EN
登录

Nature:阻断CD47和CD24信号传导的原位肽抗体自组装增强巨噬细胞介导的吞噬作用和抗肿瘤免疫反应

An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses

Nature 等信源发布 2024-07-06 14:31

可切换为仅中文


AbstractTargeted immunomodulation for reactivating innate cells, especially macrophages, holds great promise to complement current adaptive immunotherapy. Nevertheless, there is still a lack of high-performance therapeutics for blocking macrophage phagocytosis checkpoint inhibitors in solid tumors. Herein, a peptide-antibody combo-supramolecular in situ assembled CD47 and CD24 bi-target inhibitor (PAC-SABI) is described, which undergoes biomimetic surface propagation on cancer cell membranes through ligand-receptor binding and enzyme-triggered reactions.

摘要用于重新激活先天细胞,特别是巨噬细胞的靶向免疫调节有望补充当前的适应性免疫疗法。然而,仍然缺乏用于阻断实体瘤中巨噬细胞吞噬作用检查点抑制剂的高效治疗剂。在此,描述了肽-抗体组合超分子原位组装的CD47和CD24双靶抑制剂(PAC-SABI),其通过配体-受体结合和酶触发反应在癌细胞膜上进行仿生表面传播。

By simultaneously blocking CD47 and CD24 signaling, PAC-SABI enhances the phagocytic ability of macrophages in vitro and in vivo, promoting anti-tumor responses in breast and pancreatic cancer mouse models. Moreover, building on the foundation of PAC-SABI-induced macrophage repolarization and increased CD8+ T cell tumor infiltration, sequential anti-PD-1 therapy further suppresses 4T1 tumor progression, prolonging survival rate.

通过同时阻断CD47和CD24信号传导,PAC-SABI在体外和体内增强巨噬细胞的吞噬能力,促进乳腺癌和胰腺癌小鼠模型中的抗肿瘤反应。此外,在PAC-SABI诱导的巨噬细胞复极化和CD8+T细胞肿瘤浸润增加的基础上,序贯抗PD-1治疗进一步抑制4T1肿瘤进展,延长生存率。

The in vivo construction of PAC-SABI-based nano-architectonics provides an efficient platform for bridging innate and adaptive immunity to maximize therapeutic potency..

基于PAC-SABI的纳米结构的体内构建为桥接先天性和适应性免疫以最大程度地提高治疗效力提供了有效的平台。。

IntroductionAdaptive immune checkpoint (IC) inhibitors targeting programmed cell death protein 1 (PD-1) or its ligand programmed death-ligand 1 (PD-L1) have shown efficacy in treating some cancer types by disrupting inhibitory T cell pathways1,2,3. Unfortunately, their effectiveness remains limited against immune quiescent tumors, such as breast and pancreatic cancers (BCs and PCs), underscoring the importance of innate immune cells and enhanced antigen processing to overcome this challenge4,5,6.

简介靶向程序性细胞死亡蛋白1(PD-1)或其配体程序性死亡配体1(PD-L1)的适应性免疫检查点(IC)抑制剂已显示出通过破坏抑制性T细胞途径治疗某些癌症类型的功效1,2,3。不幸的是,它们对免疫静止性肿瘤(如乳腺癌和胰腺癌(BC和PC))的有效性仍然有限,强调了先天免疫细胞和增强抗原加工对克服这一挑战的重要性4,5,6。

As the highly prevalent non-malignant cells in tumor microenvironment (TME), macrophages play a crucial innate immune role via phagocytosis, antigen presentation, and inflammatory cytokine production, linking innate and adaptive immunity5,7. Yet cancer cells can evade macrophage clearance by upregulating anti-phagocytic “don’t eat me” membrane proteins8,9,10,11.

作为肿瘤微环境(TME)中高度流行的非恶性细胞,巨噬细胞通过吞噬作用,抗原呈递和炎性细胞因子产生发挥关键的先天免疫作用,将先天免疫和适应性免疫联系起来5,7。。

Thus, inhibiting these antiphagocytic signals or receptors represents a promising immunotherapeutic approach that could synergize with cancer cell elimination, activate CD8+ T cells, and initiate an antitumor immune response.The CD47-signal regulatory protein alpha (SIRPα) axis, discovered in the late 2000s, was the first identified checkpoint inhibiting cancer phagocytosis through innate immunity12,13,14.

因此,抑制这些抗吞噬信号或受体代表了一种有前途的免疫治疗方法,可以与癌细胞消除协同作用,激活CD8+T细胞,并启动抗肿瘤免疫应答。2000年代末发现的CD47信号调节蛋白α(SIRPα)轴是第一个通过先天免疫抑制癌症吞噬作用的检查点12,13,14。

Clinical trials are ongoing to test inhibitors and antibodies targeting this axis for cancer therapy. However, two primary challenges have hindered their successful clinical application15. One is the ubiquitous CD47 expression on normal cells (“antigen sink”), especially red blood cells and platelets.

临床试验正在进行中,以测试针对该轴的抑制剂和抗体用于癌症治疗。然而,两个主要挑战阻碍了它们成功的临床应用15。一种是正常细胞(“抗原库”)上普遍存在的CD47表达,尤其是红细胞和血小板。

High maintenance dosing required to saturate peripheral antigens causes severe toxicity like anemia and thrombocytopenia16. The other challenge is the limited treatment response in solid tumors17,18, likely due to additi.

使外周抗原饱和所需的高维持剂量会导致严重的毒性,如贫血和血小板减少16。另一个挑战是实体瘤的治疗反应有限17,18,可能是由于ADTITI。

Data availability

数据可用性

RNA-seq data that support the findings of this study have been deposited in the NCBI Sequence Read Archive under the BioProject ID PRJNA1124390. RNA-seq data based on the TCGA and Genotype-Tissue Expression (GTEx) projects, obtained from the Gene Expression Profiling Interactive Analysis 2 (GEPIA2, http://gepia2.cancer-pku.cn) database, were used to investigate the expression of CD47 and CD24 in tumor and paired normal tissue, and to conduct survival analysis.

支持本研究结果的RNA-seq数据已保存在生物项目ID PRJNA1124390下的NCBI序列读取档案中。基于TCGA和基因型组织表达(GTEx)项目的RNA-seq数据,从基因表达谱交互分析2(GEPIA2,http://gepia2.cancer-pku.cn)数据库,用于研究CD47和CD24在肿瘤和配对正常组织中的表达,并进行生存分析。

The remaining data generated in this study are available within the Article, Supplementary Information or Source Data file. Source data are provided with this paper..

本研究中生成的其余数据可在文章,补充信息或源数据文件中找到。本文提供了源数据。。

ReferencesOffringa, R., Kötzner, L., Huck, B. & Urbahns, K. The expanding role for small molecules in immuno-oncology. Nat. Rev. Drug Discov. 21, 821–840 (2022).Article

参考文献Offringa,R.,Kötzner,L.,Huck,B。&Urbahns,K。小分子在免疫肿瘤学中的扩展作用。《药物目录》修订版。21821-840(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kraehenbuehl, L., Weng, C.-H., Eghbali, S., Wolchok, J. D. & Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 19, 37–50 (2022).Article

。国家修订临床。Oncol公司。19,37-50(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Topalian, S. L., Taube, J. M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367, eaax0182 (2020).Article

Topalian,S.L.,Taube,J.M。和Pardoll,D.M。癌症免疫治疗的新辅助检查点封锁。科学367,eaax0182(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, X. et al. Reprogramming tumour-associated macrophages to outcompete cancer cells. Nature 619, 616–623 (2023).Article

Zhang,X。等人。重新编程肿瘤相关巨噬细胞以胜过癌细胞。自然619616-623(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nalio Ramos, R. et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer. Cell 185, 1189–1207.e25 (2022).Article

Nalio Ramos,R。等人。组织驻留的FOLR2+巨噬细胞与人乳腺癌中的CD8+T细胞浸润相关。细胞1851189-1207.e25(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kubli, S. P., Berger, T., Araujo, D. V., Siu, L. L. & Mak, T. W. Beyond immune checkpoint blockade: emerging immunological strategies. Nat. Rev. Drug Discov. 20, 899–919 (2021).Article

Kubli,S.P.,Berger,T.,Araujo,D.V.,Siu,L.L。&Mak,T.W。超越免疫检查点封锁:新兴的免疫策略。《药物目录》修订版。20899-919(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Su, S. et al. Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell 175, 442–457.e23 (2018).Article

Su,S。等人。免疫检查点抑制克服了ADCP诱导的巨噬细胞免疫抑制。细胞175442-457.e23(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Morrissey, M. A., Kern, N. & Vale, R. D. CD47 ligation repositions the inhibitory receptor SIRPA to suppress integrin activation and phagocytosis. Immunity 53, 290–302.e6 (2020).Article

Morrissey,M.A.,Kern,N。&Vale,R.D。CD47连接重新定位抑制性受体SIRPA以抑制整联蛋白活化和吞噬作用。免疫力53290–302.e6(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

CD24 is a “Don’t Eat Me” signal that promotes tumor immune escape. Cancer Discov. 9, 1156 (2019).Yu, J. et al. SIRPα-Fc fusion protein IMM01 exhibits dual anti-tumor activities by targeting CD47/SIRPα signal pathway via blocking the “don’t eat me” signal and activating the “eat me” signal.

CD24是一种“不要吃我”的信号,可促进肿瘤免疫逃逸。癌症发现。91156(2019)。Yu,J。等人。SIRPα-Fc融合蛋白IMM01通过阻断“不吃我”信号和激活“吃我”信号靶向CD47/SIRPα信号通路,表现出双重抗肿瘤活性。

J. Hematol. Oncol. 15, 167 (2022).Article .

J、 血液学。Oncol公司。15167(2022)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, D. et al. SLAMF3 and SLAMF4 are immune checkpoints that constrain macrophage phagocytosis of hematopoietic tumors. Sci. Immunol. 7, eabj5501 (2022).CAS

Li,D。等人。SLAMF3和SLAMF4是限制造血肿瘤巨噬细胞吞噬作用的免疫检查点。科学。免疫。7,eabj5501(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jaiswal, S., Chao, M. P., Majeti, R. & Weissman, I. L. Macrophages as mediators of tumor immunosurveillance. Trends Immunol. 31, 212–219 (2010).Article

Jaiswal,S.,Chao,M.P.,Majeti,R。&Weissman,I.L。巨噬细胞作为肿瘤免疫监视的介质。趋势免疫。31212-219(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chao, M. P. et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2, 63ra94 (2010).Article

。科学。翻译。医学263RA94(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Eladl, E. et al. Role of CD47 in hematological malignancies. J. Hematol. Oncol. 13, 96 (2020).Article

Eladl,E。等人。CD47在血液系统恶性肿瘤中的作用。J、 血液学。Oncol公司。13,96(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y. et al. Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct. Target. Ther. 8, 104 (2023).Article

Liu,Y.等人。癌症免疫治疗中新出现的吞噬作用检查点。信号传输管。目标。他们。8104(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sikic, B. I. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 946–953 (2019).Article

Sikic,B.I.等人在晚期癌症患者中首次进行了抗CD47抗体Hu5F9-G4的人体第一类I期试验。J、 。Oncol公司。37946-953(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, X., Kwon, H., Li, Z. & Fu, Y. Is CD47 an innate immune checkpoint for tumor evasion? J. Hematol. Oncol. 10, 12 (2017).Article

?J、 血液学。Oncol公司。10,12(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Logtenberg, M. E. W., Scheeren, F. A. & Schumacher, T. N. The CD47-SIRPα immune checkpoint. Immunity 52, 742–752 (2020).Article

Logtenberg,M.E.W.,Scheeren,F.A。和Schumacher,T.N。CD47-SIRPα免疫检查点。豁免52742-752(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cassetta, L. & Pollard, J. W. A timeline of tumour-associated macrophage biology. Nat. Rev. Cancer 23, 238–257 (2023).Article

Cassetta,L。&Pollard,J.W。肿瘤相关巨噬细胞生物学的时间表。《国家癌症评论》23238-257(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).Article

Barkal,A.A。等人。通过巨噬细胞Siglec-10的CD24信号传导是癌症免疫治疗的靶标。自然572392-396(2019)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Setiawan, D., Brender, J. & Zhang, Y. Recent advances in automated protein design and its future challenges. Expert Opin. Drug Discov. 13, 587–604 (2018).Article

。专家意见。药物发现。13587-604(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rawson, S., McPhillie, M. J., Johnson, R. M., Fishwick, C. W. G. & Muench, S. P. The potential use of single-particle electron microscopy as a tool for structure-based inhibitor design. Acta Crystallogr. Sect. Struct. Biol. 73, 534–540 (2017).Article

Rawson,S.,McPhillie,M.J.,Johnson,R.M.,Fishwick,C.W.G。&Muench,S.P。单粒子电子显微镜作为基于结构的抑制剂设计工具的潜在用途。晶体学报。第节。结构。生物学73534-540(2017)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Zmuda, F. et al. Identification of novel trypanosoma cruzi proteasome inhibitors using a luminescence-based high-throughput screening assay. Antimicrob. Agents Chemother. 63, e00309–e00319 (2019).Article

Zmuda,F。等人。使用基于发光的高通量筛选测定法鉴定新型克氏锥虫蛋白酶体抑制剂。抗菌剂。化学试剂。63,e00309–e00319(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brown, D. P. et al. Novel multifunctional pharmacology of lobinaline, the major alkaloid from Lobelia cardinalis. Fitoterapia 111, 109–123 (2016).Article

Brown,D.P.等人。半边莲的主要生物碱lobinaline的新型多功能药理学。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ding, Y. et al. Enzyme-instructed peptide assembly favored by preorganization for cancer cell membrane engineering. J. Am. Chem. Soc. 145, 4366–4371 (2023).Article

丁,Y。等。癌细胞膜工程预组织所青睐的酶指导肽组装。美国化学杂志。Soc.1454366–4371(2023年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Feng, Z., Han, X., Wang, H., Tang, T. & Xu, B. Enzyme-instructed peptide assemblies selectively inhibit bone tumors. Chem 5, 2442–2449 (2019).Article

Feng,Z.,Han,X.,Wang,H.,Tang,T。&Xu,B。酶指导的肽组装体选择性抑制骨肿瘤。化学52442-2449(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, C. et al. Lysosome‐targeted and fluorescence‐turned “On” cytotoxicity induced by alkaline phosphatase‐triggered self‐assembly. Adv. Healthc. Mater. 11, 2101346 (2022).Article

Wu,C。等人。溶酶体靶向和荧光开启由碱性磷酸酶触发的自组装诱导的细胞毒性。健康顾问。。112101346(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Wang, H., Feng, Z. & Xu, B. Assemblies of peptides in a complex environment and their applications. Angew. Chem. Int. Ed. Engl. 58, 10423–10432 (2019).Article

Wang,H.,Feng,Z。&Xu,B。复杂环境中肽的组装及其应用。安吉。化学。国际英语。5810423-10432(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shy, A. N., Kim, B. J. & Xu, B. Enzymatic noncovalent synthesis of supramolecular soft matter for biomedical applications. Matter 1, 1127–1147 (2019).Article

Shy,A.N.,Kim,B.J。&Xu,B。用于生物医学应用的超分子软物质的酶促非共价合成。物质11127-1147(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cai, Y. et al. Supramolecular ‘Trojan Horse’ for nuclear delivery of dual anticancer drugs. J. Am. Chem. Soc. 139, 2876–2879 (2017).Article

Cai,Y.等人。用于双重抗癌药物核递送的超分子“特洛伊木马”。J、 美国化学。Soc.1392876–2879(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhan, J., Cai, Y., He, S., Wang, L. & Yang, Z. Tandem molecular self-assembly in liver cancer cells. Angew. Chem. Int. Ed. Engl. 57, 1813–1816 (2018).Article

Zhan,J.,Cai,Y.,He,S.,Wang,L。&Yang,Z。肝癌细胞中的串联分子自组装。安吉。化学。国际英语。571813-1816(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhan, J. et al. Organelle-inspired supramolecular nanomedicine to precisely abolish liver tumor growth and metastasis. Bioact. Mater. 9, 120–133 (2022).CAS

詹,J。等人。细胞器启发超分子纳米医学精确消除肝肿瘤的生长和转移。生物CT。。9120-133(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, W. et al. Parallelism to conquer: binary supramolecular peptide amphiphiles launch synergistic stromal reprogramming to remove the baffle in pancreatic cancer therapy. Adv. Funct. Mater. 32, 2203767 (2022).Article

Zhang,W。et al。并行征服:二元超分子肽两亲物启动协同基质重编程,以消除胰腺癌治疗中的障碍。高级职能。。322203767(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Mamuti, M. et al. A polyvalent peptide CD40 nanoagonist for targeted modulation of dendritic cells and amplified cancer immunotherapy. Adv. Mater. 34, e2109432 (2022).Article

Mamuti,M.等人。一种多价肽CD40纳米激动剂,用于靶向调节树突状细胞和扩增癌症免疫疗法。高级材料。34,e2109432(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, K. et al. A monotargeting peptidic network antibody inhibits more receptors for anti-angiogenesis. ACS Nano 15, 13065–13076 (2021).Article

Zhang,K。等人。一种单靶向肽网络抗体抑制更多的抗血管生成受体。ACS Nano 1513065–13076(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ren, H. et al. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging. Nat. Commun. 13, 418 (2022).Article

Ren,H。等人。一种生物活化的体内组装纳米技术制造了用于小胰腺肿瘤术中成像的NIR探针。国家公社。13418(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, Y. et al. Dynamic responsiveness of self-assembling peptide-based nano-drug systems. Interdiscip. Med. 1, e20220005 (2023).Article

Wang,Y。等人。基于自组装肽的纳米药物系统的动态响应性。跨学科。医学1,e20220005(2023)。文章

Google Scholar

谷歌学者

Wang, H. et al. CD47/SIRPα blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. J. Immunother. Cancer 8, e000905 (2020).Article

Wang,H。等。CD47/SIRPα阻断肽的鉴定以及与辐射对癌症免疫疗法的协同作用。J、 免疫疗法。癌症8,e000905(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe acknowledge the financial support from National Natural Science Foundation of China (51973090 to Y.C., 32271372 to Y.C., 31900952 to Y.C., 32101058 to J.Z., 82273256 to N.L.), Guangdong Basic and Applied Basic Research Foundation (2023A1515012734 to J.Z., 2023A1515110674 to W.Z.), Science and Technology Projects of Guangzhou (2024A04J5154 to J.Z., 2024A04J4490 to W.Z.).

下载参考文献致谢我们感谢国家自然科学基金(51973090至Y.C.,32271372至Y.C.,31900952至Y.C.,32101058至J.Z.,82273256至N.L.),广东基础与应用基础研究基金(2023A15127234至J.Z.,2023A15110674至W.Z.),广州科技项目(2024A04J5154至J.Z.,2024A04J4490至W.Z.)。

China Postdoctoral Science Foundation (2023M740768 to W.Z.). Postdoctoral Fellowship Program of CPSF to W.Z.Author informationAuthor notesThese authors jointly supervised this work: Jie Zhan, Ning Liao, Yanbin Cai.Authors and AffiliationsGuangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, ChinaWeiqi Zhang & Yinghua ZengDepartment of Breast Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, ChinaWeiqi Zhang, Yuting Luo & Ning LiaoGuangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, ChinaWeiqi Zhang, Yinghua Zeng, Qiuqun Xiao, Jiale Liu & Yanbin CaiDepartment of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, ChinaYinghua Zeng, Qiuqun Xiao, Jiale Liu & Yanbin CaiDepartment of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, ChinaYuanyuan WuDepartment of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, ChinaHaocheng WangDepartment of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, ChinaJie ZhanGuangdong Engineering and Tech.

中国博士后科学基金会(2023M740768至W.Z.)。CPSF对W.Z.作者信息的博士后奖学金项目作者注意到这些作者共同监督了这项工作:Jie Zhan,Ning Liao,Yanbin Cai。作者和单位广东省人民医院广东省心血管研究所,广东省医学科学院,南方医科大学,广州,中国张伟奇,曾英华广东省人民医院乳腺外科,广东省医学科学院,南方医科大学,广州,中国张伟奇,罗玉婷,廖宁宁广东省心血管疾病生物医学工程技术研究中心,南方医科大学珠江医院,广州,中国张伟奇,曾英华,肖秋群,刘家乐,蔡燕斌南方医科大学珠江医院心脏病学与心脏中心实验室,广州,曾英华,肖秋群,刘家乐和蔡燕斌南方医科大学珠江医院肝胆外科,广州,中国南方医科大学珠江医院胃肠外科,广州,中国王浩成南方医科大学南方医院检验科,中国广州张广东工程技术有限公司。

PubMed Google ScholarYinghua ZengView author publicationsYou can also search for this author in

PubMed Google ScholarYinghua ZengView作者出版物您也可以在

PubMed Google ScholarQiuqun XiaoView author publicationsYou can also search for this author in

PubMed Google ScholarQiuqun XiaoView作者出版物您也可以在

PubMed Google ScholarYuanyuan WuView author publicationsYou can also search for this author in

PubMed Google ScholarYuanyuan WuView作者出版物您也可以在

PubMed Google ScholarJiale LiuView author publicationsYou can also search for this author in

PubMed Google ScholarHaocheng WangView author publicationsYou can also search for this author in

PubMed谷歌学者HaoCheng WangView作者出版物您也可以在

PubMed Google ScholarYuting LuoView author publicationsYou can also search for this author in

PubMed Google ScholarYuting LuoView作者出版物您也可以在

PubMed Google ScholarJie ZhanView author publicationsYou can also search for this author in

PubMed Google ScholarJie ZhanView作者出版物您也可以在

PubMed Google ScholarNing LiaoView author publicationsYou can also search for this author in

PubMed Google ScholarNing LiaoView作者出版物您也可以在

PubMed Google ScholarYanbin CaiView author publicationsYou can also search for this author in

PubMed Google ScholarYanbin CaiView作者出版物您也可以在

PubMed Google ScholarContributionsW.Z., N.L. and Y.C. conceived the study and designed the experiments. W.Z., Q.X. and J.Z. carried out the synthesis and characterization of the PAC-SABIs. W.Z. and Y.L. collected clinical data and samples. W.Z., H.W. and N.L. performed single-cell RNA sequencing and analysis.

PubMed谷歌学术贡献软件。Z、 ,N.L.和Y.C.构思了这项研究并设计了实验。W、 。W、 Z.,H.W.和N.L.进行了单细胞RNA测序和分析。

W.Z., Y.Z., Y.W., J.L. and Y.L. performed all the in vitro and in vivo experiments. W.Z., Y.Z. and Y.C. discussed the results, interpreted the data, wrote and revised the paper. J.Z., N.L. and Y.C. supervised the research. All authors read and approved the final version of the manuscript.Corresponding authorsCorrespondence to.

W、 Z.,Y.Z.,Y.W.,J.L.和Y.L.进行了所有的体外和体内实验。W、 Z.,Y.Z.和Y.C.讨论了结果,解释了数据,撰写并修订了论文。J、 。所有作者都阅读并批准了稿件的最终版本。通讯作者通讯。

Jie Zhan, Ning Liao or Yanbin Cai.Ethics declarations

詹杰、廖宁或蔡燕斌。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Charlotte Hauser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

《自然通讯》感谢夏洛特·豪瑟(CharlotteHauser)和另一位匿名审稿人对这项工作的同行评审所做的贡献。同行评审文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileReporting SummarySource dataSource DataRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件报告摘要源数据源数据权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleZhang, W., Zeng, Y., Xiao, Q. et al. An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses.

转载和许可本文引用本文Zhang,W.,Zeng,Y.,Xiao,Q。等人。阻断CD47和CD24信号传导的原位肽抗体自组装增强巨噬细胞介导的吞噬作用和抗肿瘤免疫应答。

Nat Commun 15, 5670 (2024). https://doi.org/10.1038/s41467-024-49825-6Download citationReceived: 31 August 2023Accepted: 20 June 2024Published: 06 July 2024DOI: https://doi.org/10.1038/s41467-024-49825-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

。https://doi.org/10.1038/s41467-024-49825-6Download引文接收日期:2023年8月31日接收日期:2024年6月20日发布日期:2024年7月6日OI:https://doi.org/10.1038/s41467-024-49825-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。