商务合作
动脉网APP
可切换为仅中文
AbstractMass vaccinations are crucial public health interventions for curbing infectious diseases. Canine rabies control relies on mass dog vaccination campaigns (MDVCs) that are held annually across the globe. Dog owners must bring their pets to fixed vaccination sites, but sometimes target coverage is not achieved due to low participation.
摘要大规模疫苗接种是遏制传染病的关键公共卫生干预措施。犬类狂犬病的控制依赖于每年在全球范围内举行的大规模犬类疫苗接种活动(MDVCs)。养狗人必须将宠物带到固定的疫苗接种地点,但有时由于参与率低,无法实现目标覆盖率。
Travel distance to vaccination sites is an important barrier to participation. We aimed to increase MDVC participation in silico by optimally placing fixed-point vaccination locations. We quantified participation probability based on walking distance to the nearest vaccination site using regression models fit to participation data collected over 4 years.
到疫苗接种地点的旅行距离是参与的重要障碍。我们的目标是通过最佳地放置定点疫苗接种地点来增加MDVC在计算机上的参与。我们使用适合于4年内收集的参与数据的回归模型,根据步行距离到最近的疫苗接种地点来量化参与概率。
We used computational recursive interchange techniques to optimally place fixed-point vaccination sites and compared predicted participation with these optimally placed vaccination sites to actual locations used in previous campaigns. Algorithms that minimized average walking distance or maximized expected participation provided the best solutions.
我们使用计算递归交换技术来优化定点疫苗接种地点,并将这些最佳接种地点的预测参与率与之前活动中使用的实际地点进行比较。最小化平均步行距离或最大化预期参与度的算法提供了最佳解决方案。
Optimal vaccination placement is expected to increase participation by 7% and improve spatial evenness of coverage, resulting in fewer under-vaccinated pockets. However, unevenness in workload across sites remained. Our data-driven algorithm optimally places limited resources to increase overall vaccination participation and equity.
预计最佳疫苗接种位置将使参与率增加7%,并改善覆盖率的空间均匀性,从而减少接种不足的口袋。然而,各个地点的工作量仍然不均衡。我们的数据驱动算法优化了有限的资源,以增加总体疫苗接种参与率和公平性。
Field evaluations are essential to assess effectiveness and evaluate potentially longer waiting queues resulting from increased participation..
现场评估对于评估有效性和评估参与度增加可能导致的更长等待队列至关重要。。
IntroductionZoonotic epidemics and pandemics are an increasing public health threat worldwide. In Latin America, Asia, and Africa, epidemics of rabies and other zoonotic diseases are ongoing in major urban centers1,2,3,4,5,6,7,8. Vaccination efforts to eliminate canine rabies from Latin American countries have been mostly successful6.
引言人畜共患流行病和大流行是全球范围内日益严重的公共卫生威胁。在拉丁美洲,亚洲和非洲,狂犬病和其他人畜共患疾病正在主要城市中心流行1,2,3,4,5,6,7,8。拉丁美洲国家消除犬狂犬病的疫苗接种工作大多取得了成功6。
However, Peru is experiencing the first instance of canine rabies reintroduction into an area previously declared free of transmission in Latin America9. In the city of Arequipa and surrounding provinces, continued and increased transmission in free-roaming dogs10,11, the sole animal reservoir in the region, has put more than a million human inhabitants at risk of rabies, a fatal, but entirely preventable, disease12.
然而,秘鲁正在经历首次将犬类狂犬病重新引入拉丁美洲先前宣布不传播的地区9。在阿雷基帕市和周边省份,该地区唯一的动物水库自由流浪狗的传播持续增加10,11,使100多万人类居民面临狂犬病的风险,狂犬病是一种致命但完全可以预防的疾病12。
Annual mass dog vaccination campaigns (MDVCs) have been implemented in Peru to eliminate the epidemic without success13. The Pan American Health Organization recommends an annual canine mass vaccination coverage of 80%14; however, in Arequipa, this goal has not been attained in the past 8 years of vaccination campaigns, and rabies virus persists in the free-roaming dog population11,13,15.Most MDVCs in Latin America and Africa rely on fixed-location vaccination posts, where vaccinators wait for dog owners to bring their dogs to a set place15,16,17,18,19.
秘鲁已经实施了年度大规模犬类疫苗接种运动(MDVCs),以消除疫情,但没有取得成功13。泛美卫生组织建议每年犬类大规模疫苗接种率为80%14;然而,在阿雷基帕,在过去8年的疫苗接种运动中,这一目标尚未实现,狂犬病病毒在自由游荡的狗群中持续存在11,13,15。拉丁美洲和非洲的大多数MDVC依赖于固定地点的疫苗接种站,接种者在那里等待狗主人将他们的狗带到固定地点15,16,17,18,19。
The extensive application of fixed-location vaccination is due to its relative ease of implementation and lower cost compared to other strategies18,20,21. However, in some contexts, fixed-point MDVCs have failed to attain coverage targets13,22,23. Extensive behavioral research has been conducted to reduce refusal of human vaccines24,25,26,27,28,29; recent observational studies have focused on understanding non-participation in MDVCs13,15,16,18,19,30,31.
与其他策略相比,固定地点疫苗接种的广泛应用是由于其相对易于实施且成本较低18,20,21。然而,在某些情况下,定点MDVC未能达到覆盖目标13,22,23。;最近的观察性研究集中在了解不参与MDVC 13,15,16,18,19,30,31。
Among the barriers repor.
在报告的障碍中。
Table 1 Regression analysis and cross-validation results.Full size tableOptimal placement of tentsWe simulated campaigns where placement of the vaccination tents was optimized using variants of the facility location problem. The goal in a facility location problem is to determine the placement of facilities (i.e., vaccination sites), among a pool of candidate sites, such that facility access for a set of demand points (i.e., houses) is optimized.
表1回归分析和交叉验证结果。全尺寸表帐篷的最佳放置我们模拟了活动,其中使用设施位置问题的变体优化了疫苗接种帐篷的放置。设施位置问题的目标是确定设施(即疫苗接种地点)在候选地点池中的位置,从而优化一组需求点(即房屋)的设施访问。
Towards this, we first implemented the Teitz and Bart’s algorithm for the “p-median problem,” which aims to find a subset of vaccination sites, S, of size p among a set of candidates, where the average distance of all houses to their nearest point in S is minimized44. To apply this to mass dog vaccination in Arequipa, we aimed to find a set of 20 optimized tent locations that minimized average walking distance to the nearest vaccination site; the number of tents (p = 20) was selected to match the number of tents annually run by the MOH in the MDVC.
为此,我们首先实施了Teitz和Bart的“p-中值问题”算法,该算法旨在在一组候选物中找到大小为p的疫苗接种位点s的子集,其中所有房屋到s中最近点的平均距离最小44。为了将其应用于阿雷基帕的大规模犬类疫苗接种,我们旨在找到一组20个优化的帐篷位置,以最大程度地减少到最近疫苗接种地点的平均步行距离;选择帐篷的数量(p=20)与卫生部在MDVC中每年经营的帐篷数量相匹配。
To find the optimized sites we then applied the Teitz and Bart algorithm. To describe the algorithm denote the set of all houses by \(H = \left\{ {h_{1} , h_{2} , \ldots , h_{N} } \right\}\), where N is the total number of houses. The Teitz and Bart algorithm for placing 20 vaccination sites proceeds as follows:.
为了找到优化的站点,我们应用了Teitz和Bart算法。为了描述该算法,将所有房屋的集合表示为\(H=\ left \{{H\u{1},H\u{2},\ldots,H\u{N}}\ right \}\),其中N是房屋总数。。
1.
1.
Select a random subset of 20 vaccination sites \(S = \left\{ {s_{1} , s_{2} , \ldots , s_{20} } \right\}\), out of all candidate sites A. For each house \(h_{i} \in H\), calculate \(d_{min} \left( i \right)\), the walking distance of \(h_{i}\) to the nearest site in S. Then calculate the average walking distance for all houses in the study area:$$\overline{{d_{min} }} = \frac{1}{N}\mathop \sum \limits_{i = 1}^{N} d_{min} \left( i \right)$$.
从所有候选地点a中选择20个疫苗接种地点的随机子集(S=\ left \{{S\u{1},S\u{2},\ldots,S\u{20}}\ right \}),对于每个房屋\(h中的h{i}\),计算\(d\umin}\ left(i \ right)\),步行距离\(h{i}\)到S中最近的地点。然后计算研究区域内所有房屋的平均步行距离:$$\ overline{{d\u{min}}=\frac{1}{N}\mathop\sum\limits\u{i=1}^{N}d\u{min}\ left(i \ right)$$。
2.
2.
Exchange \(s_{1}\) with each candidate site in \(A\backslash S\) and keep the one that minimizes \(\overline{{d_{min} }}\).
与\(反斜杠s \)中的每个候选站点交换\(s \{1}\),并保留最小化\(上划线{d \{min}}}\)的站点。
3.
3.
Repeat step 2 with the remaining 19 sites in S until the objective function stabilizes.
对S中剩余的19个位点重复步骤2,直到目标函数稳定。
The second optimization algorithm is an extension of the classic “p-center problem,” which aims to find the subset of facility sites that minimizes the maximum walking distance between any house and its nearest facility45. Classically, the p-center problem is formulated using Euclidean distance, and the solution involves drawing p circles whose union encloses all the demand points such that the maximum of the radii of the circles is minimized45.
第二种优化算法是经典“p中心问题”的扩展,该问题旨在找到设施场地的子集,以最小化任何房屋与其最近设施之间的最大步行距离45。经典地,p中心问题是使用欧几里德距离来描述的,解决方案涉及绘制p圆,其并集包围所有需求点,从而使圆半径的最大值最小化45。
However, the classic formulation of the p-center problem yields many redundant solutions for our case, which uses walking distance instead of Euclidean distance. As a result, we adapted the p-center problem to minimize the sum of the 10 largest maximal tent distances, which we define as follows. For each vaccination tent \(s \in S\), let \(C_{s}\) represent all houses in H for which the tent s is its closest facility.
然而,对于我们的案例,p中心问题的经典公式产生了许多冗余的解决方案,它使用步行距离而不是欧几里得距离。因此,我们调整了p中心问题,以最小化10个最大帐篷距离的总和,我们定义如下。对于每个疫苗接种帐篷(s中的s),让(C{s})代表H中帐篷s是其最近设施的所有房屋。
Let \(D_{s} = \left\{ {d_{min} \left( i \right):i \in C_{s} } \right\}\) be the set of walking distances between the tent s and all houses in its catchment. Denote by$$max\left( {D_{s} } \right) = max_{{i \in C_{s} }} d_{min} \left( i \right),$$the maximal distance from the tent s to the houses in its catchment.
设\(D\u{s}=\ left \{D\u{min}\ left(i \ right):i \ in C\u{s}\ right \}\)是帐篷与其流域中所有房屋之间的步行距离集。用$$max \ left({D\u{s}}\ right)=max\u{i \ in C\u{s}}D\u{min}\ left(i \ right)表示,从帐篷到其集水区房屋的最大距离。
Now, denote by$$\left\{ {m_{1} ,m_{2} , \ldots ,m_{10} } \right\}$$the 10 maximal values among \(\left\{ {max\left( {D_{1} } \right), max\left( {D_{2} } \right), \ldots ,max\left( {D_{20} } \right)} \right\}.\) Our p-center algorithm is similar to the p-median algorithm outlined above; where, instead of minimizing the average walking distance \(\overline{{d_{min} }}\), our p-center algorithm minimizes \(\mathop \sum \limits_{i = 1}^{10} m_{i}\).In addition, we devised a third optimization algorithm that utilized our best-fit regression model that estimated MDVC participation probability as a function of the.
现在,用$$\ left \{{m\u{1},m\u{2},ldots,m\u{10}\ right \$$表示\(\ left \{max \ left({D\u{1}\ right),max \ left({D\u{2}\ right),\ ldots,max \ left({D\u{20}\ right)}\ right \})中的10个最大值我们的p中心算法类似于上面概述的p中值算法;其中,我们的p中心算法不是最小化平均步行距离(overline{d\uu{min}}}),而是最小化(mathop\sum\limits\u{i=1}^{10}m\u{i})。此外,我们设计了第三种优化算法,该算法利用我们的最佳拟合回归模型来估计MDVC参与概率。
Table 2 Comparison of spatial evenness between current practice vaccination sites and vaccination sites optimized with different algorithms.Full size tableCompared to sites used in 2016, all the optimization algorithms considered produced a smaller D value, indicating that these algorithms improved the spatial evenness of expected vaccination coverage.
表2当前实践疫苗接种地点与使用不同算法优化的疫苗接种地点之间空间均匀性的比较。全尺寸表与2016年使用的站点相比,所有考虑的优化算法产生的D值都较小,表明这些算法改善了预期疫苗接种覆盖率的空间均匀性。
The p-median and p-probability algorithms, which performed best in terms of optimizing total vaccination coverage, also improved spatial evenness the most. The 33% reduction of D achieved by the p-median and p-probability algorithms can be interpreted as follows: compared to the actual vaccination sites used in 2016, if sites placed by these algorithms were used, one-third fewer participant and non-participant households would have to move to produce an even spatial distribution of vaccination coverage.DiscussionWe combine techniques used in facility location problems, combinatorial optimization, and statistical modeling to optimally place fixed-location vaccination points for the annual mass dog rabies vaccination campaigns in Arequipa, Peru.
在优化总疫苗接种覆盖率方面表现最佳的p-中值和p-概率算法也最大程度地改善了空间均匀性。通过p-中位数和p-概率算法实现的D减少33%可以解释如下:与2016年使用的实际疫苗接种地点相比,如果使用这些算法放置的地点,参与者和非参与者家庭将减少三分之一,以产生均匀的疫苗接种覆盖率空间分布。讨论我们结合设施选址问题,组合优化和统计建模中使用的技术,为秘鲁阿雷基帕的年度大规模犬类狂犬病疫苗接种活动最佳地放置固定位置的疫苗接种点。
In line with previous studies examining barriers to vaccination13,18,54,55,56, we found a significant negative association between walking distance from a vaccination location and household participation in the vaccination campaign. In order to maximize the coverage obtained from a fixed number of vaccination points in the city, we optimized the locations of the vaccination points by either minimizing walking distance to the vaccination tents (p-median and p-center) or maximizing overall participation probability (p-probability) The p-median and p-probability methods performed best at increasing estimated vaccination coverage and evening workload across vaccination sites.
与之前研究疫苗接种障碍的研究13,18,54,55,56一致,我们发现距离疫苗接种地点的步行距离与家庭参与疫苗接种运动之间存在显着的负相关。为了最大限度地提高城市固定数量疫苗接种点的覆盖率,我们通过最小化到疫苗接种帐篷的步行距离(p-中位数和p-中心)或最大化总体参与概率(p-概率)来优化疫苗接种点的位置。p-中位数和p-概率方法在增加疫苗接种地点的估计疫苗接种覆盖率和夜间工作量方面表现最佳。
In additio.
此外
Data availability
数据可用性
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
在当前研究期间生成和/或分析的数据集可根据合理要求从通讯作者处获得。
ReferencesAmitai, Z. et al. A large Q fever outbreak in an urban school in central Israel. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 50(11), 1433–1438 (2010).
参考Samitai,Z。等人。以色列中部一所城市学校爆发大规模Q热。临床。感染。Dis。关闭。公开。感染。Dis。《美国法典》50(11),1433–1438(2010)。
Google Scholar
谷歌学者
Liu, Q., Cao, L. & Zhu, X. Q. Major emerging and re-emerging zoonoses in China: a matter of global health and socioeconomic development for 1.3 billion. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 25, 65–72 (2014).
Liu,Q.,Cao,L。&Zhu,X.Q。中国主要新兴和重新出现的人畜共患病:全球健康和社会经济发展的13亿问题。Int.J.感染。Dis。IJID关闭。发布。国际社会感染。Dis。25,65-72(2014)。
Google Scholar
谷歌学者
Neiderud, C. J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 5(1), 27060 (2015).PubMed
Neiderud,C.J。城市化如何影响新兴传染病的流行病学。感染。Ecol公司。流行病。5(1),27060(2015)。PubMed出版社
Google Scholar
谷歌学者
Reyes, M. M. et al. Human and canine echinococcosis infection in informal, unlicensed abattoirs in Lima Peru. PLoS Negl. Trop. Dis. 6(4), e1462 (2012).PubMed
Reyes,M.M.等人,《秘鲁利马非正规无照屠宰场的人和犬棘球蚴病感染》。。托普。Dis。6(4),e1462(2012)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Singh, B. B., Sharma, R., Gill, J. P. S., Aulakh, R. S. & Banga, H. S. Climate change, zoonoses and India. Rev. Sci. Tech. Int. Off. Epizoot. 30(3), 779–788 (2011).CAS
Singh,B.B.,Sharma,R.,Gill,J.P.S.,Aulakh,R.S。&Banga,H.S。气候变化,人畜共患病和印度。修订版Sci。技术情报关闭流行病。30(3),779-788(2011)。中科院
Google Scholar
谷歌学者
Vigilato, M. A. N. et al. Progress towards eliminating canine rabies: Policies and perspectives from Latin America and the Caribbean. Philos. Trans. R. Soc. B Biol. Sci. 368(1623), 20120143 (2013).
Vigilato,M.A.N.等人,《消除犬狂犬病的进展:拉丁美洲和加勒比的政策和观点》。菲洛斯。事务处理。R、 社会学B生物学。科学。368(1623),20120143(2013)。
Google Scholar
谷歌学者
Wallace, R. M. et al. Establishment of a Canine Rabies Burden in Haiti through the implementation of a novel surveillance program. PLoS Negl. Trop. Dis. 9(11), e0004245 (2015).PubMed
Wallace,R.M.等人。通过实施一项新的监测计划,在海地建立犬类狂犬病负担。。托普。Dis。9(11),e0004245(2015)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Widdowson, M. A., Morales, G. J., Chaves, S. & McGrane, J. Epidemiology of urban canine rabies, Santa Cruz, Bolivia, 1972–1997. Emerg. Infect. Dis. 8(5), 458–461 (2002).PubMed
Widdowson,M.A.,Morales,G.J.,Chaves,S。和McGrane,J。城市犬狂犬病流行病学,玻利维亚圣克鲁斯,1972-1997年。紧急感染。Dis。8(5),458-461(2002)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pan American Health Organization. Alerta Epidemiológica [Epidemiologic Alert]. World Health Organization. pp. 1–4. https://www.paho.org/hq/dmdocuments/2015/2015-junio-12-cha-alerta-epi-rabia.pdf (2015).Raynor, B. et al. Movement patterns of free-roaming dogs on heterogeneous urban landscapes: Implications for rabies control.
泛美卫生组织。Alerta Epidemiológica[流行病学警报]。世界卫生组织。第1-4页。https://www.paho.org/hq/dmdocuments/2015/2015-junio-12-cha-alerta-epi-rabia.pdf(2015年)。Raynor,B.等人,《自由漫游犬在异质城市景观上的运动模式:对狂犬病控制的影响》。
Prev. Vet. Med. 178, 104978 (2020).PubMed .
上一个我知道。178, 104978 (2020).Pub Med。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Raynor, B. et al. The impact of the COVID-19 pandemic on rabies reemergence in Latin America: The case of Arequipa Peru. PLoS Negl. Trop. Dis. 15(5), e0009414 (2021).CAS
。。托普。Dis。15(5),e0009414(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rupprecht, C. E., Hanlon, C. A. & Hemachudha, T. Rabies re-examined. Lancet Infect. Dis. 2(6), 327–343 (2002).PubMed
Rupprecht,C.E.,Hanlon,C.A。和Hemachudha,T。狂犬病重新检查。。Dis。2(6),327–343(2002)。PubMed出版社
Google Scholar
谷歌学者
Castillo-Neyra, R. et al. Socio-spatial heterogeneity in participation in mass dog rabies vaccination campaigns, Arequipa Peru. PLoS Negl. Trop. Dis. 13(8), e0007600 (2019).PubMed
Castillo Neyra,R.等人。参与大规模犬狂犬病疫苗接种活动的社会空间异质性,秘鲁阿雷基帕。。托普。Dis。13(8),e0007600(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
PAHO. Manual de rabia–Página inicial. https://www.paho.org/arg/publicaciones/publicaciones%20virtuales/cdmanualRabia/index.htmlCastillo-Neyra, R. et al. Barriers to dog rabies vaccination during an urban rabies outbreak: Qualitative findings from Arequipa Peru. PLoS Negl. Trop. Dis. 11(3), e0005460 (2017).PubMed .
帕霍。愤怒手册-主页。https://www.paho.org/arg/publicaciones/publicaciones%20virtuales/cdmanualRabia/index.htmlCastillo-Neyra,R.等人。城市狂犬病爆发期间接种狂犬病疫苗的障碍:秘鲁阿雷基帕的定性研究。Plos Negl。太多了。说。11(3),E0005460(2017年)。Pubmed。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Costa, G. B. et al. Barriers to attendance of canine rabies vaccination campaigns in Haiti, 2017. Transbound. Emerg. Dis. 67(6), 2679–2691 (2020).
Costa,G.B.等人,《2017年海地参加犬类狂犬病疫苗接种活动的障碍》。转换绑定。紧急情况。。
Google Scholar
谷歌学者
Evans, M. J. et al. Implementation of high coverage mass rabies vaccination in rural Uganda using predominantly static point methodology. Vet. J. Lond. Engl. 1997(249), 60–66 (2019).
Evans,M.J.等人。使用主要是静态点方法在乌干达农村实施高覆盖率大规模狂犬病疫苗接种。兽医。J、 隆德。英语。1997(249),60-66(2019)。
Google Scholar
谷歌学者
Mazeri, S. et al. Barriers of attendance to dog rabies static point vaccination clinics in Blantyre Malawi. PLoS Negl. Trop. Dis. 12(1), e0006159 (2018).PubMed
Mazeri,S.等人。马拉维布兰太尔犬狂犬病静态点接种诊所的就诊障碍。。托普。Dis。12(1),e0006159(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yoak, A. J. et al. Barriers and opportunities for canine rabies vaccination campaigns in Addis Ababa Ethiopia. Prev. Vet. Med. 187, 105256 (2021).PubMed
Yoak,A.J.等人,《埃塞俄比亚亚的斯亚贝巴犬类狂犬病疫苗接种活动的障碍和机遇》。上一页。兽医。医学187105256(2021)。PubMed出版社
Google Scholar
谷歌学者
Wallace, R. M. et al. Estimating the effectiveness of vaccine programs in dog populations. Epidemiol. Infect. 147, e247 (2019).CAS
Wallace,R.M.等人,《评估疫苗计划在狗群中的有效性》。流行病。感染。147,e247(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
WHO. WHO expert consultation on rabies: Second report. World Health Organization. https://apps.who.int/iris/handle/10665/85346 (2013).López, I. R., Díaz, O. A. & Condori, C. E. Susceptibilidad canina a rabia después de una campaña de vacunación en zonas endémicas del Perú. Rev. Peru Med.
哦。世卫组织狂犬病专家咨询:第二份报告。世界卫生组织。https://apps.who.int/iris/handle/10665/85346(2013年)。López,I.R.,Díaz,O.A.和Condori,C.E.秘鲁流行地区疫苗接种运动后的狗对狂犬病的易感性。秘鲁医学院。
Exp. Salud Publica 24(1), 13–19 (2007)..
经验。公共卫生24(1),13-19(2007年)。。
Google Scholar
谷歌学者
Pan American Health Organization. Bolivia: Situación epidemiológica [Internet]. World Health Organization. pp. 26–7. https://www.paho.org/spanish/ad/dpc/vp/rabia-sit-bol.pdfBenin, A. L., Wisler-Scher, D. J., Colson, E., Shapiro, E. D. & Holmboe, E. S. Qualitative analysis of mothers’ decision-making about vaccines for infants: The importance of trust.
泛美卫生组织。玻利维亚:流行病国际协会[互联网]。世界卫生组织。第26-7页。https://www.paho.org/spanish/ad/dpc/vp/rabia-sit-bol.pdfBenin,A.L.,Wisler-Scher,D.J.,Colson,E.,Shapiro,E.D。&Holmboe,E.S。母亲对婴儿疫苗决策的定性分析:信任的重要性。
Pediatrics 117(5), 1532–1541 (2006).PubMed .
儿科117(5),1532-1541(2006)。PubMed。
Google Scholar
谷歌学者
Brewer, N. T. et al. Meta-analysis of the relationship between risk perception and health behavior: The example of vaccination. Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 26(2), 136–145 (2007).
Brewer,N.T.等人。风险感知与健康行为之间关系的荟萃分析:疫苗接种的例子。健康心理学。Off.J.Div.健康心理学。上午,心理学。协会第26(2),136–145(2007)。
Google Scholar
谷歌学者
Casiday, R., Cresswell, T., Wilson, D. & Panter-Brick, C. A survey of UK parental attitudes to the MMR vaccine and trust in medical authority. Vaccine 24(2), 177–184 (2006).PubMed
Casiday,R.,Cresswell,T.,Wilson,D。和Panter Brick,C。英国父母对MMR疫苗的态度和对医疗机构的信任调查。疫苗24(2),177-184(2006)。PubMed出版社
Google Scholar
谷歌学者
Salmon, D. A. et al. Factors associated with refusal of childhood vaccines among parents of school-aged children: A case-control study. Arch. Pediatr. Adolesc. Med. 159(5), 470–476 (2005).MathSciNet
Salmon,D.A.等人,《学龄儿童父母拒绝接种儿童疫苗的相关因素:病例对照研究》。。儿科。阿道雷斯。医学杂志159(5),470-476(2005)。数学网
PubMed
PubMed
Google Scholar
谷歌学者
Shui, I. M., Weintraub, E. S. & Gust, D. A. Parents concerned about vaccine safety: Differences in race/ethnicity and attitudes. Am. J. Prev. Med. 31(3), 244–251 (2006).PubMed
Shui,I.M.,Weintraub,E.S。和Gust,D.A。父母关心疫苗安全性:种族/民族和态度的差异。Am.J.前。医学杂志31(3),244-251(2006)。PubMed出版社
Google Scholar
谷歌学者
Smith, P. J., Chu, S. Y. & Barker, L. E. Children who have received no vaccines: Who are they and where do they live?. Pediatrics 114(1), 187–195 (2004).PubMed
Smith,P.J.,Chu,S.Y。&Barker,L.E。未接种疫苗的儿童:他们是谁,住在哪里?。儿科114(1),187-195(2004)。PubMed出版社
Google Scholar
谷歌学者
Minyoo, A. B. et al. Incentives increase participation in mass dog rabies vaccination clinics and methods of coverage estimation are assessed to be accurate. PLoS Negl. Trop. Dis. 9(12), e0004221 (2015).PubMed
Minyoo,A.B.等人的激励措施增加了大规模犬类狂犬病疫苗接种诊所的参与率,并且评估了覆盖率估计方法的准确性。。托普。Dis。。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schildecker, S. et al. Dog ecology and barriers to canine rabies control in the Republic of Haiti, 2014–2015. Transbound. Emerg. Dis. 64(5), 1433–1442 (2017).CAS
Schildecker,S.等人,《2014-2015年海地共和国犬类生态学和犬类狂犬病控制障碍》。转换绑定。紧急情况。64(5),1433–1442(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hampson, K. et al. Transmission dynamics and prospects for the elimination of canine rabies. PLOS Biol. 7(3), e1000053 (2009).PubMed
Hampson,K.等人,《传播动力学和消除犬狂犬病的前景》。《公共科学图书馆·生物学》。7(3),e1000053(2009)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cleaveland, S., Kaare, M., Tiringa, P., Mlengeya, T. & Barrat, J. A dog rabies vaccination campaign in rural Africa: Impact on the incidence of dog rabies and human dog-bite injuries. Vaccine 21(17), 1965–1973 (2003).CAS
Cleaveland,S.,Kaare,M.,Tiringa,P.,Mlengeya,T。&Barrat,J。非洲农村的狗狂犬病疫苗接种运动:对狗狂犬病发病率和人类狗咬伤的影响。疫苗21(17),1965-1973(2003)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ferguson, E. A. et al. Heterogeneity in the spread and control of infectious disease: Consequences for the elimination of canine rabies. Sci. Rep. 5(1), 18232 (2015).CAS
Ferguson,E.A.等人,《传染病传播和控制的异质性:消除犬狂犬病的后果》。科学。《代表》第5(1)页,第18232(2015)页。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Townsend, S. E. et al. Surveillance guidelines for disease elimination: A case study of canine rabies. Comp. Immunol. Microbiol. Infect. Dis. 36(3), 249–261 (2013).MathSciNet
。公司。免疫。微生物。感染。Dis。36(3),249-261(2013)。数学网
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Townsend, S. E. et al. Designing programs for eliminating canine Rabies from Islands: Bali, Indonesia as a case study. PLoS Negl. Trop. Dis. 7(8), e2372 (2013).PubMed
Townsend,S.E.等人。设计从岛屿上消除犬狂犬病的计划:以印度尼西亚巴厘岛为例。。托普。Dis。。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Henderson, D. A. & Klepac, P. Lessons from the eradication of smallpox: An interview with DA Henderson. Philos. Trans. R. Soc. B Biol. Sci. 368(1623), 20130113 (2013).CAS
Henderson,D.A。和Klepac,P。根除天花的教训:对DA Henderson的采访。菲洛斯。事务处理。R、 社会学B生物学。科学。368(1623),20130113(2013)。中科院
Google Scholar
谷歌学者
Gu, W., Wang, X. & McGregor, S. E. Optimization of preventive health care facility locations. Int. J. Health Geogr. 9, 17 (2010).PubMed
Gu,W.,Wang,X。&McGregor,S.E。预防保健设施位置的优化。国际卫生地理杂志。9,17(2010)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Daskin, M. S. & Dean, L. K. Location of health care facilities. In Operations Research and Health Care: A Handbook of Methods and Applications (eds Brandeau, M. L. et al.) 43–76 (Springer, Boston, 2004). https://doi.org/10.1007/1-4020-8066-2_3.Chapter
Daskin,M.S。和Dean,L.K。医疗保健设施的位置。《运筹学与卫生保健:方法与应用手册》(eds Brandeau,M.L.等人)43-76(Springer,Boston,2004)。https://doi.org/10.1007/1-4020-8066-2_3.Chapter
Google Scholar
谷歌学者
Hekmatfar, R. M. Facility Location (Physica-Verlag HD, Heidelberg, 2009).
Hekmatfar,R.M.设施位置(Physica Verlag HD,海德堡,2009)。
Google Scholar
谷歌学者
Planning Meeting for Dog Vaccination Campaign. Microrredes de Salud Arequipa—Caylloma. Ciudad de Arequipa, Peru (2017).Mapbox. Directions API | Help. https://docs.mapbox.com/help/glossary/directions-api/Leaflet Routing Machine. https://www.liedman.net/leaflet-routing-machine/Long, J.
犬类疫苗接种活动计划会议。小菜蛾(Microrredes de Salud Arequipa Caylloma)。秘鲁阿雷基帕城(2017)。地图框。方向API |帮助。https://docs.mapbox.com/help/glossary/directions-api/Leaflet。https://www.liedman.net/leaflet-routing-machine/Long,J。
S. Regression Models for Categorical and Limited Dependent Variables 334 (SAGE, London, 1997)..
S、 分类和有限因变量的回归模型334(SAGE,London,1997)。。
Google Scholar
谷歌学者
Suzuki, A. & Drezner, Z. The p-center location problem in an area. Locat. Sci. 4(1), 69–82 (1996).
Suzuki,A.和Drezner,Z.区域中的p中心位置问题。定位Sci。4(1), 69–82 (1996).
Google Scholar
谷歌学者
White, M. J. Segregation and diversity measures in population distribution. Popul. Index 52, 198–221 (1986).CAS
White,M.J。人口分布中的隔离和多样性措施。人口。索引52198-221(1986)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
The R core team. R: The R project for statistical computing. https://www.r-project.org/ (2019)Ripley, B. et al. Package ‘MASS’. CRAN. https://cran.r-project.org/web/packages/MASS/MASS.pdf (2021).Brunsdon, C. Package ‘tbart’. CRAN. https://cran.r-project.org/web/packages/tbart/tbart.pdf (2015).Create a new ggplot — ggplot.
R核心团队。R: 统计计算的R项目。https://www.r-project.org/(2019)Ripley,B。等人的包装“质量”。克兰。https://cran.r-project.org/web/packages/MASS/MASS.pdf(2021年)。Brunsdon,C.包装“tbart”。克兰。https://cran.r-project.org/web/packages/tbart/tbart.pdf(2015年)。创建一个新的ggplot-ggplot。
https://ggplot2.tidyverse.org/reference/ggplot.htmlGoogle Maps and Credentials. https://cran.r-project.org/web/packages/ggmap/readme/README.htmlOpenStreetMap. OpenStreetMap. https://www.openstreetmap.org/Raynor, B. & Saxena, A. bhraynor/Rabies_MDVC_Optimization [Internet]. https://github.com/bhraynor/Rabies_MDVC_Optimization (2021).Danis, K., Georgakopoulou, T., Stavrou, T., Laggas, D.
https://ggplot2.tidyverse.org/reference/ggplot.htmlGoogle映射和凭据。https://cran.r-project.org/web/packages/ggmap/readme/README.htmlOpenStreetMap.OpenStreetMap。https://www.openstreetmap.org/Raynor,B.&Saxena,A.bhraynor/狂犬病MDVC\U优化[互联网]。https://github.com/bhraynor/Rabies_MDVC_Optimization(2021年)。丹尼斯(Danis,K.),乔治亚·科波卢(Georgakopoulou),T。斯塔夫鲁(Stavrou),D。拉格斯(Laggas)。
& Panagiotopoulos, T. Socioeconomic factors play a more important role in childhood vaccination coverage than parental perceptions: A cross-sectional study in Greece. Vaccine 28(7), 1861–1869 (2010).CAS .
&Panagiotopoulos,T。社会经济因素在儿童疫苗接种覆盖率方面比父母的看法发挥更重要的作用:希腊的一项横断面研究。疫苗28(7),1861-1869(2010)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Neubrand, T. P. L. et al. Factors associated with completion of the human papillomavirus vaccine series. Clin. Pediatr. (Phila) 48(9), 966–969 (2009).PubMed
Neubrand,T.P.L.等人。与完成人乳头瘤病毒疫苗系列相关的因素。临床。儿科。(Phila)48(9),966-969(2009)。PubMed出版社
Google Scholar
谷歌学者
Whitehead, J., Scott, N., Atatoa-Carr, P. & Lawrenson, R. Will access to COVID-19 vaccine in Aotearoa be equitable for priority populations?. N. Z. Med. J. 134(1535), 25–34 (2021).PubMed
Whitehead,J.,Scott,N.,Atatoa Carr,P。&Lawrenson,R。在Aotearoa获得COVID-19疫苗是否对优先人群公平?。N、 《医学杂志》134(1535),25-34(2021)。PubMed出版社
Google Scholar
谷歌学者
Schneider, M. C. et al. Current status of human rabies transmitted by dogs in Latin America. Cad Saúde Pública 23(9), 2049–2063 (2007).MathSciNet
Schneider,M.C.等人。拉丁美洲犬类传播人类狂犬病的现状。。数学网
PubMed
PubMed
Google Scholar
谷歌学者
Organization WH. Zero by 30: The global strategic plan to end human deaths from dog-mediated rabies by 2030: United against rabies collaboration: First annual progress report: Global strategic plan to end human deaths from dog-mediated rabies by 2030. World Health Organization (2019).Fitzpatrick, M.
组织WH。到30年为零:到2030年结束狗介导的狂犬病导致的人类死亡的全球战略计划:联合抗击狂犬病合作:第一份年度进展报告:到2030年结束狗介导的狂犬病导致的人类死亡的全球战略计划。世界卫生组织(2019)。菲茨帕特里克,M。
C. et al. Cost-effectiveness of canine vaccination to prevent human rabies in rural Tanzania. Ann. Intern. Med. 160(2), 91–100 (2014).PubMed .
C、 等。坦桑尼亚农村预防人类狂犬病的犬类疫苗接种的成本效益。安,实习生。医学杂志160(2),91-100(2014)。PubMed。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Welburn, S. C., Coleman, P. G. & Zinsstag, J. Rabies control: Could innovative financing break the deadlock?. Front. Vet. Sci. 4, 32 (2017).PubMed
Welburn,S.C.,Coleman,P.G。&Zinsstag,J。狂犬病控制:创新融资能否打破僵局?。正面。兽医。科学。4,32(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rainey, J. J. et al. Reasons related to non-vaccination and under-vaccination of children in low and middle income countries: Findings from a systematic review of the published literature, 1999–2009. Vaccine 29(46), 8215–8221 (2011).PubMed
Rainey,J.J.等人,《低收入和中等收入国家儿童未接种疫苗和疫苗接种不足的原因:1999-2009年已发表文献的系统评价结果》。疫苗29(46),8215-8221(2011)。PubMed出版社
Google Scholar
谷歌学者
Mazar, A., Tomaino, G., Carmon, Z. & Wood, W. Distance to vaccine sites is associated with lower COVID-19 vaccine uptake. PsyArXiv. https://psyarxiv.com/mux5s/ (2022).Kaare, M. et al. Rabies control in rural Africa: Evaluating strategies for effective domestic dog vaccination. Vaccine 27(1), 152–160.
Mazar,A.,Tomaino,G.,Carmon,Z。&Wood,W。到疫苗位点的距离与较低的COVID-19疫苗摄取有关。。https://psyarxiv.com/mux5s/(2022年)。Kaare,M.等人,《非洲农村狂犬病控制:评估有效家养犬疫苗接种策略》。疫苗27(1),152-160。
https://doi.org/10.1016/j.vaccine.2008.09.054 (2009).Article .
https://doi.org/10.1016/j.vaccine.2008.09.054 (2009).Article .
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mitropoulos, P., Mitropoulos, I., Giannikos, I. & Sissouras, A. A biobjective model for the locational planning of hospitals and health centers. Health Care Manag. Sci. 9(2), 171–179 (2006).PubMed
Mitropoulos,P.,Mitropoulos,I.,Giannikos,I。和Sissouras,A。医院和卫生中心选址规划的生物目标模型。。科学。9(2),171-179(2006)。PubMed出版社
Google Scholar
谷歌学者
Lin, C. C. & Lin, C. C. The p-center flow-refueling facility location problem. Transp. Res. Part B Methodol. 118, 124–142 (2018).
Lin,C.C.&Lin,C.C.p中心流加油设施位置问题。。第B部分方法。118124-142(2018)。
Google Scholar
谷歌学者
Sánchez-Soriano, C. et al. Development of a high number, high coverage dog rabies vaccination programme in Sri Lanka. BMC Infect. Dis. 19(1), 977 (2019).PubMed
Sánchez Soriano,C.等人。在斯里兰卡开发高数量,高覆盖率的狗狂犬病疫苗接种计划。BMC感染。Dis。19(1),977(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gibson, A. D. et al. The vaccination of 35,000 dogs in 20 working days using combined static point and door-to-door methods in Blantyre Malawi. PLoS Negl. Trop. Dis. 10(7), e0004824 (2016).PubMed
。。托普。Dis。10(7),e0004824(2016)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Le-Morawa, N. et al. Effectiveness of a COVID-19 Vaccine rollout in a highly affected American Indian community, San Carlos Apache Tribe, December 2020-February 2021. Public Health Rep. 138, 23S-29S. https://doi.org/10.1177/00333549221120238 (2022).Article
。公共卫生代表13823S-29S。https://doi.org/10.1177/00333549221120238(2022年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Assoumou, S. A. et al. Addressing inequities in SARS-CoV-2 vaccine uptake: The boston medical center health system experience. Ann. Intern. Med. 175(6), 879–884 (2022).PubMed
Assoumou,S.A.等人,《解决SARS-CoV-2疫苗接种中的不公平问题:波士顿医学中心卫生系统的经验》。安,实习生。医学175(6),879-884(2022)。PubMed出版社
Google Scholar
谷歌学者
PBS NewsHour. D.C.’s door-to-door COVID vaccine program hopes to increase trust among the hesitant. https://www.pbs.org/newshour/show/d-c-s-door-to-door-covid-vaccine-program-hopes-to-increase-trust-among-the-hesitant (2021).Duong, D. Closing Canada’s COVID-19 vaccination gap. CMAJ 193(38), E1505–E1506 (2021).CAS .
PBS新闻小时。D、 C.的挨家挨户新型冠状病毒疫苗计划希望增加犹豫不决者的信任。https://www.pbs.org/newshour/show/d-c-s-door-to-door-covid-vaccine-program-hopes-to-increase-trust-among-the-hesitant(2021年)。Duong,D。缩小加拿大新型冠状病毒疫苗接种差距。CMAJ 193(38),E1505–E1506(2021)。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Choudhary, O. P., Choudhary, P. & Singh, I. India’s COVID-19 vaccination drive: Key challenges and resolutions. Lancet Infect. Dis. 21(11), 1483–1484 (2021).CAS
Choudhary,O.P.,Choudhary,P。&Singh,I。印度的新型冠状病毒疫苗接种运动:关键挑战和解决方案。。Dis。21(11),1483-1484(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sethy, G. et al. “Vaccinate my village” strategy in Malawi: An effort to boost COVID-19 vaccination. Expert Rev. Vaccines 22(1), 180–185 (2023).CAS
Sethy,G.等人在马拉维的“为我的村庄接种疫苗”战略:努力促进新型冠状病毒疫苗接种。专家版疫苗22(1),180-185(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Whitehead, J., Carr, P. A., Scott, N. & Lawrenson, R. Spatial inequity in distribution of COVID-19 vaccination services in Aotearoa. medRxiv. p. 2021.08.26.21262647. https://doi.org/10.1101/2021.08.26.21262647v1 (2021).Mohammadi, A., Mollalo, A., Bergquist, R. & Kiani, B. Measuring COVID-19 vaccination coverage: An enhanced age-adjusted two-step floating catchment area model.
Whitehead,J.,Carr,P.A.,Scott,N。&Lawrenson,R。Aotearoa新型冠状病毒疫苗接种服务分布的空间不平等。。p、 2021.08.26.21262647年。https://doi.org/10.1101/2021.08.26.21262647v1(2021年)。Mohammadi,A.,Mollalo,A.,Bergquist,R。&Kiani,B。测量COVID-19疫苗接种覆盖率:增强的年龄调整两步浮动集水区模型。
Infect. Dis. Poverty 10(1), 118 (2021).PubMed .
感染。Dis。贫困10(1),118(2021)。PubMed。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe gratefully acknowledge the members of the Zoonotic Disease Research Laboratory who helped with annual surveys of households in the study area, as well as the Gerencia Regional de Salud de Arequipa and Red de Salud Arequipa Caylloma who ran the annual mass dog vaccination campaigns and shared their expertise with our team.FundingThis project was supported by NIH-NIAID grants K01AI139284 (RCN), R01AI168291 (RCN), and 1R01AI146129 (MZL).
。资助该项目得到了NIH-NIAID拨款K01AI139284(RCN),R01AI168291(RCN)和1R01AI146129(MZL)的支持。
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author informationAuthors and AffiliationsDepartment of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USARicardo Castillo-Neyra, Sherrie Xie, Brinkley Raynor Bellotti & Michael Z.
资助者在研究设计,数据收集和分析,决定发表或准备手稿方面没有任何作用。作者信息作者和附属机构宾夕法尼亚大学佩雷尔曼医学院生物统计学,流行病学和信息学系,宾夕法尼亚州费城,USARDO Castillo Neyra,谢丽,Brinkley Raynor Bellotti&Michael Z。
LevyZoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, PeruRicardo Castillo-Neyra, Elvis W. Diaz, Amparo M. Toledo, Gian Franco Condori-Luna & Michael Z. LevyThe Wharton School, University of Pennsylvania, Philadelphia, PA, USAAris Saxena, Maria Rieders & Bhaswar B.
利马秘鲁卡耶塔诺·埃雷迪亚大学公共卫生与管理学院一个健康单位的LevyZoonotic疾病研究实验室,秘鲁卡斯蒂略·内拉,埃尔维斯·W·迪亚兹,安帕罗·M·托莱多,吉安·弗兰科·康多里·卢纳和迈克尔·Z·莱维思宾夕法尼亚大学沃顿商学院,宾夕法尼亚州费城,USARIS Saxena,玛利亚·里德斯和Bhaswar B。
BhattacharyaAuthorsRicardo Castillo-NeyraView author publicationsYou can also search for this author in.
Bhattacharya作者Ricardo Castillo NeyraView作者出版物您也可以在中搜索此作者。
PubMed Google ScholarSherrie XieView author publicationsYou can also search for this author in
PubMed Google ScholarSherrie XieView作者出版物您也可以在
PubMed Google ScholarBrinkley Raynor BellottiView author publicationsYou can also search for this author in
PubMed Google ScholarBrinkley Raynor BellottiView作者出版物您也可以在
PubMed Google ScholarElvis W. DiazView author publicationsYou can also search for this author in
PubMed Google ScholarElvis W.DiazView作者出版物您也可以在
PubMed Google ScholarAris SaxenaView author publicationsYou can also search for this author in
PubMed Google ScholarAris SaxenaView作者出版物您也可以在
PubMed Google ScholarAmparo M. ToledoView author publicationsYou can also search for this author in
PubMed Google Scholarmamparo M.ToledoView作者出版物您也可以在
PubMed Google ScholarGian Franco Condori-LunaView author publicationsYou can also search for this author in
PubMed Google ScholarGian Franco Condori LunaView作者出版物您也可以在
PubMed Google ScholarMaria RiedersView author publicationsYou can also search for this author in
PubMed Google ScholarMaria RiedersView作者出版物您也可以在
PubMed Google ScholarBhaswar B. BhattacharyaView author publicationsYou can also search for this author in
PubMed Google ScholarBhaswar B.BhattacharyaView作者出版物您也可以在
PubMed Google ScholarMichael Z. LevyView author publicationsYou can also search for this author in
PubMed Google Scholarmamichael Z.LevyView作者出版物您也可以在
PubMed Google ScholarContributionsR.C., S.X. and M.Z.L. wrote the main manuscript text; R.C., E.W.D. and A.M.T. collected the data; S.X. and A.S. prepared figures S.X., B.R.B., G.F.C.L., M.R., B.B.B. and A.S. performed the analyses, R.C., M.R., B.B.B. and M.Z.L. conceived and designed the study.
PubMed谷歌学术贡献。C、 ,S.X.和M.Z.L.撰写了主要的手稿文本;R、 ;S、 X.和A.S.准备了数字S.X.,B.R.B.,G.F.C.L.,M.R.,B.B.B.和A.S.进行了分析,R.C.,M.R.,B.B.B.和M.Z.L.构思并设计了这项研究。
All authors reviewed the manuscript.Corresponding authorCorrespondence to.
所有作者都审阅了手稿。对应作者对应。
Ricardo Castillo-Neyra.Ethics declarations
里卡多·卡斯蒂略·内拉。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Information.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleCastillo-Neyra, R., Xie, S., Bellotti, B.R. et al. Optimizing the location of vaccination sites to stop a zoonotic epidemic.
转载和许可本文引用本文Castillo Neyra,R.,Xie,S.,Bellotti,B.R.等人优化疫苗接种地点的位置以阻止人畜共患流行病。
Sci Rep 14, 15910 (2024). https://doi.org/10.1038/s41598-024-66674-xDownload citationReceived: 21 September 2023Accepted: 03 July 2024Published: 10 July 2024DOI: https://doi.org/10.1038/s41598-024-66674-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1415910(2024)。https://doi.org/10.1038/s41598-024-66674-xDownload引文接收日期:2023年9月21日接收日期:2024年7月3日发布日期:2024年7月10日OI:https://doi.org/10.1038/s41598-024-66674-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。