EN
登录

16S rRNA、宏基因组学和2bRAD-M测序解码人类线粒体生物群落

16S rRNA, metagenomics and 2bRAD-M sequencing to decode human thanatomicrobiome

Nature 等信源发布 2024-07-06 02:16

可切换为仅中文


AbstractMicroorganisms are essential in the decomposition of corpses and play a significant role in forensic science. However, previous studies have primarily focused on animal remains, specifically the gut, skin, and burial environment. Insufficient research has been conducted on the microbiota of human cadavers, especially in cases of advanced decomposition and additional tissues, resulting in a lack of relevant reference data.

摘要微生物在尸体分解中至关重要,在法医学中起着重要作用。然而,以前的研究主要集中在动物遗骸上,特别是肠道,皮肤和埋葬环境。对人体尸体微生物群的研究不足,特别是在晚期分解和其他组织的情况下,导致缺乏相关的参考数据。

In this study, the microbiota of eight cadavers at different stages of decomposition were detected using 16S rRNA, metagenomic sequencing and 2bRAD-M sequencing. Nine different sites, including oral and nasal cavities, heart, liver, spleen, lung, kidney, muscle and gut, were analysed and the efficacy of these methods was evaluated.

在这项研究中,使用16S rRNA,宏基因组测序和2bRAD-M测序检测了八具尸体在不同分解阶段的微生物群。分析了9个不同部位,包括口腔和鼻腔,心脏,肝脏,脾脏,肺,肾,肌肉和肠道,并评估了这些方法的疗效。

The results showed that 16S rRNA sequencing was the most cost-effective method for the study of cadavers in the early stages of decomposition, whereas for cadaveric tissues in the late stages of decomposition, 2bRAD-M could overcome host contamination more effectively than metagenomic sequencing. This paves the way for new opportunities in data retrieval and promotes in-depth investigations into the microbiota..

结果表明,16S rRNA测序是分解早期尸体研究中最具成本效益的方法,而对于分解后期的尸体组织,2bRAD-M可以比宏基因组测序更有效地克服宿主污染。这为数据检索的新机会铺平了道路,并促进了对微生物群的深入研究。。

Background & SummaryThe Human Microbiome Project (HMP) has linked variations in microbiota structure to human health, demonstrating the integral role of microorganisms in the human body, and the Integrative Human Microbiome Project (iHMP) has elucidated the interaction between microorganisms and the host1.Currently, there is extensive research and application of the distribution and function of human microbial communities during life.

背景与总结人类微生物组计划(HMP)将微生物群结构的变化与人类健康联系起来,证明了微生物在人体中的整体作用,综合人类微生物组计划(iHMP)阐明了微生物与宿主之间的相互作用。目前,人们对生命过程中人类微生物群落的分布和功能进行了广泛的研究和应用。

However, there is limited knowledge of post-mortem microbial changes. It has been demonstrated that microbial succession continues beyond individual death, and hosts’ death can be viewed as an ecological disruption to the microbiota2. Microorganisms play a crucial role in carcass decomposition3, but more research is needed to determine how microorganisms change during decomposition and correlate with environment, season, host, et al.

然而,对死后微生物变化的了解有限。已经证明,微生物的演替持续超过个体死亡,宿主的死亡可以被视为对微生物群的生态破坏2。微生物在胴体分解中起着至关重要的作用3,但需要更多的研究来确定微生物在分解过程中的变化以及与环境,季节,宿主等的关系。

Therefore, exploring the structure and changes of the thanatomicrobiome and elucidating the time-dependent change profiles of them during the stages of autolysis, putrefaction and decomposition of cadavers is crucial for forensic research.The development and maturity of DNA sequencing technology drive the interpretation of microbiota structure and diversity in different environments.

因此,探索死亡微生物组的结构和变化,并阐明它们在尸体自溶,腐烂和分解阶段的时间依赖性变化特征,对于法医研究至关重要。DNA测序技术的发展和成熟推动了对不同环境中微生物群结构和多样性的解释。

Presently, Amplicon sequencing4 and Metagenomic Sequencing5 are the most mainstream DNA sequencing technologies for microbiome research. Amplicon sequencing overwhelmingly targets the 16S rRNA gene (bacteria and archaea)6, and the internal transcribed spacer (ITS) region (fungi)7. 16S rRNA sequencing is fast, easy and can be applied to large-scale studies, thus has now become the most commonly used technique for cadaver microbiological research.

目前,扩增子测序4和宏基因组测序5是微生物组研究中最主流的DNA测序技术。扩增子测序绝大多数靶向16S rRNA基因(细菌和古细菌)6和内部转录间隔区(ITS)区域(真菌)7。16S rRNA测序快速,简单,可用于大规模研究,因此现已成为尸体微生物学研究中最常用的技术。

However, this technique offers low strain resolution which only reaches the genus leve.

然而,该技术提供的应变分辨率低,仅达到属级。

(1)

(1)

16S rRNA Sequencing Data: The raw sequence data files (FastQ format) from the 16S rRNA sequencing are accessible under the BioProject ID: PRJNA111924421.

16S rRNA测序数据:16S rRNA测序的原始序列数据文件(FastQ格式)可在BioProject ID:PRJNA111924421下访问。

(2)

(2)

Metagenomic Sequencing Data: The raw sequence data files (FastQ format) from the metagenomic sequencing are available under the BioProject ID: PRJNA112122222.

宏基因组测序数据:宏基因组测序的原始序列数据文件(FastQ格式)可在BioProject ID:PRJNA12122222下获得。

(3)

(3)

2bRAD-M Sequencing Data: The raw sequence data files (FastQ format) from the 2bRAD-M sequencing are stored in the SRA under the BioProject ID: PRJNA112059823.

2bRAD-M测序数据:来自2bRAD-M测序的原始序列数据文件(FastQ格式)存储在SRA中,生物项目ID为PRJNA112059823。

Additionally, comprehensive statistics related to the species abundance from the 16S rRNA, Metagenomic, and 2bRAD-M sequencing data are available on Figshare with the https://doi.org/10.6084/m9.figshare.2479856724. The specific sequences and procedures used to generate the data records are detailed in their respective subsections, linking directly to the corresponding data records.Technical ValidationSamples were taken aseptically by using sterilized equipment and sterile RNase and DNase-free tubes.

此外,有关16S rRNA,宏基因组学和2bRAD-M测序数据中物种丰度的综合统计数据可在Figshare上获得https://doi.org/10.6084/m9.figshare.2479856724.用于生成数据记录的特定序列和程序在各自的小节中有详细说明,直接链接到相应的数据记录。技术验证通过使用无菌设备和无菌RNase和DNase游离管无菌采集样品。

To assess the potential for contamination, we also sampled the tissue surfaces separately from the internal tissues. DNA were extracted in an RNase free environment. DNA concentration and integrity were measured with NanoDrop 2000 (Thermo Fisher Scientific, USA) and agarose gel electrophoresis. For 16S rRNA gene amplification, negative control containing PCR-grade water and PCR with bacterial primers 343 F and 798 R were used.

为了评估污染的可能性,我们还将组织表面与内部组织分开采样。在无RNase的环境中提取DNA。用NanoDrop 2000(Thermo Fisher Scientific,USA)和琼脂糖凝胶电泳测量DNA浓度和完整性。对于16S rRNA基因扩增,使用含有PCR级水的阴性对照和具有细菌引物343F和798R的PCR。

No positive or negative sequencing controls were used to obtain metagenomic data. The concentration of the 16S rRNA gene amplicons and controls was measured with a Qubit 2.0 Fluorometer and their quality were analysed using agarose gel electrophoresis.The quality of the raw 16S rRNA sequencing reads was assessed using FastQC, which provided initial insights into potential issues such as poor quality scores, overrepresented sequences, or adapter contamination.

没有使用阳性或阴性测序对照来获得宏基因组数据。用Qubit 2.0荧光计测量16S rRNA基因扩增子和对照的浓度,并使用琼脂糖凝胶电泳分析其质量。使用FastQC评估了原始16S rRNA测序读数的质量,该方法提供了对潜在问题的初步见解,例如质量得分低,序列过多或衔接子污染。

Representative sequences for each ASV were aligned and annotated against the Silva database (v 138) using the q2-feature-classifier plugin with default parameters, ensuring reliable species-level identification. Metagenomic Sequencing Reads were subjected to stringent quality filtering steps using Trimmomatic, where bases below a quality score threshold of 20 were trimmed, and reads shorter than 7.

使用带有默认参数的q2特征分类器插件,将每个ASV的代表性序列与Silva数据库(v 138)进行比对和注释,以确保可靠的物种级识别。。

Code availability

代码可用性

In this analysis, default parameters or parameters recommended by the developer were used.

在此分析中,使用了默认参数或开发人员推荐的参数。

ReferencesHuman Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).Article

参考人类微生物组项目联盟。健康人类微生物组的结构,功能和多样性。自然486207-214(2012)。文章

ADS

广告

Google Scholar

谷歌学者

Martino, C. et al. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol 20, 707–720 (2022).Article

Martino,C。等人。从摇篮到坟墓的整个生命中的微生物群演替。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Javan, G. T. et al. An interdisciplinary review of the thanatomicrobiome in human decomposition. Forensic Sci Med Pathol 15, 75–83 (2019).Article

Javan,G.T.等人,《人体分解中死亡微生物组的跨学科综述》。法医科学医学病理学15,75-83(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kolbert, C. P. & Persing, D. H. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Current Opinion in Microbiology 2, 299–305 (1999).Article

Kolbert,C.P。&Persing,D.H。核糖体DNA测序作为鉴定细菌病原体的工具。微生物学最新观点2299-305(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J., Segata, N. Shotgun metagenomics, from sampling to analysis. Nature biotechnology 35 (2017).Rj, C. et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Applied and environmental microbiology 73 (2007).Cl, S.

Quince,C.,Walker,A.W.,Simpson,J.T.,Loman,N.J.,Segata,N。Shotgun宏基因组学,从采样到分析。自然生物技术35(2017)。Rj,C。等人。使用16S rRNA和rpoB基因作为微生物生态学研究的分子标记。应用与环境微生物学73(2007)。Cl,S。

et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109 (2012).Ranjan, R., Rani, A., Metwally, A., McGee, H. S. & Perkins, D. L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing.

等。核核糖体内部转录间隔区(ITS)区域作为真菌的通用DNA条形码标记。美国国家科学院院刊109(2012)。Ranjan,R.,Rani,A.,Metwally,A.,McGee,H.S。&Perkins,D.L。微生物组分析:全基因组鸟枪与16S扩增子测序的优势。

Biochem Biophys Res Commun 469, 967–977 (2016).Article .

Biochem Biophys Res Commun 469,967-977(2016)。第[UNK]条。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35, 833–844 (2017).Article

Quince,C.,Walker,A.W.,Simpson,J.T.,Loman,N.J。&Segata,N。Shotgun宏基因组学,从采样到分析。Nat Biotechnol 35833-844(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Laudadio, I. et al. Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome. OMICS 22, 248–254 (2018).Article

Laudadio,I。等人。鸟枪宏基因组学和16S rDNA扩增子测序在人类肠道微生物组研究中的定量评估。组学22248-254(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shi, Y., Wang, G., Lau, H. C.-H. & Yu, J. Metagenomic Sequencing for Microbial DNA in Human Samples: Emerging Technological Advances. Int J Mol Sci 23, 2181 (2022).Article

Shi,Y.,Wang,G.,Lau,H.C.-H.&Yu,J。人类样品中微生物DNA的宏基因组测序:新兴技术进步。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, S., Meyer, E, McKay, J. K, Matz, M. V. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nature methods 9 (2012).Sun, Z. et al. Species-resolved sequencing of low-biomass or degraded microbiomes using 2bRAD-M. Genome Biol 23, 36 (2022).Article

Wang,S.,Meyer,E,McKay,J.K,Matz,M.V.2b-RAD:一种简单灵活的全基因组基因分型方法。自然方法9(2012)。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Jongh, D. S., Loftis, J. W., Green, G. S., Shively, J. A. & Minckler, T. M. Postmortem Bacteriology: A Practical Method for Routine Use. American Journal of Clinical Pathology 49, 424–428 (1968).Article

de Jongh,D.S.,Loftis,J.W.,Green,G.S.,Shively,J.A。&Minckler,T.M。死后细菌学:常规使用的实用方法。美国临床病理学杂志49424-428(1968)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fernández-Rodríguez, A. et al. How to optimise the yield of forensic and clinical post-mortem microbiology with an adequate sampling: a proposal for standardisation. Eur J Clin Microbiol Infect Dis 34, 1045–1057 (2015).Article

Fernández Rodríguez,A.等人。如何通过适当的采样优化法医和临床验尸微生物学的产量:标准化建议。Eur J Clin Microbiol Infect Dis 341045–1057(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cw, N. et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World journal of gastroenterology 16 (2010).Chao A, Bunge J. Estimating the number of species in a stochastic abundance model. Biometrics 58 (2002).Hill, T. C. J., Walsh, K. A., Harris, J.

Cw,N。等人设计用于人前肠微生物组454焦磷酸测序的16S rRNA基因引物。世界胃肠病学杂志16(2010)。Chao A,Bunge J.估计随机丰度模型中的物种数量。生物特征58(2002)。。

A. & Moffett, B. F. Using ecological diversity measures with bacterial communities. FEMS microbiology ecology 43 (2003).Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Article .

A、 &Moffett,B.F。使用细菌群落的生态多样性测量。FEMS微生物学生态学43(2003)。Li,D.,Liu,C.-M.,Luo,R.,Sadakane,K.&Lam,T.-W.MEGAHIT:通过简洁的de Bruijn图进行大型复杂宏基因组组装的超快速单节点解决方案。生物信息学311674-1676(2015)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).Article

凯悦,D。等。浪子:原核基因识别和翻译起始位点鉴定。BMC生物信息学11119(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP511264 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP512408 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP512103 (2024).Huang, X. et al. 16S rRNA, metagenomics and 2bRAD-M sequencing to decode human thanatomicrobiome.

NCBI序列读取存档https://identifiers.org/ncbi/insdc.sra:SRP511264(2024年)。NCBI序列读取存档https://identifiers.org/ncbi/insdc.sra:SRP512408(2024年)。NCBI序列读取存档https://identifiers.org/ncbi/insdc.sra:SRP512103(2024年)。Huang,X。等人,16S rRNA,宏基因组学和2bRAD-M测序解码人类死亡微生物组。

figshare https://doi.org/10.6084/m9.figshare.24798567.v3 (2023).Download referencesAcknowledgementsThis work was supported by grants from the National Natural Science Fund of China (No.82371896, No. 82072123).Author informationAuthor notesThese authors contributed equally: Xin Huang, Jianye Zeng.Authors and AffiliationsInstitute of Forensic Science, Fudan University, Shanghai, 200032, PR ChinaXin Huang, Jianye Zeng, Shilin Li, Ji Chen, Chengtao Li & Suhua ZhangThe State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P.R.

figshare公司https://doi.org/10.6084/m9.figshare.24798567.v3(2023年)。下载参考文献致谢这项工作得到了国家自然科学基金(No.82371896,No.82072123)的资助。作者信息作者注意到这些作者做出了同样的贡献:Xin Huang,Jianye Zeng。作者和所属单位复旦大学法医学研究所,上海,200032,中华人民共和国黄新新,曾建业,李士林,陈吉,李成涛和张素华复旦大学生命科学学院基因工程国家重点实验室和教育部当代人类学重点实验室,上海。

ChinaHongyan WangDepartment of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR ChinaSuhua ZhangAuthorsXin HuangView author publicationsYou can also search for this author in.

中国王红艳复旦大学基础医学院法医学系,上海,200032,中华人民共和国张素华作者黄新维作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarJianye ZengView author publicationsYou can also search for this author in

PubMed Google ScholarJianye ZengView作者出版物您也可以在

PubMed Google ScholarShilin LiView author publicationsYou can also search for this author in

PubMed Google ScholarShilin LiView作者出版物您也可以在

PubMed Google ScholarJi ChenView author publicationsYou can also search for this author in

PubMed Google ScholarJi ChenView作者出版物您也可以在

PubMed Google ScholarHongyan WangView author publicationsYou can also search for this author in

PubMed谷歌学者Hongyan WangView作者出版物您也可以在

PubMed Google ScholarChengtao LiView author publicationsYou can also search for this author in

PubMed Google ScholarChengtao LiView作者出版物您也可以在

PubMed Google ScholarSuhua ZhangView author publicationsYou can also search for this author in

PubMed Google ScholarSuhua ZhangView作者出版物您也可以在

PubMed Google ScholarContributionsSuhua Zhang and Chengtao Li conceived the study and write the manuscript. Xin Huang analyzed the Metagenomic sequencing data. Ji Chen analyzed the 16S rRNA sequencing data. Jianye Zeng analyzed the 2bRAD-M sequencing data. Xin Huang and Jianye Zeng performed the experiment.

PubMed谷歌学术贡献张思华和李成涛构思了这项研究并撰写了手稿。Xin Huang分析了宏基因组测序数据。Ji Chen分析了16S rRNA测序数据。曾建业分析了2bRAD-M测序数据。黄新和曾建业进行了实验。

Shilin Li and Hongyan Wang provided suggestions for writing and revising the manuscript. All authors read and approved the final manuscript.Corresponding authorsCorrespondence to.

李士林和王红燕为撰写和修改手稿提供了建议。所有作者都阅读并批准了最终手稿。通讯作者通讯。

Chengtao Li or Suhua Zhang.Ethics declarations

李成涛或张素华。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleHuang, X., Zeng, J., Li, S. et al. 16S rRNA, metagenomics and 2bRAD-M sequencing to decode human thanatomicrobiome.

转载和许可本文引用本文Huang,X.,Zeng,J.,Li,S。等人16S rRNA,宏基因组学和2bRAD-M测序来解码人类死亡微生物组。

Sci Data 11, 736 (2024). https://doi.org/10.1038/s41597-024-03518-3Download citationReceived: 25 December 2023Accepted: 13 June 2024Published: 06 July 2024DOI: https://doi.org/10.1038/s41597-024-03518-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci数据11736(2024)。https://doi.org/10.1038/s41597-024-03518-3Download引文接收日期:2023年12月25日接收日期:2024年6月13日发布日期:2024年7月6日OI:https://doi.org/10.1038/s41597-024-03518-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供