EN
登录

结合易错聚合酶链式反应(epPCR)和环状聚合酶延伸克隆(CPEC)提高随机诱变文库的覆盖率

Combination of error-prone PCR (epPCR) and Circular Polymerase Extension Cloning (CPEC) for improving the coverage of random mutagenesis libraries

Nature 等信源发布 2024-07-10 09:00

可切换为仅中文


AbstractRandom mutagenesis, such as error-prone PCR (epPCR), is a technique capable of generating a wide variety of a single gene. However, epPCR can produce a large number of mutated gene variants, posing a challenge in ligating these mutated PCR products into plasmid vectors. Typically, the primers for mutagenic PCRs incorporate artificial restriction enzyme sites compatible with chosen plasmids.

摘要随机诱变,例如易错PCR(epPCR),是一种能够产生多种单一基因的技术。然而,epPCR可以产生大量突变的基因变体,这对将这些突变的PCR产物连接到质粒载体中构成了挑战。通常,诱变PCR的引物包含与所选质粒相容的人工限制酶位点。

Products are cleaved and ligated to linearized plasmids, then recircularized by DNA ligase. However, this cut-and-paste method known as ligation-dependent process cloning (LDCP), has limited efficiency, as the loss of potential mutants is inevitable leading to a significant reduction in the library’s breadth.

将产物切割并连接至线性化质粒,然后通过DNA连接酶再循环。然而,这种被称为连接依赖性过程克隆(LDCP)的剪切粘贴方法效率有限,因为潜在突变体的丢失不可避免地导致文库宽度的显着减少。

An alternative to LDCP is the circular polymerase extension cloning (CPEC) method. This technique involves a reaction where a high-fidelity DNA polymerase extends the overlapping regions between the insert and vector, forming a circular molecule. In this study, our objective was to compare the traditional cut-and-paste enzymatic method with CPEC in producing a variant library from the gene encoding the red fluorescent protein (DsRed2) obtained by epPCR.

LDCP的替代方法是循环聚合酶延伸克隆(CPEC)方法。该技术涉及一种反应,其中高保真DNA聚合酶延伸插入物和载体之间的重叠区域,形成环状分子。在这项研究中,我们的目的是比较传统的剪切粘贴酶法和CPEC从epPCR获得的编码红色荧光蛋白(DsRed2)的基因产生变异文库。

Our findings suggest that CPEC can accelerate the cloning process in gene library generation, enabling the acquisition of a greater number of gene variants compared to methods reliant on restriction enzymes..

我们的研究结果表明,与依赖限制性内切酶的方法相比,CPEC可以加速基因文库生成中的克隆过程,从而能够获得更多的基因变异。。

IntroductionProteins are biomolecules with significant potential for applications in research, the food and pharmaceutical industries1, and disease treatment2. Their amino acid sequences are determined by the information encoded in the genes. These sequences evolve due to spontaneous mutations, which are naturally selected by the environment or other factors.

引言蛋白质是一种生物分子,在研究,食品和制药工业1以及疾病治疗2中具有重要的应用潜力。它们的氨基酸序列由基因中编码的信息决定。这些序列是由于自发突变而进化的,自发突变是由环境或其他因素自然选择的。

Numerous technologies have been developed to study protein evolution in the laboratory. These aim to accelerate mutational rates, generate a vast array of variants, and facilitate the selection of proteins with desired characteristics. Different alterations to the polymerase chain reaction (PCR) method have made both site-specific and random mutagenesis more accessible.

已经开发了许多技术来研究实验室中的蛋白质进化。这些旨在加速突变率,产生大量变体,并促进选择具有所需特征的蛋白质。聚合酶链反应(PCR)方法的不同改变使得位点特异性和随机诱变更容易获得。

This has improved enzyme stability across broader pH and temperature ranges and increased tolerance to various organic solvents. There are many specific methods for protein engineering, which can be broadly categorized into two main groups: those based on the rational design of protein modifications and combinatorial methods that introduce changes randomly (For review see3).Random mutagenesis, for example, is a technology capable of generating high diversity from a single gene that involves the creation of libraries consisting of large numbers of genetic variants, where each member can be isolated and individually assessed concerning the genotype–phenotype relationship4.

这在更宽的pH和温度范围内提高了酶的稳定性,并提高了对各种有机溶剂的耐受性。蛋白质工程有许多特定的方法,可以大致分为两大类:基于蛋白质修饰的合理设计的方法和随机引入变化的组合方法(有关综述,请参见3)。例如,随机诱变是一种能够从单个基因产生高度多样性的技术,它涉及创建由大量遗传变异组成的文库,其中每个成员都可以被分离出来,并就基因型与表型的关系进行单独评估4。

Genetic variants can be obtained from methods such as error-prone PCR (epPCR). This last methodology, developed by Leung et al.5, uses a low-fidelity DNA polymerase that, under certain conditions, can introduce random mutations during PCR amplification of a target gene. The products of these mutagenic PCRs must then be linked to plasmid vectors and used to produce gene libraries.

遗传变异可以通过易错PCR(epPCR)等方法获得。Leung等人开发的最后一种方法使用了一种低保真DNA聚合酶,在某些条件下,该聚合酶可以在靶基因的PCR扩增过程中引入随机突变。然后必须将这些诱变PCR的产物与质粒载体连接并用于产生基因文库。

Al.

艾尔。

Data availability

数据可用性

The data and materials used in this study are available upon request from the corresponding author, D.V.A. The sequence data used in this study are available at https://www.ncbi.nlm.nih.gov for pCDF1b (Accession Number OR900361.1) and at https://www.uniprot.org for the plasmid pDsRed2 (Accession Number Q9U6Y8)..

https://www.ncbi.nlm.nih.gov对于pCDF1b(登录号OR900361.1)和https://www.uniprot.org对于质粒pDsRed2(登录号Q9U6Y8)。。

ReferencesPuetz, J. & Wurm, F. M. Recombinant proteins for industrial versus pharmaceutical purposes: A review of process and pricing. Processes 7, 476. https://doi.org/10.3390/pr7080476 (2019).Article

参考文献Puetz,J.&Wurm,F.M。用于工业与制药目的的重组蛋白:工艺和定价综述。过程7476。https://doi.org/10.3390/pr7080476(2019年)。文章

CAS

中科院

Google Scholar

谷歌学者

Wang, L. et al. Therapeutic peptides: Current applications and future directions. Sig. Transduct. Target. Ther. 7, 48. https://doi.org/10.1038/s41392-022-00904-4 (2022).Article

Wang,L.等人。治疗性肽:当前应用和未来方向。信号。Transduct公司。目标。他们。7,48。https://doi.org/10.1038/s41392-022-00904-4(2022年)。文章

CAS

中科院

Google Scholar

谷歌学者

Gardner, A. F. & Kelman, Z. DNA polymerases in biotechnology. Front. Microbiol. 5, 659. https://doi.org/10.3389/fmicb.2014.00659 (2014).Article

Gardner,A.F。&Kelman,Z。生物技术中的DNA聚合酶。正面。微生物。5659页。https://doi.org/10.3389/fmicb.2014.00659(2014年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Labrou, N. E. Random mutagenesis methods for in vitro directed enzyme evolution. Curr. Protein Pept. Sci. 11(1), 91–100. https://doi.org/10.2174/138920310790274617 (2010).Article

Labrou,N.E。用于体外定向酶进化的随机诱变方法。。蛋白质Pept。科学。11(1),91-100。https://doi.org/10.2174/138920310790274617(2010年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Leung, D. W., Chen, E. & Goeddel, D. V. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1, 11–15 (1989).

Leung,D.W.,Chen,E。&Goeddel,D.V。一种使用改进的聚合酶链反应对定义的DNA片段进行随机诱变的方法。技术1,11-15(1989)。

Google Scholar

谷歌学者

Bryksin, A. V. & Matsumura, I. Overlap extension PCR cloning: A simple and reliable way to create recombinant plasmids. Biotechniques. 48(6), 463–465. https://doi.org/10.2144/000113418 (2010).Article

Bryksin,A.V。&Matsumura,I。重叠延伸PCR克隆:创建重组质粒的简单可靠方法。生物技术。48(6),463-465。https://doi.org/10.2144/000113418(2010年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Geiser, M., Cébe, R., Drewello, D. & Schmitz, R. Integration of PCR fragments at any specific site within cloning vectors without the use of restriction enzymes and DNA ligase. Biotechniques 31(1), 88–92. https://doi.org/10.2144/01311st05 (2001).Article

Geiser,M.,Cébe,R.,Drewello,D。&Schmitz,R。在不使用限制酶和DNA连接酶的情况下,在克隆载体内的任何特定位点整合PCR片段。生物技术31(1),88-92。https://doi.org/10.2144/01311st05(2001年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tillett, D. & Neilan, B. A. Enzyme-free cloning: A rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Res. 27(19), e26–e28. https://doi.org/10.1093/nar/27.19.e26 (1999).Article

Tillett,D。&Neilan,B.A。无酶克隆:一种快速克隆PCR产物的方法,不依赖于载体限制酶位点。。https://doi.org/10.1093/nar/27.19.e26(1999年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tseng, H. DNA cloning without restriction enzyme and ligase. Biotechniques 27(6), 1240–1244. https://doi.org/10.2144/99276rr02 (1999).Article

Tseng,H。不含限制酶和连接酶的DNA克隆。生物技术27(6),1240-1244。https://doi.org/10.2144/99276rr02(1999年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Quan, J. & Tian, J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 4(7), e6441. https://doi.org/10.1371/journal.pone.0006441 (2009).Article

Quan,J。&Tian,J。复杂基因文库和途径的循环聚合酶延伸克隆。PLoS ONE 4(7),e6441。https://doi.org/10.1371/journal.pone.0006441(2009年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quan, J. & Tian, J. Circular polymerase extension cloning. In DNA Cloning and Assembly Methods (eds Valla, S. & Lale, R.) 103–117 (Humana Press, Totowa, 2014). https://doi.org/10.1007/978-1-62703-764-8_8.Chapter

Quan,J。&Tian,J。循环聚合酶延伸克隆。DNA克隆和组装方法(eds Valla,S。&Lale,R。)103-117(Humana Press,Totowa,2014)。https://doi.org/10.1007/978-1-62703-764-8_8.Chapter

Google Scholar

谷歌学者

Quan, J. & Tian, J. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat. Protoc. 6, 242–251. https://doi.org/10.1038/nprot.2010.181 (2011).Article

Quan,J。&Tian,J。循环聚合酶延伸克隆,用于高通量克隆复杂和组合DNA文库。自然协议。6242-251。https://doi.org/10.1038/nprot.2010.181(2011年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Clark, J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 16(20), 9677–9686. https://doi.org/10.1093/nar/16.20.9677 (1988).Article

Clark,J.M。由原核和真核DNA聚合酶催化的新型非模板核苷酸加成反应。核酸研究16(20),9677-9686。https://doi.org/10.1093/nar/16.20.9677(1988年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, M. Y. & Gomez-Sanchez, C. E. Universal TA cloning. Curr. Issues Mol. Biol. 2(1), 1–7 (2000).CAS

Zhou,M.Y。和Gomez-Sanchez,C.E。通用TA克隆。。问题分子生物学。2(1),1-7(2000)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Katzen, F. Gateway(®) recombinational cloning: A biological operating system. Expert Opin. Drug Discov. 2(4), 571–589. https://doi.org/10.1517/17460441.2.4.571 (2010).Article

Katzen,F。Gateway(®)重组克隆:一种生物操作系统。专家意见。药物发现。2(4),571-589。https://doi.org/10.1517/17460441.2.4.571(2010年)。文章

Google Scholar

谷歌学者

Gibson, D. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345. https://doi.org/10.1038/nmeth.1318 (2009).Article

Gibson,D。等人。DNA分子的酶促组装高达数百千碱基。自然方法6343-345。https://doi.org/10.1038/nmeth.1318(2009年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, M. J. et al. Optimal salt concentration of vehicle for plasmid DNA enhances gene transfer mediated by electroporation. Exp. Mol. Med. 34(4), 265–272. https://doi.org/10.1038/emm.2002.37 (2002).Article

Lee,M.J.等人。质粒DNA载体的最佳盐浓度增强了电穿孔介导的基因转移。实验分子医学34(4),265-272。https://doi.org/10.1038/emm.2002.37(2002年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rahimzadeh, M., Sadeghizadeh, M., Najafi, F., Arab, S. & Mobasheri, H. Impact of heat shock step on bacterial transformation efficiency. Mol. Biol. Res. Commun. 5(4), 257 (2016).CAS

Rahimzadeh,M.,Sadeghizadeh,M.,Najafi,F.,Arab,S。&Mobasheri,H。热休克步骤对细菌转化效率的影响。分子生物学。公共资源。5(4),257(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe would like to express our gratitude to the Molecular Biology Laboratory at the Federal University of Rio Grande (FURG) for their assistance, resources, and expertise, which were instrumental in the successful completion of our research. This study was funded by National Council for Scientific and Technological Development (MCTI/CNPQ Call No.

下载参考文献致谢我们要感谢格兰德河联邦大学(FURG)分子生物学实验室的帮助,资源和专业知识,这些帮助我们成功完成了研究。这项研究由国家科学技术发展委员会(MCTI/CNPQ Call No.)资助。

454689/2014-4) and by Coordination for the Improvement of Higher Education Personnel (CAPES), which provided the master’s scholarship.Author informationAuthors and AffiliationsDepartamento de Biología, Universidad del Valle (UV), Cali, ColombiaNatalia Ossa-HernándezLaboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, BrazilLuis Fernando MarinsInstituto de Biologia, Universidade Federal de Pelotas - UFPEL, Campus Universitário Capão do Leão s/n, Pelotas, RS, 96160-000, BrazilDaniela Volcan AlmeidaAuthorsNatalia Ossa-HernándezView author publicationsYou can also search for this author in.

454689/2014-4)和提供硕士奖学金的高等教育人员改进协调会(CAPES)。作者信息作者和附属机构哥伦比亚卡利瓦莱大学生物系Natalia Ossa Hernández生物分子实验室Ciências Biológicas研究所、里约热内卢联邦大学(FURG)、巴西里约热内卢Luis Fernando MarinsInstituto de Biologia、佩洛塔联邦大学-UFPEL、佩洛塔斯大学校园Capão do Leãos/n,Pelotas,RS,96160-000、巴西Daniela Volcan Almeida作者Natalia OSa Herná作者出版物您也可以在中搜索此作者。

PubMed Google ScholarLuis Fernando MarinsView author publicationsYou can also search for this author in

PubMed Google ScholarLuis Fernando MarinsView作者出版物您也可以在

PubMed Google ScholarDaniela Volcan AlmeidaView author publicationsYou can also search for this author in

PubMed Google ScholarDaniela Volcan AlmeidaView作者出版物您也可以在

PubMed Google ScholarContributionsAll authors (N.O.-H., L.F.M. and D.V.A.) were involved in the drafting and critical review of the manuscript and all contributed to the final writing. Experimental assays, results analysis, and writing were carried out by N.O.-H and D.V.A.Corresponding authorsCorrespondence to.

PubMed谷歌学术贡献所有作者(N.O.-H.,L.F.M.和D.V.A.)都参与了稿件的起草和批判性审查,并为最终写作做出了贡献。实验测定,结果分析和写作由N.O.-H和D.V.A进行。通讯作者通讯。

Natalia Ossa-Hernández or Daniela Volcan Almeida.Ethics declarations

Natalia Ossa Hernández或Daniela Volcan Almeida。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleOssa-Hernández, N., Marins, L.F. & Almeida, D.V. Combination of error-prone PCR (epPCR) and Circular Polymerase Extension Cloning (CPEC) for improving the coverage of random mutagenesis libraries.

Sci Rep 14, 15874 (2024). https://doi.org/10.1038/s41598-024-66584-yDownload citationReceived: 19 February 2024Accepted: 02 July 2024Published: 10 July 2024DOI: https://doi.org/10.1038/s41598-024-66584-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci Rep 1415874(2024)。https://doi.org/10.1038/s41598-024-66584-yDownload引文接收日期:2024年2月19日接受日期:2024年7月2日发布日期:2024年7月10日OI:https://doi.org/10.1038/s41598-024-66584-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsDNA recombinationGene amplificationMolecular cloningRandom mutationsVariant genes

关键词DNA重组基因扩增分子克隆随机突变变异基因

Subjects

Expression systemsSynthetic biology

表达系统合成生物学

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。。