLGA共混物电纺纤维药物释放之间的关系。J、 机械。行为。生物医学。。65724-733(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kishan, A. et al. In situ crosslinking of electrospun gelatin for improved fiber morphology retention and tunable degradation. J. Mater. Chem. B 3, 7930–7938 (2015).Article
Kishan,A。等人。电纺明胶的原位交联,以改善纤维形态保留和可调节降解。J、 马特。化学。B 37930–7938(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Di Giuseppe, M. et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J. Mech. Behav. Biomed. Mater. 79, 150–157 (2018).Article
Di Giuseppe,M。等人。用于3D生物打印的藻酸盐-明胶水凝胶的机械行为。J、 机械。行为。生物医学。。79150-157(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jeon, O., Bouhadir, K. H., Mansour, J. M. & Alsberg, E. J. B. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30, 2724–2734 (2009).Article
。生物材料302724-2734(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by the National Research Foundation (NRF) of South Africa; the South African Medical Research Council (SAMRC); and the University of the Witwatersrand, Johannesburg.Author informationAuthors and AffiliationsWits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South AfricaHillary Mndlovu, Pradeep Kumar, Lisa C.
下载参考文献致谢这项工作得到了南非国家研究基金会(NRF)的支持;南非医学研究委员会(SAMRC);和约翰内斯堡威特沃特斯兰德大学。作者信息作者和附属机构威特沃特斯兰德大学健康科学学院药学与药理学系高级药物输送平台研究室,约翰内斯堡,7 York Road,Parktown,2193,南非希拉里·姆德洛夫,普拉迪普·库马尔,丽莎·C。
du Toit & Yahya E. ChoonaraAuthorsHillary MndlovuView author publicationsYou can also search for this author in.
du Toit&Yahya E.ChoonaraAuthorsHillary MndlovuView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarPradeep KumarView author publicationsYou can also search for this author in
PubMed Google ScholarLisa C. du ToitView author publicationsYou can also search for this author in
PubMed Google ScholarLisa C.du ToitView作者出版物您也可以在
PubMed Google ScholarYahya E. ChoonaraView author publicationsYou can also search for this author in
PubMed Google ScholarYahya E.ChoonaraView作者出版物您也可以在
PubMed Google ScholarContributionsHillary Mndlovu: writing—original draft, writing—review & editing. Pradeep Kumar: writing—review & editing, methodology, conceptualisation. Lisa C. du Toit: writing—review & editing. Yahya E. Choonara: writing—review & editing, funding acquisition, conceptualisation.Corresponding authorCorrespondence to.
PubMed Google ScholarContributionsHillary Mndlovu:撰写原稿,撰写评论和编辑。Pradeep Kumar:写作评论与编辑,方法论,概念化。丽莎·杜托伊特:写作评论与编辑。Yahya E.Choonara:写作评论和编辑,资金获取,概念化。对应作者对应。
Yahya E. Choonara.Ethics declarations
Yahya E.Choonara。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleMndlovu, H., Kumar, P., du Toit, L.C. et al. A review of biomaterial degradation assessment approaches employed in the biomedical field.
转载和许可本文引用本文Mndlovu,H.,Kumar,P.,du Toit,L.C。等人对生物医学领域中使用的生物材料降解评估方法的回顾。
npj Mater Degrad 8, 66 (2024). https://doi.org/10.1038/s41529-024-00487-1Download citationReceived: 22 January 2024Accepted: 16 June 2024Published: 06 July 2024DOI: https://doi.org/10.1038/s41529-024-00487-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
npj Mater Degrad 8,66(2024)。https://doi.org/10.1038/s41529-024-00487-1Download引文接收日期:2024年1月22日接受日期:2024年6月16日发布日期:2024年7月6日OI:https://doi.org/10.1038/s41529-024-00487-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供