商务合作
动脉网APP
可切换为仅中文
AbstractExplaining predictions for drug repositioning with biological knowledge graphs is a challenging problem. Graph completion methods using symbolic reasoning predict drug treatments and associated rules to generate evidence representing the therapeutic basis of the drug. Yet the vast amounts of generated paths that are biologically irrelevant or not mechanistically meaningful within the context of disease biology can limit utility.
摘要用生物学知识图解释药物重新定位的预测是一个具有挑战性的问题。使用符号推理的图形完成方法预测药物治疗和相关规则,以生成代表药物治疗基础的证据。然而,在疾病生物学的背景下,大量产生的与生物学无关或没有机械意义的路径可能会限制效用。
We use a reinforcement learning based knowledge graph completion model combined with an automatic filtering approach that produces the most relevant rules and biological paths explaining the predicted drug’s therapeutic connection to the disease. In this work we validate the approach against preclinical experimental data for Fragile X syndrome demonstrating strong correlation between automatically extracted paths and experimentally derived transcriptional changes of selected genes and pathways of drug predictions Sulindac and Ibudilast.
我们使用基于强化学习的知识图完成模型,结合自动过滤方法,产生最相关的规则和生物路径,解释预测药物与疾病的治疗联系。在这项工作中,我们验证了针对脆性X综合征的临床前实验数据的方法,证明了自动提取的途径与所选基因的实验衍生转录变化以及药物预测途径舒林酸和依布地司特之间的强相关性。
Additionally, we show it reduces the number of generated paths in two case studies, 85% for Cystic fibrosis and 95% for Parkinson’s disease..
此外,我们在两个案例研究中显示,它减少了生成路径的数量,囊性纤维化为85%,帕金森病为95%。。
IntroductionDiscovering safe and effective treatments for rare diseases presents a formidable challenge, starting with the sourcing, normalising, and integration of copious, diffuse and diverse data sources that inform drug discovery. When it comes to the more than 7000 rare and genetic disorders, valuable information is frequently dispersed across various databases, encompassing clinical symptoms, impacted pathways, animal models, and potential treatments.
引言发现罕见疾病的安全有效治疗方法是一项艰巨的挑战,首先是寻找,规范和整合丰富,分散和多样化的数据源,为药物发现提供信息。当涉及7000多种罕见和遗传疾病时,有价值的信息经常分散在各种数据库中,包括临床症状,受影响的途径,动物模型和潜在的治疗方法。
To address this issue, AI-driven computational tools and knowledge can be harnessed to interconnect this diverse data, enabling the prediction of innovative drug candidates. Typically, existing computational methods generate an overwhelming number of therapeutic hypotheses, necessitating labour-intensive manual curation by experts specializing in the respective disease.
。通常,现有的计算方法会产生大量的治疗假设,因此需要专门研究各种疾病的专家进行劳动密集型的手动治疗。
This process involves a significant amount of time dedicated to establishing the therapeutic linkage between the drug and the disease, given the identification of the mechanism of action is pivotal in establishing clinical tractability.Knowledge graphs (KG) have been used extensively in the recent past to solve complex problems in life sciences including drug discovery for rare diseases.
鉴于确定作用机制对于建立临床易处理性至关重要,因此该过程需要花费大量时间来建立药物与疾病之间的治疗联系。最近,知识图(KG)已被广泛用于解决生命科学中的复杂问题,包括罕见疾病的药物发现。
Knowledge graphs are constructed with head entity-relation-tail entity (h, r, t) triples where entities correspond to nodes and relations correspond to links connecting the entities. Biological knowledge graphs are constructed with biological nodes such as drugs, diseases, genes, pathways, phenotypes, proteins etc and the links between these nodes.
知识图由头-实体-关系-尾-实体(h,r,t)三元组构成,其中实体对应于节点,关系对应于连接实体的链接。生物知识图由药物、疾病、基因、途径、表型、蛋白质等生物节点以及这些节点之间的链接构成。
Knowledge base completion (KBC)1 is the task of predicting the tail entity t, given the head entity h, and the relation r, or head entity h given the tail entity t and relation r. It can also be used to predict unseen relat.
知识库完成(KBC)1的任务是预测尾部实体t,给定头部实体h,以及关系r,或给定尾部实体t和关系r的头部实体h。它也可以用于预测不可见的关系。
(1)
(1)
$${{{{{\rm{Compound}}}}}}{-}treats \rightarrow {{{{{\rm{Disease}}}}}}{-}ancestor \rightarrow {{{{{\rm{Disease}}}}}}$$
$${{{{\rm{化合物}}}}{-}treats{-}ancestor\右箭头{{{{\rm{疾病}}}}}$$
(2)
(2)
$${{{{{\rm{Compound}}}}}}{-}binds \rightarrow {{{{{\rm{Gene}}}}}}{-}participates \rightarrow {{{{{\rm{pathway}}}}}}{-}involves \rightarrow {{{{{\rm{Disease}}}}}}$$
$${{{{\rm{化合物}}}}{-}binds\右箭头{{{{\rm{基因}}}}}{-}participates\右箭头{{{{\rm{路径}}}}}{-}involves\右箭头{{{{\rm{疾病}}}}}$$
(3)
(3)
$${{{{{\rm{Compound}}}}}}{-}involves \rightarrow {{{{{\rm{Pathway}}}}}}{-}involves \rightarrow {{{{{\rm{Disease}}}}}}{-}ancestor \rightarrow {{{{{\rm{Disease}}}}}}$$
$${{{{\rm{化合物}}}}{-}involves\右箭头{{{{\rm{路径}}}}}{-}involves\右箭头{{{{\rm{疾病}}}}}{-}ancestor\右箭头{{{{\rm{疾病}}}}}$$
(4)
(4)
$$ {{{{{\rm{Compound}}}}}}{-}treats \rightarrow {{{{{\rm{Disease}}}}}}{-}associates \rightarrow {{{{{\rm{Gene}}}}}} \\ \leftarrow associates{-}{{{{{\rm{Disease}}}}}}{-}ancestor \rightarrow {{{{{\rm{Disease}}}}}}$$
$${{{{\rm{化合物}}}}{-}treats\右箭头{{{{\rm{疾病}}}}}{-}associates\ rightarrow{{{\rm{Gene}}}}}\\ leftarrow关联{-}{{{\rm{Disease}}}}{-}ancestor\右箭头{{{{\rm{疾病}}}}}$$
(5)
(5)
For example, rules (1) and (2) shown above frequently receive high confidence scores compared to other rules but are less significant in the drug discovery context since they only have ancestor and descendant relationships that do not inform any mechanistic understanding of how the drug treats a disease.
例如,与其他规则相比,上面显示的规则(1)和(2)经常获得高置信度分数,但在药物发现背景下不太重要,因为它们只有祖先和后代关系,不能告知任何关于药物如何治疗疾病的机制理解。
Although rules (3), (4) and (5) scored low they contain more biologically informative relationships such as disease–gene, gene-pathway associations and so generate more compelling evidence with greater interpretability in a drug discovery context. Therefore, we considered all rules associated with a single prediction to generate evidence for the predictions, not applying any confidence score filtering in terms of rule composition.
尽管规则(3)、(4)和(5)得分较低,但它们包含更多的生物学信息关系,例如疾病-基因,基因-途径关联,因此在药物发现背景下产生了更具说服力的证据,具有更大的可解释性。因此,我们考虑了与单个预测相关的所有规则,以生成预测的证据,而不在规则组成方面应用任何置信度得分过滤。
In all experiments, known treatment relationships between the disease of interest and the drug were removed from the Knowledge graph before training the AnyBURL model on them.Evidence generation with automatic filteringOur proposed methodology utilizes automatic filtering to extract biologically meaningful evidence from a list of predictions and their corresponding rules, with a focus on identifying paths in the graph that are most relevant to the disease of interest which we call the evidence chains.
。使用自动过滤器生成证据Gour提出的方法利用自动过滤从预测列表及其相应规则中提取具有生物学意义的证据,重点是识别图中与我们称之为证据链的感兴趣疾病最相关的路径。
The complete workflow is shown in Fig. 2. The method is flexible and allows for the disabling of certain filters as needed to meet the requirements of the project, making the approach flexible and consistently applied across multiple disease projects. A path, in this context, refers to a sequence of nodes and relations that starts at a compound entity and ends at a disease entity, providing evidence that the compound can potentially be useful in treating the disease.
完整的工作流程如图2所示。该方法灵活,可以根据需要禁用某些过滤器以满足项目的要求,从而使该方法灵活且一致地应用于多个疾病项目。在这种情况下,路径是指从复合实体开始并以疾病实体结束的一系列节点和关系,提供了该化合物可能对治疗疾病有用的证据。
There are four stages to the automated filtering process startin.
自动过滤过程分为四个阶段。
Data availability
数据可用性
In Supplementary Table 1, we provide details of both public and commercial data sources used in Healx KG. CTD101, SIDER106, DrugBank102, KEGG38, OMIM109 and Pharmaprojects are commercial data sources. CTD101 data can be used only for research and educational purposes, and any Commercial users are required to purchase a license to access data from the CTD website.
。CTD101数据只能用于研究和教育目的,任何商业用户都需要购买许可证才能从CTD网站访问数据。
SIDER106 data is licenced under a creative commons Attribution-Noncommercial-Share Alike 4.0 License. For commercial use or customized versions, license should be obtained from biobyte solutions GmbH. Use and re-distribution of the content of DrugBank102 for any purpose requires a license. Academic users may apply for a free license for certain use cases and all other users require a paid license.
SIDER106数据根据知识共享署名-非商业共享-类似4.0许可证获得许可。对于商业用途或定制版本,应从biobyte solutions GmbH获得许可证。出于任何目的使用和重新分发DrugBank102的内容都需要许可证。。
KEGG38 database is available for academic use but any commercial use requires a license. Use of OMIM109 is provided free of charge to any individual for personal use, for educational or scholarly use, or for research purposes through the front end of the database. Commercial users who want to download all or part of OMIM must obtain a license by paying applicable licensing fees to and entering into a license agreement with Johns Hopkins University (JHU).
KEGG38数据库可用于学术用途,但任何商业用途都需要许可证。OMIM109的使用免费提供给任何个人,供个人使用,用于教育或学术用途,或通过数据库前端用于研究目的。想要下载全部或部分OMIM的商业用户必须通过向约翰·霍普金斯大学(JHU)支付适用的许可费并与之签订许可协议来获得许可。
Pharmaprojects comes with a commercial license granting full access to their APIs. We have shared a subgraph of the Healx KG data created for reproducibility purposes and is available in github, https://github.com/healx/automated-biological-evidence-generation-in-drug-discovery123. We have shared the experimental results from this subgraph showing a few interesting evidence chains generated for Parkinson’s disease in Supplementary Fig. 2 and the percentage of reduction achieved in Supplementary Table 5.
Pharmaprojects拥有商业许可证,可以完全访问其API。我们共享了为可重复性目的创建的Healx KG数据的子图,可在github中获得,https://github.com/healx/automated-biological-evidence-generation-in-drug-discovery123.我们分享了这个子图的实验结果,显示了补充图2中帕金森病产生的一些有趣的证据链,以及补充表5中达到的减少百分比。
The source data for this is provided as a Source Data file. The r.
其源数据作为源数据文件提供。r。
Code availability
代码可用性
The Python implementation of our methodology is available at https://github.com/healx/automated-biological-evidence-generation-in-drug-discovery123. The AnyBURL v21 Java model was trained using OpenJDK v14 and small bug fixes to this model have been made and are available in the Github repository. All downstream analyses were performed using Python 3.11, with additional packages used are ‘attrs‘, ‘click‘ and ‘numpy‘.
我们方法的Python实现可在https://github.com/healx/automated-biological-evidence-generation-in-drug-discovery123.AnyBURL v21 Java模型是使用OpenJDK v14训练的,该模型的小错误修复已经完成,可以在Github存储库中找到。所有下游分析均使用Python 3.11进行,另外使用的软件包是“attrs”、“click”和“numpy”。
Please read the README document for information on downloading and running the code..
有关下载和运行代码的信息,请阅读自述文件。。
ReferencesJi, S., Pan, S., Cambria, E., Marttinen, P. & Philip, S. Y. A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33, 494–514 (2021).Article
ReferencesJi,S.,Pan,S.,Cambria,E.,Marttinen,P。&Philip,S.Y。关于知识图的调查:表示,获取和应用。。神经网络。学习。系统。33494-514(2021)。文章
MathSciNet
MathSciNet
Google Scholar
谷歌学者
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J. & Yakhnenko, O. Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 26, 1–9 (2013).Wang, Z., Zhang, J., Feng, J. & Chen, Z. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
Bordes,A.,Usunier,N.,Garcia-Duran,A.,Weston,J。&Yakhnenko,O。翻译嵌入以建模多关系数据。高级神经信息处理。系统。26,1-9(2013)。Wang,Z.,Zhang,J.,Feng,J。&Chen,Z。通过在超平面上进行翻译来嵌入知识图。在AAAI人工智能会议记录中,Vol。
28 (AAAI, 2014).Sun, Z., Deng, Z. H., Nie, J. Y., & Tang, J. RotatE: knowledge graph embedding by relational rotation in complex space. In Proceedings of the International Conference on Learning Representations (ICLR, 2019).Nickel, M., Tresp, V. & Kriegel, H. P. A three-way model for collective learning on multi-relational data.
28(AAAI,2014)。Sun,Z.,Deng,Z.H.,Nie,J.Y.,&Tang,J.RotatE:在复杂空间中通过关系旋转嵌入知识图。在国际学习表征会议论文集(ICLR,2019)中。Nickel,M.,Tresp,V。&Kriegel,H.P。多关系数据集体学习的三向模型。
Proc. ICML 11, 3104482–3104584 (2011)..
47.ICML 11,3104482–3104584(2011)。。
Google Scholar
谷歌学者
Yang, B., Yih, S. W. T., He, X., Gao, J. & Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. In Proceedings of the International Conference on Learning Representations (ICLR, 2015).Trouillon, T., Welbl, J., Riedel, S., Gaussier, É. & Bouchard, G.
Yang,B.,Yih,S.W.T.,He,X.,Gao,J。&Deng,L。在知识库中嵌入学习和推理的实体和关系。在国际学习表征会议论文集(ICLR,2015)中。特鲁伊隆,T.,韦尔布尔,J.,里德尔,S.,高斯,É&布查德,G。
Complex embeddings for simple link prediction. Proc. Int. Conf. Mach. Learn. (PMLR) 48, 2071–2080 (2016)..
用于简单链接预测的复杂嵌入。程序。内景形态马赫。学习。。。
Google Scholar
谷歌学者
Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the International Conference on Learning Representations (ICLR, 2016).Schlichtkrull, M. et al. Modeling relational data with graph convolutional networks. Lect. Notes Comput.
Kipf,T。N。&Welling,M。使用图卷积网络的半监督分类。在国际学习表征会议论文集(ICLR,2016)中。Schlichtkrull,M.等人。用图卷积网络建模关系数据。选择。注释计算机。
Sci. 10843, 593–607 (2018).Article .
科学。10843593-607(2018)。文章。
Google Scholar
谷歌学者
Wang, X., He, X., Cao, Y., Liu, M. & Chua, T. S. Kgat: knowledge graph attention network for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 950–958 (ACM, 2019).Yao, L., Mao, C. & Luo, Y. KG-BERT: BERT for knowledge graph completion.
Wang,X.,He,X.,Cao,Y.,Liu,M。和Chua,T。S。Kgat:推荐的知识图注意网络。在第25届ACM SIGKDD知识发现与数据挖掘国际会议论文集,950-958(ACM,2019)。Yao,L.,Mao,C。和Luo,Y。KG-BERT:知识图完成的BERT。
Preprint at https://arxiv.org/abs/1909.03193 (2019).Meilicke, C., Betz, P. & Stuckenschmidt, H. Why a naive way to combine symbolic and latent knowledge base completion works surprisingly well. In Proceedings of the 3rd Conference on Automated Knowledge Base Construction, Openreview.net (2021).Meilicke, C., Chekol, M.
预印于https://arxiv.org/abs/1909.03193(2019年)。Meilicke,C.,Betz,P。&Stuckenschmidt,H。为什么一种将符号和潜在知识库完成结合起来的天真方法效果惊人。《第三届自动化知识库构建会议论文集》,Openreview.net(2021)。。
W., Ruffinelli, D. & Stuckenschmidt, H. Anytime bottom-up rule learning for knowledge graph completion. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence, 3137–314 (2019).Das, R. et al. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning.
W、 ,Ruffinelli,D。&Stuckenschmidt,H。Anytime-bottom-up规则学习用于知识图完成。。Das,R.等人走一走,得出答案:使用强化学习对知识库中的路径进行推理。
In Proceedings of the 6th Workshop on Automated Knowledge Base Construction, Openreview.net (2017).Martin, B. et al. Leveraging a billion-edge knowledge graph for drug re-purposing and target prioritization using genomically-informed subgraphs. Preprint at https://www.biorxiv.org/content/10.1101/2022.12.20.521235v1 (2022).Gogleva, A.
在第六届自动化知识库构建研讨会论文集Openreview.net(2017)中。Martin,B.等人利用基因组信息子图,利用十亿边缘知识图进行药物重新定位和目标优先级排序。预印于https://www.biorxiv.org/content/10.1101/2022.12.20.521235v1(2022年)。戈格里瓦,A。
et al. Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer. Nat. Commun. 13, 1667 (2022).Article .
基于知识图的推荐框架确定了EGFR突变型非小细胞肺癌耐药的驱动因素。国家公社。。文章。
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Santos, A. et al. A knowledge graph to interpret clinical proteomics data. Nat. Biotechnol. 40, 692–702 (2022).Article
。美国国家生物技术公司。40692-702(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Daowd, A., Abidi, S., & Abidi, S. S. R. A knowledge graph completion method applied to literature-based discovery for predicting missing links targeting cancer drug repurposing. In Proceedings of International Conference on Artificial Intelligence in Medicine, 24–34 (Springer International Publishing, 2022).Pu, Y., Beck, D.
Daowd,A.,Abidi,S。和Abidi,S。S。R。一种知识图完成方法,应用于基于文献的发现,用于预测针对癌症药物再利用的缺失环节。在《国际医学人工智能会议论文集》,24-34(Springer International Publishing,2022)。Pu,Y.,Beck,D。
& Verspoor, K. Graph embedding-based link prediction for literature-based discovery in Alzheimer’s disease. J. Biomed. Inform. 145, 104464 (2023).Article .
&Verspoor,K。基于图嵌入的链接预测,用于阿尔茨海默病中基于文献的发现。J、 生物医学。通知。145104464(2023)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Wang, Y., Ruffinelli, D., Gemulla, R., Broscheit, S. & Meilicke, C. On evaluating embedding models for knowledge base completion. In Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), Association for Computational Linguistics, 104–112 (2019).Lao, N. & Cohen, W.
Wang,Y.,Ruffinelli,D.,Gemulla,R.,Broscheit,S。&Meilicke,C。关于评估知识库完成的嵌入模型。在第四届NLP表征学习研讨会论文集(RepL4NLP-2019)中,计算语言学协会,104-112(2019)。Lao,N。和Cohen,W。
W. Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81, 53–67 (2010).Article .
W、 使用路径约束随机游动的组合进行关系检索。马赫。学习。81,53-67(2010)。文章。
MathSciNet
MathSciNet
Google Scholar
谷歌学者
Gardner, M., Talukdar, P., Kisiel, B., & Mitchell, T. Improving learning and inference in a large knowledge-base using latent syntactic cues. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 833–838 (2013).Sudhahar, S., Roberts, I., & Pierleoni, A.
。2013年自然语言处理经验方法会议论文集,计算语言学协会,833-838(2013)。苏达哈尔,S.,罗伯茨,I.,&Pierleoni,A。
Reasoning over paths via knowledge base completion. In Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), Association for Computational Linguistics, 164–171 (2019).Richardson, M. & Domingos, P. Markov logic networks. Mach. Learn. 62, 107–136 (2006).Article .
通过知识库完成对路径的推理。在计算语言学协会第十三届基于图形的自然语言处理方法研讨会论文集(TextGraphs-13)中,164-171(2019)。Richardson,M。&Domingos,P。Markov logic networks。马赫。学习。62107-136(2006)。文章。
Google Scholar
谷歌学者
Meilicke, C. et al. Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion. Proc. 17th Int. Semantic Web Conf. 17, 3–20 (2018).
Meilicke,C。等人。基于规则和嵌入的知识图完成系统的细粒度评估。程序。第17期国际语义网会议第17期,第3-20页(2018年)。
Google Scholar
谷歌学者
Liu, Y. et al. Neural multi-hop reasoning with logical rules on biomedical knowledge graphs. In ESWC 2021: The Semantic Web, 375–391 (Springer International Publishing, 2021).Vasilevsky, N. A. et al. Mondo: unifying diseases for the world, by the world. Preprint at https://www.medrxiv.org/content/10.1101/2022.04.13.22273750v3 (2022).Weinreich, S.
Liu,Y。等人。生物医学知识图上具有逻辑规则的神经多跳推理。在ESWC 2021:语义网,375-391(Springer International Publishing,2021)中。Vasilevsky,N.A.等人,《蒙多:世界统一疾病》。预印于https://www.medrxiv.org/content/10.1101/2022.04.13.22273750v3(2022年)。Weinreich,S。
S., Mangon, R., Sikkens, J. J., Teeuw, M. E. & Cornel, M. C. Orphanet: a European database for rare diseases. Ned. Tijdschr. Voor Geneeskd. 152, 518–519 (2008).CAS .
S.、Mangon,R.、Sikkens,J.J.、Teeuw,M.E.和Cornel,M.C.Orphanet:欧洲罕见病数据库。内德。用于治疗。152, 518–519 (2008).CAS
Google Scholar
谷歌学者
Edwards, G., Nilsson, S., Rozemberczki, B. & Papa, E. Explainable biomedical recommendations via reinforcement learning reasoning on knowledge graphs. Preprint at https://arxiv.org/abs/2111.10625 (2021).Zhang, X. & Che, C. Drug repurposing for Parkinson’s disease by integrating knowledge graph completion model and knowledge fusion of medical literature.
Edwards,G.,Nilsson,S.,Rozemberczki,B。&Papa,E。通过知识图上的强化学习推理来解释生物医学建议。预印于https://arxiv.org/abs/2111.10625(2021年)。Zhang,X。&Che,C。通过整合知识图完成模型和医学文献的知识融合,对帕金森病进行药物再利用。
Future Internet 13, 14 (2021).Article .
。文章。
Google Scholar
谷歌学者
Yang, J. J. et al. Knowledge graph analytics platform with LINCS and IDG for Parkinson’s disease target illumination. BMC Bioinforma. 23, 37 (2022).Article
Yang,J.J.等人。具有LINCS和IDG的帕金森病目标照明知识图分析平台。BMC生物信息学。23,37(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Martin, A. R. et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat. Genet. 51, 1560–1565 (2019).Article
Martin,A.R.等人PanelApp众包专家知识,以建立共识诊断基因组。纳特·吉内特。511560-1565(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ochoa, D. et al. Open Targets Platform: supporting systematic drug–target identification and prioritisation. Nucleic Acids Res. 49, D1302–D1310 (2021).Article
Ochoa,D.等人,《开放目标平台:支持系统的药物-目标识别和优先排序》。核酸研究49,D1302–D1310(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nguyen, D. T. et al. Pharos: collating protein information to shed light on the druggable genome. Nucleic Acids Res. 45, D995–D1002 (2017).Article
Nguyen,D.T.等人,《Pharos:整理蛋白质信息以阐明可药用基因组》。核酸研究45,D995–D1002(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lachmann, A. et al. Geneshot: search engine for ranking genes from arbitrary text queries. Nucleic Acids Res. 47, W571–W577 (2019).Article
Lachmann,A。等人。Geneshot:用于从任意文本查询中对基因进行排名的搜索引擎。核酸研究47,W571–W577(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fisher, R. A. The logic of inductive inference. J. R. Stat. Soc. 98, 39–82 (1935).Article
Fisher,R.A。归纳推理的逻辑。J、 《联邦统计公报》第98卷,第39-82页(1935年)。文章
Google Scholar
谷歌学者
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995).Article
Benjamini,Y。&Hochberg,Y。控制错误发现率:一种实用而强大的多重测试方法。J、 R.统计社会:Ser。B(方法。)57289-300(1995)。文章
MathSciNet
MathSciNet
Google Scholar
谷歌学者
Kanehisa, M. The KEGG database. In Silico’simulation of Biological Processes: Novartis Foundation Symposium 247, Vol. 247, 91–103 (John Wiley & Sons, Ltd, 2002)Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649–D655 (2018).Article
Kanehisa,M。KEGG数据库。生物过程的计算机模拟:诺华基金会研讨会247,第247卷,91-103(John Wiley&Sons,Ltd,2002)Fabregat,A。等人,reactome pathway knowledgebase。核酸研究46,D649–D655(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pico, A. R. et al. WikiPathways: pathway editing for the people. PLoS Biol. 6, e184 (2008).Article
Pico,A.R.等人,《维基路径:为人民编辑路径》。《公共科学图书馆·生物学》。6,e184(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gibson, L. C. et al. The inhibitory profile of Ibudilast against the human phosphodiesterase enzyme family. Eur. J. Pharmacol. 538, 39–42 (2006).Article
Gibson,L.C.等人。伊布地司特对人磷酸二酯酶家族的抑制作用。欧洲药理学杂志。538,39-42(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tominaga, Y., Nakamura, Y., Tsuji, K., Shibata, T. & Kataoka, K. Ibudilast protects against neuronal damage induced by glutamate in cultured hippocampal neurons. Clin. Exp. Pharmacol. Physiol. 23, 519–523 (1996).Article
Tominaga,Y.,Nakamura,Y.,Tsuji,K.,Shibata,T。&Kataoka,K。Ibudilast保护培养的海马神经元免受谷氨酸诱导的神经元损伤。临床。药理学实验。生理学。23519-523(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yoshioka, A., Shimizu, Y. & Hirose, G. Ibudilast prevents oligodendroglial excitotoxicity. No Shinkei= Brain Nerve 49, 1015–1020 (1997).CAS
Yoshioka,A.,Shimizu,Y。&Hirose,G。Ibudilast可预防少突胶质细胞兴奋性毒性。No Shinkei=脑神经491015-1020(1997)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yoshioka, M. et al. Effects of ibudilast on hippocampal long-term potentiation and passive avoidance responses in rats with transient cerebral ischemia. Pharmacol. Res. 45, 305–311 (2002).Article
Yoshioka,M。等人。伊布地司特对短暂性脑缺血大鼠海马长时程增强和被动回避反应的影响。药理学。第45305-311号决议(2002年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Berry-Kravis, E., Hicar, M. & Ciurlionis, R. Reduced cyclic AMP production in fragile X syndrome: cytogenetic and molecular correlations. Pediatr. Res. 38, 638–643 (1995).Article
Berry-Kravis,E.,Hicar,M。&Ciurlionis,R。减少脆性X综合征中环AMP的产生:细胞遗传学和分子相关性。儿科。第38638-643号决议(1995年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Choi, C. H. et al. PDE-4 inhibition rescues aberrant synaptic plasticity in Drosophila and mouse models of fragile X syndrome. J. Neurosci. 35, 396–408 (2015).Article
Choi,C.H.等人,PDE-4抑制可挽救果蝇和脆性X综合征小鼠模型中异常的突触可塑性。J、 神经科学。35396-408(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kanellopoulos, A. K., Semelidou, O., Kotini, A. G., Anezaki, M. & Skoulakis, E. M. Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila. J. Neurosci.
Kanellopoulos,A.K.,Semelidou,O.,Kotini,A.G.,Anezaki,M。&Skoulakis,E.M。由于代谢型谷氨酸受体介导的果蝇cAMP信号传导抑制导致脆性X智力低下蛋白减少导致的学习和记忆缺陷。J、 神经科学。
32, 13111–13124 (2012).Article .
321311–13124(2012)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gurney, M. E., Cogram, P., Deacon, R. M., Rex, C. & Tranfaglia, M. Multiple behavior phenotypes of the fragile-X syndrome mouse model respond to chronic inhibition of phosphodiesterase-4D (PDE4D). Sci. Rep. 7, 14653 (2017).Article
Gurney,M.E.,Cogram,P.,Deacon,R.M.,Rex,C。&Tranfaglia,M。脆性X综合征小鼠模型的多种行为表型对磷酸二酯酶4D(PDE4D)的慢性抑制有反应。科学。代表714653(2017)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Berry-Kravis, E. M. et al. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial. Nat. Med. 27, 862–870 (2021).Article
Berry-Kravis,E.M.等人,《脆性X综合征患者磷酸二酯酶4D的抑制作用:一项随机、安慰剂对照的2期临床试验》。《自然医学》27862-870(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Maurin, T. et al. HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein. Nucleic Acids Res. 46, 6344–6355 (2018).Article
Maurin,T。等人在不同大脑区域的HITS-CLIP揭示了脆性X智力低下蛋白结合RNA的新靶点和新模式。核酸研究466344-6355(2018)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jonak, C. R. et al. The PDE10A Inhibitor TAK-063 reverses sound-evoked EEG abnormalities in a mouse model of Fragile X syndrome. Neurotherapeutics 18, 1175–1187 (2021).Gurney, M. E., Cogram, P., Deacon, R. M., Rex, C. & Tranfaglia, M. Multiple behavior phenotypes of the fragile-X syndrome mouse model respond to chronic inhibition of phosphodiesterase-4D (PDE4D).
Jonak,C.R。等人,PDE10A抑制剂TAK-063逆转脆性X综合征小鼠模型中声音诱发的脑电图异常。神经治疗学181175-1187(2021)。Gurney,M.E.,Cogram,P.,Deacon,R.M.,Rex,C。&Tranfaglia,M。脆性X综合征小鼠模型的多种行为表型对磷酸二酯酶4D(PDE4D)的慢性抑制有反应。
Sci. Rep. 7, 1–11 (2017).Article .
科学。代表7,1-11(2017)。文章。
CAS
中科院
Google Scholar
谷歌学者
Krueger, D. D., Osterweil, E. K., Chen, S. P., Tye, L. D. & Bear, M. F. Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. Proc. Natl. Acad. Sci. USA 108, 2587–2592 (2011).Article
Krueger,D.D.,Osterweil,E.K.,Chen,S.P.,Tye,L.D。&Bear,M.F。脆性X综合征小鼠模型中的认知功能障碍和前额叶突触异常。程序。纳特尔。阿卡德。科学。美国1082587–2592(2011)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tiwari, S. et al. Type 4 cAMP phosphodiesterase (PDE4) inhibitors augment glucocorticoid-mediated apoptosis in B cell chronic lymphocytic leukemia (B-CLL) in the absence of exogenous adenylyl cyclase stimulation. Biochem. Pharmacol. 69, 473–483 (2005).Article
Tiwari,S。等人。在没有外源性腺苷酸环化酶刺激的情况下,4型cAMP磷酸二酯酶(PDE4)抑制剂增强糖皮质激素介导的B细胞慢性淋巴细胞白血病(B-CLL)细胞凋亡。生物化学。药理学。69473-483(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Holm, H. et al. High circulating levels of midregional proenkephalin A predict vascular dementia: a population-based prospective study. Sci. Rep. 10, 1–8 (2020).Article
Holm,H.等人。高循环水平的中脑啡肽原A预测血管性痴呆:一项基于人群的前瞻性研究。科学。代表10,1-8(2020)。文章
Google Scholar
谷歌学者
Parrott, J. M., Oster, T. & Lee, H. Y. Altered inflammatory response in FMRP-deficient microglia. Iscience 24, 103293 (2021).Article
Parrott,J.M.,Oster,T。&Lee,H.Y。改变了FMRP缺陷小胶质细胞的炎症反应。Iscience 24103293(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuskaitis, C. J., Beurel, E. & Jope, R. S. Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of Fragile X syndrome. Biochimica et. Biophysica Acta (BBA)-Mol. Basis Dis. 1802, 1006–1012 (2010).Article
Yuskaitis,C.J.,Beurel,E。&Jope,R.S。脆性X综合征小鼠模型中反应性星形胶质细胞而非外周免疫系统激活的证据。生物化学与生物物理学报(BBA)-分子基础。18021006-1012(2010)。文章
CAS
中科院
Google Scholar
谷歌学者
Schepers, M. et al. Targeting phosphodiesterases—towards a tailor-made approach in multiple sclerosis treatment. Front. Immunol. 10, 1727 (2019).Article
Schepers,M.等人,将磷酸二酯酶靶向多发性硬化症治疗的定制方法。正面。免疫。101727(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ledeboer, A., Hutchinson, M. R., Watkins, L. R. & Johnson, K. W. Ibudilast (AV-411) a new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes. Expert Opin. Investig. drugs 16, 935–950 (2007).Article
Ledeboer,A.,Hutchinson,M.R.,Watkins,L.R。&Johnson,K.W.Ibudilast(AV-411)是神经性疼痛和阿片类药物戒断综合征的新型治疗候选药物。专家意见。调查。药物16935-950(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hutchinson, M. R. et al. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav. Immun. 24, 83–95 (2010).Article
Hutchinson,M.R.等人的证据表明阿片类药物可能具有toll样受体4和MD-2作用。大脑行为。免疫。24,83-95(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Berry-Kravis, E., Knox, A. & Hervey, C. Targeted treatments for fragile X syndrome. J. Neurodev. Disord. 3, 193–210 (2011).Article
Berry Kravis,E.,Knox,A。&Hervey,C。针对脆性X综合征的靶向治疗。J、 神经发育。混乱。3193-210(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McBride, S. M. et al. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45, 753–764 (2005).Yan, Q. J., Rammal, M., Tranfaglia, M. & Bauchwitz, R. P. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP.
McBride,S.M.等人,《脆性X综合征果蝇模型中突触可塑性、求偶行为和蘑菇体缺陷的药理学拯救》。神经元45753-764(2005)。Yan,Q.J.,Rammal,M.,Tranfaglia,M。&Bauchwitz,R.P。通过mGluR5拮抗剂MPEP抑制两种主要的脆性X综合征小鼠模型表型。
Neuropharmacology 49, 1053–1066 (2005).Article .
神经药理学491053-1066(2005)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dölen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).Article
Dölen,G.等人。小鼠脆性X综合征的矫正。神经元56955-962(2007)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Choi, C. H. et al. Age-dependent cognitive impairment in a Drosophila Fragile X model and its pharmacological rescue. Biogerontology 11, 347–362 (2010).Article
Choi,C.H.等人。果蝇脆性X模型中的年龄依赖性认知障碍及其药理学拯救。生物遗传学11347-362(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Choi, C. H. et al. Pharmacological reversal of synaptic plasticity deficits in the mouse model of Fragile X syndrome by group II mGluR antagonist or lithium treatment. Brain Res. 1380, 106–119 (2011).Article
。Brain Res.1380106–119(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhu, F. et al. Akt inhibitor perifosine prevents epileptogenesis in a rat model of temporal lobe epilepsy. Neurosci. Bull. 34, 283–290 (2018).Article
Zhu,F。等人。Akt抑制剂perifosine可预防颞叶癫痫大鼠模型中的癫痫发生。神经科学。公牛。34283-290(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Borlot, F., Whitney, R., Cohn, R. D. & Weiss, S. K. MEF2C-related epilepsy: delineating the phenotypic spectrum from a novel mutation and literature review. Seizure 67, 86–90 (2019).Article
Borlot,F.,Whitney,R.,Cohn,R.D。&Weiss,S.K。MEF2C相关癫痫:从新突变和文献综述中描绘表型谱。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Furtinger, S. et al. Plasticity of Y1 and Y2 receptors and neuropeptide Y fibers in patients with temporal lobe epilepsy. J. Neurosci. 21, 5804–5812 (2001).Article
Furtinger,S.等人。颞叶癫痫患者Y1和Y2受体和神经肽Y纤维的可塑性。J、 神经科学。215804-5812(2001)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hoozemans, J. J., Rozemuller, J. M., van Haastert, E. S., Veerhuis, R. & Eikelenboom, P. Cyclooxygenase-1 and -2 in the different stages of Alzheimer’s disease pathology. Curr. Pharm. Des. 14, 1419–1427 (2008).Article
Hoozemans,J.J.,Rozemuller,J.M.,van Haastert,E.S.,Veerhuis,R。&Eikelenboom,P。环氧合酶-1和-2在阿尔茨海默病病理学的不同阶段。货币。药学博士。1419-1427(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yau, S. Y., Chiu, C., Vetrici, M. & Christie, B. R. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice. Behav. Brain Res. 312, 77–83 (2016).Article
Yau,S.Y.,Chiu,C.,Vetrici,M。和Christie,B.R。慢性米诺环素治疗可改善成年雄性Fmr1基因敲除小鼠的社会识别记忆。行为。Brain Res.312,77-83(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dansie, L. E. et al. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience 246, 186–198 (2013).Article
Dansie,L.E.等人。米诺环素对年轻但非成年脆弱X小鼠行为的长期影响。神经科学246186-198(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rice, P. L., Beard, K. S., Driggers, L. J. & Ahnen, D. J. Inhibition of extracellular-signal regulated kinases 1/2 is required for apoptosis of human colon cancer cells in vitro by sulindac metabolites. Cancer Res. 64, 8148–8151 (2004).Article
Rice,P.L.,Beard,K.S.,Driggers,L.J。&Ahnen,D.J。舒林酸代谢物体外诱导人结肠癌细胞凋亡需要抑制细胞外信号调节激酶1/2。癌症研究648148-8151(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sun, Y. & Sinicrope, F. A. Selective inhibitors of MEK1/ERK44/42 and p38 mitogen-activated protein kinases potentiate apoptosis induction by sulindac sulfide in human colon carcinoma cells. Mol. Cancer Ther. 4, 51–59 (2005).Article
Sun,Y。&Sinicrope,F。A。MEK1/ERK44/42和p38丝裂原活化蛋白激酶的选择性抑制剂增强了舒林酸硫化物在人结肠癌细胞中的凋亡诱导作用。分子癌症治疗。4,51-59(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hagerman, R. J. et al. Advances in the treatment of fragile X syndrome. Pediatrics 123, 378–390 (2009).Article
Hagerman,R.J.等人,《脆性X综合征的治疗进展》。儿科123378-390(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kuszmaul, A. K., Palmer, E. C. & Frederick, E. K. Lofexidine versus clonidine for mitigation of opioid withdrawal symptoms: a systematic review. J. Am. Pharmacists Assoc. 60, 145–152 (2020).Article
Kuszmaul,A.K.,Palmer,E.C。&Frederick,E.K。洛非西定与可乐定缓解阿片类药物戒断症状:系统评价。J、 。文章
Google Scholar
谷歌学者
Li, Y. et al. Clonidine preconditioning improved cerebral ischemia-induced learning and memory deficits in rats via ERK1/2-CREB/NF-κB-NR2B pathway. Eur. J. Pharmacol. 818, 167–173 (2018).Article
Li,Y。等人。可乐定预处理通过ERK1/2-CREB/NF-κB-NR2B途径改善大鼠脑缺血诱导的学习记忆缺陷。欧洲药理学杂志。818167-173(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sanna, P. P., Simpson, C., Lutjens, R. & Koob, G. ERK regulation in chronic ethanol exposure and withdrawal. Brain Res. 948, 186–191 (2002).Article
Sanna,P.P.,Simpson,C.,Lutjens,R。&Koob,G。ERK在慢性乙醇暴露和戒断中的调节。Brain Res.948186–191(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jonak, C. R. et al. Baclofen-associated neurophysiologic target engagement across species in fragile X syndrome. J. Neurodev. Disord. 14, 1–15 (2022).Article
Jonak,C.R.等人,巴氯芬相关的神经生理学靶标参与脆性X综合征的跨物种研究。J、 神经发育。混乱。14,1-15(2022)。文章
Google Scholar
谷歌学者
Berry-Kravis, E. et al. Arbaclofen in fragile X syndrome: results of phase 3 trials. J. Neurodev. Disord. 9, 1–18 (2017).Article
Berry-Kravis,E.等人,《脆弱X综合征中的阿巴洛芬:3期试验结果》。J、 神经发育。混乱。9,1-18(2017)。文章
Google Scholar
谷歌学者
Kreiss, C., Birder, L. A., Kiss, S., VanBibber, M. M. & Bauer, A. J. COX-2 dependent inflammation increases spinal Fos expression during rodent postoperative ileus. Gut 52, 527–534 (2003).Article
Kreiss,C.,Birder,L.A.,Kiss,S.,VanBibber,M.M。&Bauer,A.J。COX-2依赖性炎症增加啮齿动物术后肠梗阻期间脊髓Fos的表达。肠道52527-534(2003)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lu, Y. & Westlund, K. N. Effects of baclofen on colon inflammation-induced Fos, CGRP and SP expression in spinal cord and brainstem. Brain Res. 889, 118–130 (2001).Article
Lu,Y。&Westlund,K。N。巴氯芬对结肠炎症诱导的脊髓和脑干中Fos,CGRP和SP表达的影响。Brain Res.889118-130(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yang, Y. J. et al. Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK. J. Neuroinflammation 13, 1–11 (2016).Article
Yang,Y。J。等人。白藜芦醇通过激活AMPK抑制神经胶质激活并减轻三叉神经痛。J、 神经炎症13,1-11(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Erickson, C. A., Stigler, K. A., Posey, D. J. & McDougle, C. J. Aripiprazole in autism spectrum disorders and fragile X syndrome. Neurotherapeutics 7, 258–263 (2010).Article
Erickson,C.A.,Stigler,K.A.,Posey,D.J。&McDougle,C.J。阿立哌唑治疗自闭症谱系障碍和脆性X综合征。神经治疗学7258-263(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pereira, A., Zhang, B., Malcolm, P., Sugiharto-Winarno, A. & Sundram, S. Quetiapine and aripiprazole signal differently to ERK, p90RSK and c-Fos in mouse frontal cortex and striatum: role of the EGF receptor. BMC Neurosci. 15, 1–14 (2014).Article
Pereira,A.,Zhang,B.,Malcolm,P.,Sugiharto-Winarno,A。&Sundram,S。奎硫平和阿立哌唑在小鼠额叶皮层和纹状体中对ERK,p90RSK和c-Fos的信号不同:EGF受体的作用。BMC神经科学。15,1-14(2014)。文章
Google Scholar
谷歌学者
De Bartolomeis, A., Tomasetti, C. & Iasevoli, F. Update on the mechanism of action of aripiprazole: translational insights into antipsychotic strategies beyond dopamine receptor antagonism. CNS Drugs 29, 773–799 (2015).Article
De Bartolomeis,A.,Tomasetti,C。&Iasevoli,F。阿立哌唑作用机制的最新进展:对多巴胺受体拮抗作用以外的抗精神病药物策略的转化见解。中枢神经系统药物29773-799(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schaefer, T. L. et al. Acamprosate in a mouse model of fragile X syndrome: modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. J. Neurodev. Disord. 9, 1–22 (2017).Article
Schaefer,T.L.等人,《脆性X综合征小鼠模型中的阿坎普酸:自发性皮层活动的调节,ERK1/2激活,运动行为和焦虑》。J、 神经发育。混乱。9,1-22(2017)。文章
Google Scholar
谷歌学者
Wang, X. et al. Activation of the extracellular signal‐regulated kinase pathway contributes to the behavioral deficit of fragile x‐syndrome. J. Neurochem. 121, 672–679 (2012).Article
Wang,X。等人。细胞外信号调节激酶途径的激活导致脆性X综合征的行为缺陷。J、 神经化学。121672-679(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Utami, K. H. et al. Elevated de novo protein synthesis in FMRP-deficient human neurons and its correction by metformin treatment. Mol. Autism 11, 1–11 (2020).Article
Utami,K.H.等人。FMRP缺陷型人类神经元中从头蛋白质合成的增加及其通过二甲双胍治疗的纠正。摩尔自闭症11,1-11(2020)。文章
Google Scholar
谷歌学者
Gantois, I., Popic, J., Khoutorsky, A. & Sonenberg, N. Metformin for treatment of fragile X syndrome and other neurological disorders. Annu. Rev. Med. 70, 167–181 (2019).Article
Gantois,I.,Popic,J.,Khoutorsky,A。&Sonenberg,N。二甲双胍治疗脆性X综合征和其他神经系统疾病。年。修订版医学70167-181(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
O’Donnell, A. E. Bronchiectasis—a clinical review. New Engl. J. Med. 387, 533–545 (2022).Article
O'Donnell,A.E。支气管扩张症-临床综述。新英语。J、 。文章
PubMed
PubMed
Google Scholar
谷歌学者
Grand, D. L. et al. Discovery of icenticaftor (QBW251), a cystic fibrosis transmembrane conductance regulator potentiator with clinical efficacy in cystic fibrosis and chronic obstructive pulmonary disease. J. Med. Chem. 64, 7241–7260 (2021).Article
Grand,D.L.等人发现了一种囊性纤维化跨膜电导调节剂增强剂icenticaftor(QBW251),它在囊性纤维化和慢性阻塞性肺病中具有临床疗效。J、 医学化学。647241-7260(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rowe, S. M. et al. Efficacy and safety of the CFTR potentiator icenticaftor (QBW251) in COPD: results from a phase 2 randomized trial. Int. J. Chronic Obstr. Pulm. Dis. 15, 2399–2409 (2020).Article
Rowe,S.M.等人。CFTR增强剂icenticaftor(QBW251)在COPD中的疗效和安全性:来自2期随机试验的结果。Int.J.慢性阻塞性疾病。脉冲。Dis。152399-2409(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Kazani, S. et al. QBW251 is a safe and efficacious CFTR potentiator for patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 207, A7789 (2016).
Kazani,S。等人QBW251是囊性纤维化患者安全有效的CFTR增强剂。Am.J.Respir。暴击。护理医学207A7789(2016)。
Google Scholar
谷歌学者
Colombo, C. et al. Lumacaftor/ivacaftor in cystic fibrosis: effects on glucose metabolism and insulin secretion. J. Endocrinol. Investig. 44, 2213–2218 (2021).Article
Colombo,C。等人。Lumacaftor/ivacaftor在囊性纤维化中的作用:对葡萄糖代谢和胰岛素分泌的影响。J、 内分泌。调查。442213-2218(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Redman, A. W., Yoo, M., Freswick, P. & Thompson, K. Acute pancreatitis in a previously exocrine pancreatic insufficient cystic fibrosis patient who had improved pancreatic function after being treated with lumacaftor/ivacaftor. JPGN Rep. 2, e096 (2021).Article
Redman,A.W.,Yoo,M.,Freswick,P。&Thompson,K。先前外分泌胰腺不足的囊性纤维化患者的急性胰腺炎,在接受lumacaftor/ivacaftor治疗后胰腺功能得到改善。JPGN代表2,e096(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Verhelst, J. et al. Cabergoline in the treatment of hyperprolactinemia: a study in 455 patients. J. Clin. Endocrinol. Metab. 84, 2518–2522 (1999).Article
。J、 临床。内分泌。代谢。842518-2522(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Leng, F. & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17, 157–172 (2021).Article
Leng,F。&Edison,P。阿尔茨海默病中的神经炎症和小胶质细胞激活:我们从哪里开始?神经病学杂志。17157-172(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Boyd, R. J., Avramopoulos, D., Jantzie, L. L. & McCallion, A. S. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J. Neuroinflammation 19, 223 (2022).Article
Boyd,R.J.,Avramopoulos,D.,Jantzie,L.L。&McCallion,A.S。神经炎症代表了阿尔茨海默病和帕金森病的遗传和环境危险因素之间的共同主题。J、 神经炎症19223(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).Article
Gaulton,A。等人。ChEMBL:用于药物发现的大规模生物活性数据库。核酸研究40,D1100–D1107(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Davis, A. P. et al. Comparative toxicogenomics database (CTD): update 2021. Nucleic Acids Res. 49, D1138–D1143 (2021).Article
Davis,A.P.等人,《比较毒理基因组学数据库(CTD):2021年更新》。核酸研究49,D1138–D1143(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).Article
Wishart,D.S.等人,《DrugBank 5.0:2018年DrugBank数据库的重大更新》。核酸研究46,D1074–D1082(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gray, K. A. et al. Genenames. org: the HGNC resources in 2013. Nucleic Acids Res. 41, D545–D552 (2012).Article
Gray,K.A。等人,Genenames。组织:2013年的HGNC资源。核酸研究41,D545–D552(2012)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Köhler, S. et al. The human phenotype ontology in 2017. Nucleic Acids Res. 45, D865–D876 (2017).Article
Köhler,S。等人。2017年的人类表型本体论。核酸研究45,D865–D876(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Brown, G. R. et al. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res. 43, D36–D42 (2015).Article
。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kuhn, M., Letunic, I., Jensen, L. J. & Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016).Article
Kuhn,M.,Letunic,I.,Jensen,L.J。&Bork,P。SIDER药物和副作用数据库。核酸研究44,D1075–D1079(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).Article
UniProt财团。UniProt:蛋白质信息中心。核酸研究43,D204–D212(2015)。文章
Google Scholar
谷歌学者
Brown, S. H. et al. VA National Drug File Reference Terminology: a cross-institutional content coverage study. Medinfo 2004, 477–481 (2004).
Brown,S.H.等人,《VA国家药物文件参考术语:跨机构内容覆盖率研究》。Medinfo 2004477-481(2004)。
Google Scholar
谷歌学者
Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F. & Hamosh, A. O. M. I. M. org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43, D789–D798 (2015).Article
Amberger,J.S.,Bocchini,C.A.,Schiettecatte,F.,Scott,A.F。&Hamosh,A.O.M.I.M.org:人类孟德尔遗传在线(OMIM®),人类基因和遗传疾病的在线目录。核酸研究43,D789–D798(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mottaz, A., Yip, Y. L., Ruch, P. & Veuthey, A. L. Mapping proteins to disease terminologies: from UniProt to MeSH. In. BMC Bioinforma. 9, 1–10 (2008).Article
Mottaz,A.,Yep,Y.L.,Ruch,P。&Veuthey,A.L。将蛋白质映射到疾病术语:从UniProt到MeSH。在BMC生物信息学。9,1-10(2008)。文章
Google Scholar
谷歌学者
Li, G., Sun, Z., Qian, L., Guo, Q. & Hu, W. Rule-based data augmentation for knowledge graph embedding. AI Open 2, 186–196 (2021).Article
Li,G.,Sun,Z.,Qian,L.,Guo,Q。&Hu,W。基于规则的数据增强用于知识图嵌入。。文章
Google Scholar
谷歌学者
Bakker, C. E. et al. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 78, 23–33 (1994).
Bakker,C.E.等人,《Fmr1基因敲除小鼠:研究脆性X智力低下的模型》。荷兰-比利时脆性X财团。细胞78,23-33(1994)。
Google Scholar
谷歌学者
Gaudissard, J. et al. Behavioral abnormalities in the Fmr1‐KO2 mouse model of fragile X syndrome: the relevance of early life phases. Autism Res. 10, 1584–1596 (2017).Article
Gaudisard,J。等人。脆性X综合征Fmr1-KO2小鼠模型中的行为异常:早期生命阶段的相关性。自闭症研究101584-1596(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kazdoba, T. M., Leach, P. T., Silverman, J. L. & Crawley, J. N. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis. Res. 3, 118–133 (2014).Article
Kazdoba,T.M.,Leach,P.T.,Silverman,J.L。和Crawley,J.N。在Fmr1基因敲除小鼠中模拟脆性X综合征。难治性罕见疾病。第3118-133号决议(2014年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gantois, I. et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat. Med. 23, 674–677 (2017).Article
Gantois,I。等人。二甲双胍改善脆性X综合征小鼠模型的核心缺陷。《自然医学》23674-677(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schneider, A. et al. Metformin treatment in young children with fragile X syndrome. Mol. Genet. Genom. Med. 7, e956 (2019).Article
Schneider,A。等人。脆性X综合征幼儿的二甲双胍治疗。分子遗传学。基因组。。文章
Google Scholar
谷歌学者
Cogram, P. et al. Gaboxadol normalizes behavioral abnormalities in a mouse model of Fragile X syndrome. Front. Behav. Neurosci. 13, 141 (2019).Article
Cogram,P。等人。Gaboxadol使脆性X综合征小鼠模型中的行为异常正常化。正面。行为。神经科学。13141(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Budimirovic, D. B. et al. Gaboxadol in Fragile X syndrome: a 12-week randomized, double-blind, parallel-group, phase 2a study. Front. Pharmacol. 12, 757825 (2021).Article
Budimirovic,D.B.等人,《脆性X综合征中的加博沙多:一项为期12周的随机、双盲、平行组2a期研究》。正面。药理学。12757825(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Koekkoek, S. K. E. et al. Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, Enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron 47, 339–352 (2005).Article
Koekkoek,S.K.E.等人。Purkinje细胞中FMR1的缺失增强了平行纤维LTD,扩大了脊柱,并减弱了脆性X综合征的小脑眼睑调节。神经元47339-352(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mientjes, E. J. et al. The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol. Dis. 21, 549–555 (2006).Article
Mientjes,E.J.等人。产生条件性Fmr1敲除小鼠模型以研究体内Fmrp功能。神经生物学。Dis。21549-555(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article
Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Korotkevich, G., Sukhov, V. & Sergushichev, A. Fast gene set enrichment analysis. Preprint at http://biorxiv.org/content/early/2016/06/20/060012 (2019).Sudhahar, S. et al. An experimentally validated approach to automated biological evidence generation in drug discovery using knowledge graphs.
Korotkevich,G.,Sukhov,V。和Sergushichev,A。快速基因组富集分析。预印于http://biorxiv.org/content/early/2016/06/20/060012(2019年)。Sudhahar,S.等人。使用知识图在药物发现中自动生成生物证据的实验验证方法。
Gihub https://doi.org/10.5281/zenodo.10567080 (2024).Download referencesAuthor informationAuthors and AffiliationsHealx Ltd, Cambridge, United KingdomSaatviga Sudhahar, Bugra Ozer, Jiakang Chang, Wayne Chadwick, Daniel O’Donovan, Aoife Campbell, Emma Tulip, Neil Thompson & Ian RobertsAuthorsSaatviga SudhaharView author publicationsYou can also search for this author in.
Gihub公司https://doi.org/10.5281/zenodo.10567080(2024年)。下载参考文献作者信息作者和附属机构Alx Ltd,剑桥,United KingdomSaatviga Sudhahar,Bugra Ozer,Jiakang Chang,Wayne Chadwick,Daniel O'Donovan,Aoife Campbell,Emma Tulip,Neil Thompson&Ian Robertsaatviga SudhaharView作者出版物您也可以在中搜索此作者。
PubMed Google ScholarBugra OzerView author publicationsYou can also search for this author in
PubMed Google ScholarBugra OzerView作者出版物您也可以在
PubMed Google ScholarJiakang ChangView author publicationsYou can also search for this author in
PubMed Google ScholarJiakang ChangView作者出版物您也可以在
PubMed Google ScholarWayne ChadwickView author publicationsYou can also search for this author in
PubMed谷歌学者Wayne ChadwickView作者出版物您也可以在
PubMed Google ScholarDaniel O’DonovanView author publicationsYou can also search for this author in
PubMed Google ScholarDaniel O'DonovanView作者出版物您也可以在
PubMed Google ScholarAoife CampbellView author publicationsYou can also search for this author in
PubMed Google ScholarAoife CampbellView作者出版物您也可以在
PubMed Google ScholarEmma TulipView author publicationsYou can also search for this author in
PubMed Google ScholarEmma TulipView作者出版物您也可以在
PubMed Google ScholarNeil ThompsonView author publicationsYou can also search for this author in
PubMed Google ScholarNeil ThompsonView作者出版物您也可以在
PubMed Google ScholarIan RobertsView author publicationsYou can also search for this author in
PubMed谷歌学者RobertsView作者出版物您也可以在
PubMed Google ScholarContributionsS.S. designed and performed research including analysis of the data with the method; B.O. performed critical review and interpretation of the results, designed the automatic filtering pipeline, curated ground truth rules for disease case studies; S.S.
。S、 设计并进行研究,包括使用该方法分析数据;B、 O.对结果进行了严格的审查和解释,设计了自动过滤管道,策划了疾病病例研究的基本事实规则;S、 S。
and J.C. contributed to the creation of the software pipeline including evidence chains generation and automatic filtering; D.O’D contributed to the subgraph creation and the code repository enabling reproducibility of the results; W.C., A.C. and E.T. analysed evidence chains and preclinical experimental data for FXS and interpreted results; S.S., B.O., W.C.
J.C.为创建软件管道做出了贡献,包括证据链生成和自动过滤;D、 O为子图的创建和代码库做出了贡献,从而实现了结果的可重复性;W、 C.,A.C.和E.T.分析了FXS的证据链和临床前实验数据,并解释了结果;S、 S.,B.O.,W.C。
and I.R. wrote the paper; N.T. and I.R. reviewed all experimental results for publication.Corresponding authorCorrespondence to.
I.R.写了这篇论文;N、 T.和I.R.审查了所有实验结果以供发表。对应作者对应。
Saatviga Sudhahar.Ethics declarations
萨特维加·苏达哈尔。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Krishna Bulusu, and Frank Kooy for their contribution to the peer review of this work. A peer review file is available.
《自然通讯》感谢Krishna Bulusu和Frank Kooy为这项工作的同行评审做出的贡献。同行评审文件可用。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummaryPeer Review FileSource dataSource DataRights and permissions
Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息报告摘要同行评审文件源数据源数据权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleSudhahar, S., Ozer, B., Chang, J. et al. An experimentally validated approach to automated biological evidence generation in drug discovery using knowledge graphs.
转载和许可本文引用本文Sudhahar,S.,Ozer,B.,Chang,J。等人。一种通过实验验证的方法,使用知识图在药物发现中自动生成生物证据。
Nat Commun 15, 5703 (2024). https://doi.org/10.1038/s41467-024-50024-6Download citationReceived: 17 May 2023Accepted: 27 June 2024Published: 08 July 2024DOI: https://doi.org/10.1038/s41467-024-50024-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Commun 155703(2024)。https://doi.org/10.1038/s41467-024-50024-6Download收到引文日期:2023年5月17日接受日期:2024年6月27日发布日期:2024年7月8日OI:https://doi.org/10.1038/s41467-024-50024-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
Computational modelsDrug discoveryMachine learningPsychiatric disorders
计算模型Drug发现机器学习精神疾病
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。