EN
登录

SPRING通过取代抑制性前结构域许可S1P介导的SREBP2切割

SPRING licenses S1P-mediated cleavage of SREBP2 by displacing an inhibitory pro-domain

Nature 等信源发布 2024-07-09 08:34

可切换为仅中文


AbstractSite-one protease (S1P) conducts the first of two cleavage events in the Golgi to activate Sterol regulatory element binding proteins (SREBPs) and upregulate lipogenic transcription. S1P is also required for a wide array of additional signaling pathways. A zymogen serine protease, S1P matures through autoproteolysis of two pro-domains, with one cleavage event in the endoplasmic reticulum (ER) and the other in the Golgi.

AbstractSite one蛋白酶(S1P)在高尔基体中进行两次切割事件中的第一次,以激活固醇调节元件结合蛋白(SREBPs)并上调脂肪生成转录。S1P也是多种其他信号通路所必需的。S1P是一种酶原丝氨酸蛋白酶,通过两个pro结构域的自蛋白水解而成熟,一个在内质网(ER)中发生裂解事件,另一个在高尔基体中发生裂解事件。

We recently identified the SREBP regulating gene, (SPRING), which enhances S1P maturation and is necessary for SREBP signaling. Here, we report the cryo-EM structures of S1P and S1P-SPRING at sub-2.5 Å resolution. SPRING activates S1P by dislodging its inhibitory pro-domain and stabilizing intra-domain contacts.

我们最近鉴定了SREBP调节基因(SPRING),它增强了S1P的成熟,并且是SREBP信号传导所必需的。。SPRING通过去除其抑制性前结构域并稳定结构域内接触来激活S1P。

Functionally, SPRING licenses S1P to cleave its cognate substrate, SREBP2. Our findings reveal an activation mechanism for S1P and provide insights into how spatial control of S1P activity underpins cholesterol homeostasis..

在功能上,SPRING允许S1P切割其同源底物SREBP2。我们的发现揭示了S1P的激活机制,并为S1P活性的空间控制如何支持胆固醇稳态提供了见解。。

IntroductionSite-one protease (S1P, also known as Membrane-bound transcription factor site-1 protease (MBTPS1), or Subtilisin kexin isozyme 1 (SKI-1)), is a membrane-bound protease that mediates the proteolytic activation of transcription factors, hormones, and enzymes required for lipogenesis, the endoplasmic reticulum (ER) stress response, and lysosomal biogenesis, among others1,2.

引言site one蛋白酶(S1P,也称为膜结合转录因子site-1蛋白酶(MBTPS1)或枯草杆菌蛋白酶kexin同工酶1(SKI-1))是一种膜结合蛋白酶,可介导转录因子,激素的蛋白水解激活。脂肪生成,内质网(ER)应激反应和溶酶体生物发生等所需的酶1,2。

The best-studied role for S1P is in cholesterol homeostasis, where it conducts the first of two cleavage steps that mature the transcription factors Sterol regulatory element binding proteins (SREBPs) to upregulate cholesterol uptake and biosynthesis3,4. Genetic deletion of S1P is embryonically lethal in mice5 and zebrafish6, and the deletion of S1P in mouse livers results in decreased cholesterol and fatty acid biosynthesis and decreased plasma cholesterol5.

S1P研究得最好的作用是胆固醇稳态,它进行两个裂解步骤中的第一个,成熟转录因子固醇调节元件结合蛋白(SREBPs)以上调胆固醇摄取和生物合成3,4。S1P的遗传缺失在小鼠5和斑马鱼6中具有胚胎致死性,小鼠肝脏中S1P的缺失导致胆固醇和脂肪酸生物合成减少,血浆胆固醇降低5。

In humans, hypomorphic variants in MBTPS1 have been linked to skeletal dysplasia and elevated lysosomal enzymes in the blood7,8. Additionally, S1P is exploited by Arena viruses to mature their viral glycoproteins9,10,11 and by Hepatitis C virus (HCV), where S1P and SREBP are required to regulate the viral lifecycle12.

在人类中,MBTPS1的亚型变异与骨骼发育异常和血液中溶酶体酶升高有关7,8。此外,S1P被Arena病毒利用以成熟其病毒糖蛋白9,10,11和丙型肝炎病毒(HCV),其中S1P和SREBP需要调节病毒生命周期12。

Based on mutational analysis, the S1P cleavage motif is often described as RXXK↓ or RXXL ↓ . Mutation of the P4 Arg invariably eliminates cleavage by S1P and mutating the P1 residue to Ala also inhibits proteolysis of certain S1P substrates13,14,15. A more complete description of the motif is also reported as RX(L/I/V)Z, where X is residues other than Pro and Cys, and Z is preferably Lys or Leu and is not Val, Pro, Cys, or Glu1.

基于突变分析,S1P切割基序通常被描述为RXXK↓或RXXL↓。P4 Arg的突变总是消除S1P的切割,并且将P1残基突变为Ala也抑制某些S1P底物的蛋白水解13,14,15。基序的更完整描述也被报道为RX(L/I/V)Z,其中X是Pro和Cys以外的残基,Z优选Lys或Leu,而不是Val,Pro,Cys或Glu1。

S1P substrate preferences are distinct among the subtilisin-like proteases of the mammalian secretory pathway and the structural basis for the specificity of S1P activity is not known.Beginning fr.

S1P底物偏好在哺乳动物分泌途径的枯草杆菌蛋白酶样蛋白酶中是不同的,S1P活性特异性的结构基础尚不清楚。开始fr。

Data availability

数据可用性

The atomic models generated in this study are deposited in the Protein Data Bank (PDB) with codes PDB 8UW8 (S1Pecto-SPRINGecto) and PDB 8UWC(S1Pecto) and the cryo-EM maps are deposited in the Electron Microscopy Data Bank (EMDB) with the accession codes: EMD-42639 (S1Pecto-SPRINGecto) and EMD-42661 (S1Pecto).

The raw movies have been deposited to EMPIAR with the accession codes: EMPIAR-11928 (S1Pecto-SPRINGecto) and EMPIAR-11931 (S1Pecto). Atomic models generated previously that were used in this study are PDB 4Z2A and PDB 2PMW. Source data are provided with this paper. All other data are available from the corresponding authors upon request. Source data are provided with this paper..

原始电影已存入EMPIAR,登记号为:EMPIAR-11928(S1Pecto SPRINGecto)和EMPIAR-11931(S1Pecto)。先前在本研究中使用的原子模型是PDB 4Z2A和PDB 2PMW。本文提供了源数据。所有其他数据可应要求从通讯作者处获得。本文提供了源数据。。

ReferencesSeidah, N. G. & Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367–383 (2012).Article

参考文献Seidah,N.G。&Prat,A。前蛋白转化酶的生物学和治疗靶向。《药物目录》修订版。11367-383(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Danyukova, T., Schöneck, K. & Pohl, S. Site-1 and site-2 proteases: A team of two in regulated proteolysis. Biochimica et. Biophysica Acta (BBA) - Mol. Cell Res. 1869, 119138 (2022).Article

Danyukova,T.,Schöneck,K。&Pohl,S。Site-1和Site-2蛋白酶:一个由两人组成的调节蛋白水解团队。Biochimica et.Biophysica Acta(BBA)-分子细胞研究18691119138(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Sakai, J. et al. Molecular Identification of the Sterol-Regulated Luminal Protease that Cleaves SREBPs and Controls Lipid Composition of Animal Cells. Mol. Cell 2, 505–514 (1998).Article

Sakai,J.等人。固醇调节的腔蛋白酶的分子鉴定,其切割SREBP并控制动物细胞的脂质组成。分子细胞2505-514(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brown, M. S. & Goldstein, J. L. Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J. Lipid Res. 50, S15–S27 (2009).Article

Brown,M.S。和Goldstein,J.L。胆固醇反馈:从Schoenheimer的瓶子到Scap的MELADL。J、 脂质研究50,S15-S27(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, J. et al. Decreased lipid synthesis in livers of mice with disrupted Site-1 protease gene. Proc. Natl Acad. Sci. 98, 13607–13612 (2001).Article

Yang,J.等人降低了Site-1蛋白酶基因被破坏的小鼠肝脏中的脂质合成。程序。国家科学院。科学。9813607-13612(2001)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schlombs, K., Wagner, T. & Scheel, J. Site-1 protease is required for cartilage development in zebrafish. Proc. Natl Acad. Sci. 100, 14024–14029 (2003).Article

Schlombs,K.,Wagner,T。&Scheel,J。Site-1蛋白酶是斑马鱼软骨发育所必需的。程序。国家科学院。科学。10014024-14029(2003)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Carvalho, D. R., Speck-Martins, C. E., Brum, J. M., Ferreira, C. R. & Sobreira, N. L. M. Spondyloepimetaphyseal dysplasia with elevated plasma lysosomal enzymes caused by homozygous variant in MBTPS1. Am. J. Med. Genet. Part A 182, 1796–1800 (2020).Article

Carvalho,D.R.,Speck Martins,C.E.,Brum,J.M.,Ferreira,C.R。&Sobreira,N.L.M。脊椎干骺端发育不良,由MBTPS1中的纯合变异引起的血浆溶酶体酶升高。美国医学杂志Genet。A部分1821796-1800(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kondo, Y. et al. Site-1 protease deficiency causes human skeletal dysplasia due to defective inter-organelle protein trafficking. JCI Insight 3, e121596 (2018).Article

Kondo,Y。等人。由于细胞器间蛋白质运输缺陷,Site-1蛋白酶缺乏会导致人类骨骼发育异常。JCI Insight 3,e121596(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lenz, O., ter Meulen, J., Klenk, H.-D., Seidah, N. G. & Garten, W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc. Natl Acad. Sci. 98, 12701–12705 (2001).Article

Lenz,O.,ter Meulen,J.,Klenk,H.-D.,Seidah,N.G。&Garten,W。拉沙病毒糖蛋白前体GP-C由枯草杆菌酶SKI-1/S1P进行蛋白水解加工。程序。国家科学院。科学。9812701-12705(2001)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rojek, J. M., Lee, A. M., Nguyen, N., Spiropoulou, C. F. & Kunz, S. Site 1 protease is required for proteolytic processing of the glycoproteins of the South American hemorrhagic fever viruses Junin, Machupo, and Guanarito. J. Virol. 82, 6045–6051 (2008).Article

Rojek,J.M.,Lee,A.M.,Nguyen,N.,Spiropoulou,C.F。&Kunz,S。位点1蛋白酶是南美出血热病毒Junin,Machupo和Guarito糖蛋白水解加工所必需的。J、 维罗尔。826045-6051(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Seidah, N. G., Pasquato, A. & Andréo, U. How Do Enveloped Viruses Exploit the Secretory Proprotein Convertases to Regulate Infectivity and Spread? Viruses 13, 1229 (2021).Olmstead, A. D., Knecht, W., Lazarov, I., Dixit, S. B. & Jean, F. Human Subtilase SKI-1/S1P Is a Master Regulator of the HCV Lifecycle and a Potential Host Cell Target for Developing Indirect-Acting Antiviral Agents.

Seidah,N.G.,Pasquato,A。&Andréo,U。包膜病毒如何利用分泌性前蛋白转化酶来调节感染性和传播?病毒131229(2021)。Olmstead,A.D.,Knecht,W.,Lazarov,I.,Dixit,S.B。&Jean,F。人类枯草杆菌酶SKI-1/S1P是HCV生命周期的主要调节剂,也是开发间接作用抗病毒药物的潜在宿主细胞靶标。

PLOS Pathog. 8, e1002468 (2012).Article .

PLOS Pathog。。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marschner, K., Kollmann, K., Schweizer, M., Braulke, T. & Pohl, S. A Key Enzyme in the Biogenesis of Lysosomes Is a Protease That Regulates Cholesterol Metabolism. Science 333, 87–90 (2011).Article

Marschner,K.,Kollmann,K.,Schweizer,M.,Braulke,T。&Pohl,S。溶酶体生物发生中的关键酶是调节胆固醇代谢的蛋白酶。科学333,87-90(2011)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ye, J. et al. ER Stress Induces Cleavage of Membrane-Bound ATF6 by the Same Proteases that Process SREBPs. Mol. Cell 6, 1355–1364 (2000).Article

Ye,J。等人。内质网应激诱导膜结合的ATF6被处理SREBP的相同蛋白酶切割。摩尔细胞61355-1364(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sakai, J. et al. Sterol-Regulated Release of SREBP-2 from Cell Membranes Requires Two Sequential Cleavages, One Within a Transmembrane Segment. Cell 85, 1037–1046 (1996).Article

Sakai,J。等人。固醇调节的SREBP-2从细胞膜释放需要两个连续的切割,一个在跨膜片段内。细胞851037-1046(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gensberg, K., Jan, S. & Matthews, G. M. Subtilisin-related serine proteases in the mammalian constitutive secretory pathway. Semin. Cell Developmental Biol. 9, 11–17 (1998).Article

Gensberg,K.,Jan,S。&Matthews,G.M。枯草杆菌蛋白酶在哺乳动物组成型分泌途径中的相关丝氨酸蛋白酶。塞米。细胞发育生物学。9,11-17(1998)。文章

CAS

中科院

Google Scholar

谷歌学者

Wells, J. A. & Estell, D. A. Subtilisin — an enzyme designed to be engineered. Trends Biochem. Sci. 13, 291–297 (1988).Article

。趋势生物化学。科学。13291-297(1988)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bryan, P., Pantoliano, M. W., Quill, S. G., Hsiao, H. Y. & Poulos, T. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc. Natl Acad. Sci. USA 83, 3743–3745 (1986).Article

。程序。国家科学院。科学。美国833743-3745(1986)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Seidah, N. G. et al. Mammalian subtilisin/kexin isozyme SKI-1: A widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc. Natl Acad. Sci. 96, 1321–1326 (1999).Article

Seidah,N.G.等人。哺乳动物枯草杆菌蛋白酶/kexin同工酶SKI-1:一种广泛表达的前蛋白转化酶,具有独特的切割特异性和细胞定位。程序。国家科学院。科学。961321-1326(1999)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Espenshade, P. J., Cheng, D., Goldstein, J. L. & Brown, M. S. Autocatalytic Processing of Site-1 Protease Removes Propeptide and Permits Cleavage of Sterol Regulatory Element-binding Proteins. J. Biol. Chem. 274, 22795–22804 (1999).Article

Espenshade,P.J.,Cheng,D.,Goldstein,J.L。和Brown,M.S。Site-1蛋白酶的自催化加工去除前肽并允许甾醇调节元件结合蛋白的切割。J、 生物。化学。27422795-22804(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cheng, D. et al. Secreted Site-1 Protease Cleaves Peptides Corresponding to Luminal Loop of Sterol Regulatory Element-binding Proteins*. J. Biol. Chem. 274, 22805–22812 (1999).Article

Cheng,D。等人。分泌的Site-1蛋白酶切割对应于固醇调节元件结合蛋白的腔环的肽*。J、 生物。化学。27422805-22812(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

da Palma, J. R. et al. Zymogen Activation and Subcellular Activity of Subtilisin Kexin Isozyme 1/Site 1 Protease*. J. Biol. Chem. 289, 35743–35756 (2014).Article

da Palma,J.R.等人。枯草杆菌蛋白酶Kexin同工酶1/位点1蛋白酶*的酶原活化和亚细胞活性。J、 生物。化学。28935743–35756(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Elagoz, A., Benjannet, S., Mammarbassi, A., Wickham, L. & Seidah, N. G. Biosynthesis and Cellular Trafficking of the Convertase SKI-1/S1P: ECTODOMAIN SHEDDING REQUIRES SKI-1 ACTIVITY*. J. Biol. Chem. 277, 11265–11275 (2002).Article

Elagoz,A.,Benjannet,S.,Mammarbassi,A.,Wickham,L。&Seidah,N.G。转化酶SKI-1/S1P的生物合成和细胞运输:胞外域脱落需要SKI-1活性*。J、 生物。化学。27711265-11275(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Ann. Rev. Biochem. 87, 783–807 (2018).Sakai, J. et al. Identification of Complexes between the COOH-terminal Domains of Sterol Regulatory Element-binding Proteins (SREBPs) and SREBP Cleavage-Activating Protein.

Brown,M.S.,Radhakrishnan,A。&Goldstein,J.L。胆固醇稳态回顾:Scap的核心作用。生物化学评论。。Sakai,J.等人。甾醇调节元件结合蛋白(SREBPs)的COOH末端结构域与SREBP裂解激活蛋白之间复合物的鉴定。

J. Biol. Chem. 272, 20213–20221 (1997).Article .

J.生物学。化学。272, 20213-20221 (1997).第[UNK]条。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nohturfft, A., DeBose-Boyd, R. A., Scheek, S., Goldstein, J. L. & Brown, M. S. Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc. Natl Acad. Sci. 96, 11235–11240 (1999).Article

Nohturfft,A.,DeBose Boyd,R.A.,Scheek,S.,Goldstein,J.L。和Brown,M.S。甾醇调节内质网和高尔基体之间SREBP裂解激活蛋白(SCAP)的循环。程序。国家科学院。科学。9611235-11240(1999)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Radhakrishnan, A., Goldstein, J. L., McDonald, J. G. & Brown, M. S. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 8, 512–521 (2008).Article

Radhakrishnan,A.,Goldstein,J.L.,McDonald,J.G。&Brown,M.S。由ER胆固醇的微小变化触发的SREBP-2转运的类似开关的控制:微妙的平衡。细胞代谢。8512-521(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hua, X., Sakai, J., Brown, M. S. & Goldstein, J. L. Regulated Cleavage of Sterol Regulatory Element Binding Proteins Requires Sequences on Both Sides of the Endoplasmic Reticulum Membrane. J. Biol. Chem. 271, 10379–10384 (1996).Article

Hua,X.,Sakai,J.,Brown,M.S。&Goldstein,J.L。固醇调节元件结合蛋白的调节切割需要内质网膜两侧的序列。J、 生物。化学。27110379-10384(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Duncan, E. A., Brown, M. S., Goldstein, J. L. & Sakai, J. Cleavage Site for Sterol-regulated Protease Localized to a Leu-Ser Bond in the Lumenal Loop of Sterol Regulatory Element-binding Protein-2. J. Biol. Chem. 272, 12778–12785 (1997).Article

Duncan,E.A.,Brown,M.S.,Goldstein,J.L。和Sakai,J。固醇调节蛋白酶的切割位点位于固醇调节元件结合蛋白-2的腔环中的Leu-Ser键。J、 生物。化学。27212778-12785(1997)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shao, W. & Espenshade, P. J. Sterol Regulatory Element-binding Protein (SREBP) Cleavage Regulates Golgi-to-Endoplasmic Reticulum Recycling of SREBP Cleavage-activating Protein (SCAP). J. Biol. Chem. 289, 7547–7557 (2014).Article

Shao,W。&Espenshade,P。J。固醇调节元件结合蛋白(SREBP)裂解调节SREBP裂解激活蛋白(SCAP)的高尔基体到内质网的再循环。J、 生物。化学。2897547-7557(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rawson, R. B., Cheng, D., Brown, M. S. & Goldstein, J. L. Isolation of Cholesterol-requiring Mutant Chinese Hamster Ovary Cells with Defects in Cleavage of Sterol Regulatory Element-binding Proteins at Site 1. J. Biol. Chem. 273, 28261–28269 (1998).Article

Rawson,R.B.,Cheng,D.,Brown,M.S。&Goldstein,J.L。分离需要胆固醇的突变中国仓鼠卵巢细胞,其在位点1处具有固醇调节元件结合蛋白切割缺陷。J、 生物。化学。27328261–28269(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kober, D. L. et al. Scap structures highlight key role for rotation of intertwined luminal loops in cholesterol sensing. Cell 184, 3689–3701.e22 (2021).Article

Kober,D.L.等人的Scap结构突出了胆固醇传感中交织的腔环旋转的关键作用。细胞1843689–3701.e22(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kober, D. L. et al. Identification of a degradation signal at the carboxy terminus of SREBP2: A new role for this domain in cholesterol homeostasis. Proc. Natl Acad. Sci. 117, 28080–28091 (2020).Article

Kober,D.L.等人。鉴定SREBP2羧基末端的降解信号:该结构域在胆固醇稳态中的新作用。程序。国家科学院。科学。11728080-28091(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hendrix, S. & Zelcer, N. A new SPRING in lipid metabolism. Curr. Opin. Lipidol. 34, 201–207 (2023).Article

。货币。奥平。利皮多尔。34201-207(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Loregger, A. et al. Haploid genetic screens identify SPRING/C12ORF49 as a determinant of SREBP signaling and cholesterol metabolism. Nat. Commun. 11, 1128 (2020).Article

Loregger,A。等人。单倍体遗传筛选将SPRING/C12ORF49鉴定为SREBP信号传导和胆固醇代谢的决定因素。国家公社。111128(2020)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiao, J. et al. POST1/C12ORF49 regulates the SREBP pathway by promoting site-1 protease maturation. Protein Cell 12, 279–296 (2020).Article

Xiao,J。等人。POST1/C12ORF49通过促进site-1蛋白酶成熟来调节SREBP途径。蛋白质细胞12279-296(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bayraktar, E. C. et al. Metabolic coessentiality mapping identifies C12orf49 as a regulator of SREBP processing and cholesterol metabolism. Nat. Metab. 2, 487–498 (2020).Article

Bayraktar,E.C.等人的代谢同源性作图将C12orf49鉴定为SREBP加工和胆固醇代谢的调节剂。自然代谢。2487-498(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aregger, M. et al. Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nat. Metab. 2, 499–513 (2020).Article

Aregger,M。等人。从头脂肪酸合成的遗传相互作用的系统作图确定C12orf49是脂质代谢的调节剂。自然代谢。2499-513(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hendrix, S. et al. SPRING is a Dedicated Licensing Factor for SREBP-Specific Activation by S1P. Mol. Cell. Biol. 44, 123–137 (2024).Article

Hendrix,S.等人,SPRING是S1P激活SREBP特异性的专用许可因子。摩尔电池。生物学44123-137(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

DeBose-Boyd, R. A. et al. Transport-Dependent Proteolysis of SREBP. Cell 99, 703–712 (1999).Article

DeBose Boyd,R.A。等人。SREBP的转运依赖性蛋白水解。细胞99703-712(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hendrix, S. et al. Hepatic SREBP signaling requires SPRING to govern systemic lipid metabolism in mice and humans. Nat. Commun. 14, 5181 (2023).Article

Hendrix,S。等人。肝脏SREBP信号传导需要春天来控制小鼠和人类的全身脂质代谢。国家公社。145181(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Touré, B. B. et al. Biosynthesis and Enzymatic Characterization of Human SKI-1/S1P and the Processing of Its Inhibitory Prosegment*. J. Biol. Chem. 275, 2349–2358 (2000).Article

Touré,B.B.等人。人SKI-1/S1P的生物合成和酶学表征及其抑制性前段的加工*。J、 生物。化学。2752349-2358(2000)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cunningham, D. et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat. Struct. Mol. Biol. 14, 413–419 (2007).Article

Cunningham,D。等人。PCSK9及其与家族性高胆固醇血症相关的突变体的结构和生物物理研究。自然结构。分子生物学。14413-419(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Piper, D. E. et al. The Crystal Structure of PCSK9: A Regulator of Plasma LDL-Cholesterol. Structure 15, 545–552 (2007).Article

Piper,D.E.等人。PCSK9的晶体结构:血浆LDL胆固醇的调节剂。结构15545-552(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hampton, E. N. et al. The self-inhibited structure of full-length PCSK9 at 1.9 Å reveals structural homology with resistin within the C-terminal domain. Proc. Natl Acad. Sci. 104, 14604–14609 (2007).Article

Hampton,E.N。等人。全长PCSK9在1.9Å处的自抑制结构揭示了与C端结构域内抵抗素的结构同源性。程序。国家科学院。科学。10414604-14609(2007)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reeves, P. J., Callewaert, N., Contreras, R. & Khorana, H. G. Structure and function in rhodopsin: High-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line.

Reeves,P.J.,Callewaert,N.,Contreras,R。&Khorana,H.G。视紫红质的结构和功能:通过四环素诱导的N-乙酰葡糖胺基转移酶I阴性HEK293S稳定的哺乳动物细胞系,视紫红质的高水平表达具有限制性和均匀的N-糖基化。

Proc. Natl Acad. Sci. 99, 13419–13424 (2002).Article .

程序。国家科学院。科学。9913419-13424(2002)。文章。

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

da Palma, J. R., Cendron, L., Seidah, N. G., Pasquato, A. & Kunz, S. Mechanism of Folding and Activation of Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P). J. Biol. Chem. 291, 2055–2066 (2016).Article

da Palma,J.R.,Cendron,L.,Seidah,N.G.,Pasquato,A。&Kunz,S。枯草杆菌蛋白酶Kexin同工酶-1(SKI-1)/位点-1蛋白酶(S1P)折叠和活化的机制。J、 生物。化学。2912055-2066(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ye, J. Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation). J. Biol. Chem. 295, 10271–10280 (2020).Article

Ye,J。通过RIP(调节的膜内蛋白水解)和大鼠(调节的替代易位)激活的转录因子。J、 生物。化学。29510271–10280(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2021).Article

Varadi,M。等人。AlphaFold蛋白质结构数据库:通过高精度模型大规模扩展蛋白质序列空间的结构覆盖范围。核酸研究50,D439–D444(2021)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Beatson, S. & Ponting, C. P. GIFT domains: linking eukaryotic intraflagellar transport and glycosylation to bacterial gliding. Trends Biochem. Sci. 29, 396–399 (2004).Article

Beatson,S。&Ponting,C.P。GIFT域:将真核鞭毛内运输和糖基化与细菌滑动联系起来。趋势生物化学。科学。29396-399(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Than, M. E. et al. The endoproteinase furin contains two essential Ca2+ ions stabilizing its N-terminus and the unique S1 specificity pocket. Acta Crystallogr. Sect. D. 61, 505–512 (2005).Article

Than,M.E.等人。内蛋白酶弗林蛋白酶含有两个稳定其N端的必需Ca2+离子和独特的S1特异性口袋。晶体学报。第节。D、 61505-512(2005)。文章

ADS

广告

Google Scholar

谷歌学者

Kiessling, L. L. & Diehl, R. C. CH−π Interactions in Glycan Recognition. ACS Chem. Biol. 16, 1884–1893 (2021).Article

Kiessling,L.L。和Diehl,R.C。聚糖识别中的CH-π相互作用。ACS化学。生物学161884-1893(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Petrilli, W. L. et al. From Screening to Targeted Degradation: Strategies for the Discovery and Optimization of Small Molecule Ligands for PCSK9. Cell Chem. Biol. 27, 32–40.e3 (2020).Article

Petrilli,W.L.等人,《从筛选到靶向降解:PCSK9小分子配体的发现和优化策略》。细胞化学。生物学27,32-40.e3(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Holm, L. DALI and the persistence of protein shape. Protein Sci. 29, 128–140 (2020).Article

Holm,L。DALI和蛋白质形状的持久性。。29128-140(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pearce, K. H. et al. BacMam production and crystal structure of nonglycosylated apo human furin at 1.89 A resolution. Acta Crystallogr. Sect. F. 75, 239–245 (2019).Article

Pearce,K.H.等人。非糖基化载脂蛋白人弗林蛋白酶的BacMam产生和晶体结构,分辨率为1.89 A。晶体学报。第节。F、 75239-245(2019)。文章

CAS

中科院

Google Scholar

谷歌学者

Hay, B. A. et al. Aminopyrrolidineamide inhibitors of site-1 protease. Bioorg. Medicinal Chem. Lett. 17, 4411–4414 (2007).Article

Hay,B.A.等人,site-1蛋白酶的氨基吡咯烷酰胺抑制剂。生物组织药物化学。利特。174411-4414(2007)。文章

CAS

中科院

Google Scholar

谷歌学者

Burri, D. J. et al. Molecular Characterization of the Processing of Arenavirus Envelope Glycoprotein Precursors by Subtilisin Kexin Isozyme-1/Site-1 Protease. J. Virol. 86, 4935–4946 (2012).Article

Burri,D.J.等人。枯草杆菌蛋白酶-Kexin同工酶-1/位点-1蛋白酶加工沙粒病毒包膜糖蛋白前体的分子表征。J、 维罗尔。864935-4946(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pullikotil, P., Vincent, M., Nichol, S. T. & Seidah, N. G. Development of Protein-based Inhibitors of the Proprotein of Convertase SKI-1/S1P: PROCESSING OF SREBP-2, ATF6, AND A VIRAL GLYCOPROTEIN*. J. Biol. Chem. 279, 17338–17347 (2004).Article

Pullikotil,P.,Vincent,M.,Nichol,S.T。&Seidah,N.G。开发基于蛋白质的转化酶SKI-1/S1P前蛋白抑制剂:加工SREBP-2,ATF6和病毒糖蛋白*。J、 生物。化学。27917338-17347(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Morales-Perez, C. L., Noviello, C. M. & Hibbs, R. E. Manipulation of Subunit Stoichiometry in Heteromeric Membrane Proteins. Structure 24, 797–805 (2016).Article

Morales-Perez,C.L.,Noviello,C.M。和Hibbs,R.E。操纵异源膜蛋白中的亚基化学计量。结构24797-805(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).Article

Mastronarde,D.N。使用样本运动的稳健预测进行自动电子显微镜断层扫描。J、 结构。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article

Punjani,A.,Rubinstein,J.L.,Fleet,D.J。&Brubaker,M.A。cryoSPARC:快速无监督低温电磁结构测定的算法。自然方法14290-296(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D. 66, 486–501 (2010).Article

Emsley,P.,Lohkamp,B.,Scott,W.G。和Cowtan,K。Coot的特征和发展。晶体学报。第节。D、 66486-501(2010)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Croll, T. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. Sect. D. 74, 519–530 (2018).Article

克罗尔,T。伊索尔德:一个物理现实的环境,用于将模型构建成低分辨率电子密度图。晶体学报。第节。D、 74519-530(2018)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. Sect. D. 74, 531–544 (2018).Article

Afonine,P.V.等人,《PHENIX中用于低温电磁和晶体学的真实空间改进》。晶体学报。第节。D、 74531-544(2018)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).Article

Robert,X。&Gouet,P。使用新的ENDscript服务器破译蛋白质结构中的关键特征。核酸研究42,W320–W324(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis project was supported in part by R00GM141261 (to DLK). HH was supported through the Dr. Emmett J. Conrad Leadership Program. N.Z. is an Established Investigator of the Dutch Heart Foundation (2013T111) and is supported by a Vici grant from the Netherlands Organization for Scientific Research (NWO; 016.176.643) and an NWO ENW grant (M.22.034; GENESIS).

下载参考文献致谢R00GM141261(向DLK)部分支持该项目。HH得到了Emmett J.Conrad博士领导力计划的支持。N、 Z.是荷兰心脏基金会(2013T111)的资深研究员,并得到荷兰科学研究组织(NWO;016.176.643)和NWO ENW资助(M.22.034;GENESIS)的Vici资助。

All cryo-EM data was collected at the UT Southwestern Cryo-Electron Microscopy Facility (CEMF). We thank Dan Stoddard, Ph.D., and the CEMF staff for assistance with cryo-EM data collection. The CEMF is supported by a core facilities award from the Cancer Prevention & Research Institute of Texas (CPRIT RP220582).

。我们感谢Dan Stoddard博士和CEMF工作人员在低温电磁数据收集方面的帮助。CEMF得到了德克萨斯州癌症预防与研究所(CPRIT RP220582)颁发的核心设施奖的支持。

We thank Chad Brautigam and Shih-Chia Tso for carrying out SEC-MALS and Mass Photometry experiments. We thank members of the Zelcer and Kober labs and Irith Koster for their critical comments and suggestions on this study.Author informationAuthors and AffiliationsDepartment of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the NetherlandsSebastian Hendrix, Jenina Kingma & Noam ZelcerDepartment of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USAVincent Dartigue, Hailee Hall, Shrankhla Bawaria, Bilkish Bajaj & Daniel L.

我们感谢Chad Brautigam和Shih Chia Tso进行SEC-MALS和质量光度测定实验。我们感谢Zelcer和Kober实验室的成员以及Irith Koster对这项研究的批判性评论和建议。作者信息作者和附属机构阿姆斯特丹大学医学生物化学系,阿姆斯特丹UMC,阿姆斯特丹心血管科学与胃肠学与代谢系,阿姆斯特丹大学,Meibergdreef 91105AZ,阿姆斯特丹,荷兰巴斯蒂安·亨德里克斯,Jenina Kingma&Noam Zelcer德克萨斯大学西南医学中心生物化学系,德克萨斯州达拉斯,75390,USAVENT Dartigue,Hailee Hall,Shrankhla Bawaria,Bilkish Bajaj&Daniel L。

KoberAuthorsSebastian HendrixView author publicationsYou can also search for this author in.

KoberAuthorsSebastianHendrixview作者出版物您也可以在中搜索此作者。

PubMed Google ScholarVincent DartigueView author publicationsYou can also search for this author in

PubMed谷歌学者Vincent DartigueView作者出版物您也可以在

PubMed Google ScholarHailee HallView author publicationsYou can also search for this author in

PubMed Google ScholarHailee HallView作者出版物您也可以在

PubMed Google ScholarShrankhla BawariaView author publicationsYou can also search for this author in

PubMed Google ScholarShrankhla BawariaView作者出版物您也可以在

PubMed Google ScholarJenina KingmaView author publicationsYou can also search for this author in

PubMed Google ScholarJenina KingmaView作者出版物您也可以在

PubMed Google ScholarBilkish BajajView author publicationsYou can also search for this author in

PubMed Google ScholarBilkish BajajView作者出版物您也可以在

PubMed Google ScholarNoam ZelcerView author publicationsYou can also search for this author in

PubMed Google ScholarNoam ZelcerView作者出版物您也可以在

PubMed Google ScholarDaniel L. KoberView author publicationsYou can also search for this author in

PubMed Google ScholarDaniel L.KoberView作者出版物您也可以在

PubMed Google ScholarContributionsS.H. conceptualized the study, developed and carried out western blot experiments and revised and edited the paper. V.D. developed the protease assay, determined the enzyme kinetics, and developed and carried out the competitive coIP assay. H.H.

PubMed谷歌学术贡献。H、 将研究概念化,开发并进行了蛋白质印迹实验,并修订和编辑了论文。五、 。H、 H。

carried out the protein purifications for cryo-EM grid preps, carried out biochemical characterization of the protein samples, and conducted initial coIP assays. S.B. carried out protease assays. J.K. carried out western blot experiments. B.B. carried out with molecular biology and protein expression experiments.

进行了冷冻EM网格制备的蛋白质纯化,对蛋白质样品进行了生化表征,并进行了初步的coIP分析。S、 B.进行蛋白酶测定。J、 K.进行了蛋白质印迹实验。B、 B.通过分子生物学和蛋白质表达实验进行。

N.Z. conceived the project, supervised research, and wrote the paper. D.L.K. conceived the project, supervised research, did the cryo-EM analysis, carried out biochemical assays, and wrote the paper.Corresponding authorsCorrespondence to.

N、 Z.构思了这个项目,监督了研究,并撰写了论文。D、 L.K.构思了该项目,监督了研究,进行了低温电磁分析,进行了生化分析,并撰写了论文。通讯作者通讯。

Noam Zelcer or Daniel L. Kober.Ethics declarations

诺姆·泽尔或丹尼尔·科伯。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

Peer review information

同行评审信息

Nature Communications thanks Anthony O’Donoghue, Nabil Seidah and Wei-Jen Tang for their contribution to the peer review of this work. A peer review file is available.

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileReporting SummarySource dataSource dataRights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件报告摘要源数据源数据权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleHendrix, S., Dartigue, V., Hall, H. et al. SPRING licenses S1P-mediated cleavage of SREBP2 by displacing an inhibitory pro-domain.

转载和许可本文引用本文Hendrix,S.,Dartigue,V.,Hall,H。等人。SPRING通过置换抑制性前结构域来许可S1P介导的SREBP2切割。

Nat Commun 15, 5732 (2024). https://doi.org/10.1038/s41467-024-50068-8Download citationReceived: 17 February 2024Accepted: 28 June 2024Published: 09 July 2024DOI: https://doi.org/10.1038/s41467-024-50068-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》155732(2024)。https://doi.org/10.1038/s41467-024-50068-8Download引文接收日期:2024年2月17日接受日期:2024年6月28日发布日期:2024年7月9日OI:https://doi.org/10.1038/s41467-024-50068-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。