EN
登录

肝免疫变阻器调节慢性HBV感染患者CD8 T细胞免疫

A liver immune rheostat regulates CD8 T cell immunity in chronic HBV infection

Nature 等信源发布 2024-07-09 23:19

可切换为仅中文


AbstractChronic hepatitis B virus (HBV) infection affects 300 million patients worldwide1,2, in whom virus-specific CD8 T cells by still ill-defined mechanisms lose their function and cannot eliminate HBV-infected hepatocytes3,4,5,6,7. Here we demonstrate that a liver immune rheostat renders virus-specific CD8 T cells refractory to activation and leads to their loss of effector functions.

摘要慢性乙型肝炎病毒(HBV)感染影响全球3亿患者1,2,其中病毒特异性CD8 T细胞通过仍然不明确的机制失去功能,无法消除HBV感染的肝细胞3,4,5,6,7。在这里,我们证明肝脏免疫变阻器使病毒特异性CD8 T细胞难以激活并导致其效应功能丧失。

In preclinical models of persistent infection with hepatotropic viruses such as HBV, dysfunctional virus-specific CXCR6+ CD8 T cells accumulated in the liver and, as a characteristic hallmark, showed enhanced transcriptional activity of cAMP-responsive element modulator (CREM) distinct from T cell exhaustion.

在HBV等嗜肝病毒持续感染的临床前模型中,功能失调的病毒特异性CXCR6+CD8 T细胞积聚在肝脏中,并且作为特征性标志,显示出不同于T细胞耗竭的cAMP反应元件调节剂(CREM)的转录活性增强。

In patients with chronic hepatitis B, circulating and intrahepatic HBV-specific CXCR6+ CD8 T cells with enhanced CREM expression and transcriptional activity were detected at a frequency of 12–22% of HBV-specific CD8 T cells. Knocking out the inhibitory CREM/ICER isoform in T cells, however, failed to rescue T cell immunity.

在慢性乙型肝炎患者中,检测到循环和肝内HBV特异性CXCR6+CD8 T细胞具有增强的CREM表达和转录活性,频率为HBV特异性CD8 T细胞的12-22%。然而,敲除T细胞中的抑制性CREM/ICER同种型未能挽救T细胞免疫力。

This indicates that CREM activity was a consequence, rather than the cause, of loss in T cell function, further supported by the observation of enhanced phosphorylation of protein kinase A (PKA) which is upstream of CREM. Indeed, we found that enhanced cAMP–PKA-signalling from increased T cell adenylyl cyclase activity augmented CREM activity and curbed T cell activation and effector function in persistent hepatic infection.

这表明CREM活性是T细胞功能丧失的结果,而不是原因,这进一步得到了CREM上游蛋白激酶a(PKA)磷酸化增强的观察结果的支持。实际上,我们发现,在持续性肝脏感染中,增加的T细胞腺苷酸环化酶活性增强了cAMP-PKA信号传导,增强了CREM活性,并抑制了T细胞活化和效应子功能。

Mechanistically, CD8 T cells recognizing their antigen on hepatocytes established close and extensive contact with liver sinusoidal endothelial cells, thereby enhancing adenylyl cyclase–cAMP–PKA signalling in T cells. In these hepatic CD8 T cells, which recognize their antigen on hepatocytes, phosphorylation of key signalling kinases of th.

从机制上讲,识别肝细胞抗原的CD8 T细胞与肝窦内皮细胞建立了紧密而广泛的接触,从而增强了T细胞中腺苷酸环化酶-cAMP-PKA的信号传导。在这些识别肝细胞抗原的肝CD8 T细胞中,th的关键信号激酶磷酸化。

MainCD8 T cells are key in the control of hepatitis B virus (HBV) infection of the liver and kill infected hepatocytes3 but, during chronic infection, virus-specific CD8 T cells are dysfunctional and fail to eliminate infected hepatocytes. Spontaneous regain of immune control of infection in a few patients with chronic hepatitis B indicates that loss of virus-specific T cell function in these patients is reversible8,9 and is not necessarily epigenetically programmed as observed for exhausted virus-specific T cells10.

主要CD8 T细胞是控制肝脏乙型肝炎病毒(HBV)感染并杀死感染肝细胞的关键3,但在慢性感染期间,病毒特异性CD8 T细胞功能失调,无法消除感染的肝细胞。少数慢性乙型肝炎患者感染免疫控制的自发恢复表明,这些患者病毒特异性T细胞功能的丧失是可逆的[8,9],并且不一定像耗尽的病毒特异性T细胞所观察到的那样进行表观遗传编程10。

Attempts to strengthen virus-specific immunity by immune therapies, such as therapeutic vaccination, are considered promising approaches to restore virus-specific CD8 T cell function in patients with chronic hepatitis B11,12,13,14,15. It remains largely unclear, however, what causes the loss of virus-specific CD8 T cell function in the liver during persistent hepatocyte infection.CREM-expressing CXCR6+ CD8 T cells in persistent HBVIt is difficult to study the mechanisms curbing antiviral T cell immunity during chronic hepatitis B because of the scarcity of virus-specific CD8 T cells16,17,18.

通过免疫疗法(例如治疗性疫苗接种)增强病毒特异性免疫的尝试被认为是恢复慢性肝炎患者病毒特异性CD8 T细胞功能的有希望的方法B11,12,13,14,15。然而,在持续性肝细胞感染期间,是什么导致肝脏中病毒特异性CD8 T细胞功能丧失,目前尚不清楚。由于缺乏病毒特异性CD8 T细胞16,17,18,在持续性HBVIt中表达CREM的CXCR6+CD8 T细胞很难研究在慢性乙型肝炎期间抑制抗病毒T细胞免疫的机制。

Therefore, we established a model of persistent infection compared to acute-resolved infection with viruses that target and replicate specifically in hepatocytes. We generated two hepatotropic recombinant adenoviruses encoding ovalbumin, green fluorescence protein (GFP) and luciferase (GOL)19. These adenoviruses differed in their promoters driving viral gene expression and the outcome of infection, a cytomegalovirus promoter (Ad–CMV–GOL) leading to acute resolved infection with transient liver damage compared to a hepatocyte-specific transthyretin promoter (Ad–TTR–GOL) leading to persistent infection with continuous low-level liver damage (Fig.

因此,我们建立了一个持续感染的模型,与急性消退的病毒感染相比,这些病毒特异性靶向并在肝细胞中复制。我们产生了两种编码卵清蛋白,绿色荧光蛋白(GFP)和荧光素酶(GOL)19的嗜肝重组腺病毒。这些腺病毒在驱动病毒基因表达和感染结果的启动子上有所不同,巨细胞病毒启动子(Ad-CMV-GOL)与肝细胞特异性运甲状腺素蛋白启动子(Ad-TTR-GOL)相比,导致急性消退感染并伴有短暂性肝损伤,导致持续性低水平肝损伤(图)。

1a and Extended Data Fig..

。。

Data availability

数据可用性

RNA-seq data for mouse HBcore-specific CD8 T cells are deposited in the Gene Expression Omnibus (GEO) at accessions GSE214151 and GSE233661. RNA-seq data for mouse ovalbumin-specific CD8 T cells are deposited at GSE168096. RNA-seq data for mouse LCMV-specific CD8 T cells are deposited at GSE212925. RNA-seq data for human HBV-specific CD8 T cells are available at Figshare (https://figshare.com/s/245d38cb7c4901b70b3f (ref.

小鼠HBcore特异性CD8 T细胞的RNA-seq数据保存在基因表达综合(GEO)中,位于GSE214151和GSE233661。小鼠卵清蛋白特异性CD8 T细胞的RNA-seq数据保存在GSE168096。小鼠LCMV特异性CD8 T细胞的RNA-seq数据保存在GSE212925。人类HBV特异性CD8 T细胞的RNA-seq数据可在Figshare获得(https://figshare.com/s/245d38cb7c4901b70b3f(参考。

88) and https://figshare.com/s/0198184966164a2aabf4 (ref. 89)). All high-content data shown in this manuscript are deposited at publicly available databases (Extended Data). Source data are provided with this paper..

88)和https://figshare.com/s/0198184966164a2aabf4(参考文献89))。。本文提供了源数据。。

ReferencesWiktor, S. Z. & Hutin, Y. J. F. The global burden of viral hepatitis: better estimates to guide hepatitis elimination efforts. Lancet 388, 1030–1031 (2016).Article

ReferencesWiktor,S.Z.&Hutin,Y.J.F。病毒性肝炎的全球负担:更好的估计来指导肝炎消除工作。柳叶刀3881030-1031(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Thomas, D. L. Global elimination of chronic hepatitis. New Engl. J. Med. 380, 2041–2050 (2019).Article

Thomas,D.L。全球消除慢性肝炎。新英语。J、 医学3802041-2050(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Thimme, R. et al. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77, 68–76 (2003).Article

Thimme,R。等人。CD8+T细胞在急性乙型肝炎病毒感染期间介导病毒清除和疾病发病机制。J、 维罗尔。77,68-76(2003)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fisicaro, P. et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat. Med. 23, 327–336 (2017).Article

Fisicaro,P。等人。靶向线粒体功能障碍可以恢复慢性乙型肝炎中耗尽的HBV特异性CD8 T细胞的抗病毒活性。《自然医学》23327-336(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pallett, L. J. et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat. Med. 21, 591–600 (2015).Article

Pallett,L.J.等人。骨髓来源的抑制细胞对乙型肝炎免疫病理学的代谢调节。《自然医学》21591-600(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Benechet, A. P. et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature 574, 200–205 (2019).Article

Benechet,A.P.等人。经历肝启动的CD8+T细胞的动力学和基因组景观。自然574200-205(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Guidotti, L. G. et al. Immunosurveillance of the liver by intravascular effector CD8+ T cells. Cell 161, 486–500 (2015).Article

Guidotti,L.G.等人。血管内效应CD8+T细胞对肝脏的免疫监视。细胞161486-500(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, J. et al. Incidence and determinants of spontaneous hepatitis B surface antigen seroclearance: a community-based follow-up study. Gastroenterology 139, 474–482 (2010).Article

Liu,J.等人。自发性乙型肝炎表面抗原血清清除率的发生率和决定因素:一项基于社区的随访研究。胃肠病学139474-482(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Boni, C. et al. Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues. Gastroenterology 143, 963–973 (2012).Article

Boni,C.等人用核苷类似物长期有效治疗后,恢复了HBV特异性T细胞的功能。胃肠病学143963-973(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).Article

TOX增强了慢性病毒感染中耗尽的T细胞的表型和寿命。自然571265-269(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Protzer, U., Maini, M. K. & Knolle, P. A. Living in the liver: hepatic infections. Nat. Rev. Immunol. 12, 201–213 (2012).Article

Protzer,U.,Maini,M.K。和Knolle,P.A。生活在肝脏中:肝脏感染。国家免疫修订版。12201-213(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Maini, M. K. & Burton, A. R. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat. Rev. Gastroenterol. Hepatol. 16, 662–675 (2019).Article

Maini,M.K.&Burton,A.R。恢复,释放或替代慢性乙型肝炎中的适应性免疫。Nat。Rev。Gastroenterol。肝病。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Iannacone, M. & Guidotti, L. G. Immunobiology and pathogenesis of hepatitis B virus infection. Nat. Rev. Immunol. 22, 19–32 (2022).Article

Iannacone,M。&Guidotti,L.G。乙型肝炎病毒感染的免疫生物学和发病机制。国家免疫修订版。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Backes, S. et al. Protein-prime/modified vaccinia virus Ankara vector-boost vaccination overcomes tolerance in high-antigenemic HBV-transgenic mice. Vaccine 34, 923–932 (2016).Article

Backes,S。等人。蛋白质引发/修饰痘苗病毒安卡拉载体加强疫苗接种克服了高抗原性HBV转基因小鼠的耐受性。疫苗34923-932(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kosinska, A. D. et al. Synergy of therapeutic heterologous prime-boost hepatitis B vaccination with CpG-application to improve immune control of persistent HBV infection. Sci. Rep. 9, 10808 (2019).Article

Kosinska,A.D.等人。治疗性异源初免加强乙型肝炎疫苗接种与CpG应用的协同作用,以改善持续性HBV感染的免疫控制。科学。代表910808(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maini, M. K. et al. The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191, 1269–1280 (2000).Article

Maini,M.K.等人。病毒特异性CD8+细胞在持续性乙型肝炎病毒感染期间肝损伤和病毒控制中的作用。J、 实验医学1911269-1280(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bertoletti, A. & Ferrari, C. Adaptive immunity in HBV infection. J. Hepatol. 64, S71–s83 (2016).Article

Bertoletti,A。&Ferrari,C。HBV感染中的适应性免疫。J、 肝病。64,S71–s83(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Maini, M. K. & Pallett, L. J. Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. Lancet Gastroenterol. Hepatol. 3, 192–202 (2018).Article

Maini,M.K.&Pallett,L.J。乙型肝炎病毒感染中T细胞免疫缺陷:为什么治疗性疫苗接种需要帮助。柳叶刀肠胃病。肝病。3192-202(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Manske, K. et al. Outcome of antiviral immunity in the liver Is shaped by the level of antigen expressed in Infected hepatocytes. Hepatology 68, 2089–2105 (2018).Fernandez-Ruiz, D. et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection.

Manske,K。等人。肝脏抗病毒免疫的结果取决于感染肝细胞中表达的抗原水平。肝病学682089-2105(2018)。Fernandez-Ruiz,D。等人。肝脏驻留记忆CD8+T细胞形成抵抗疟疾肝期感染的前线防御。

Immunity 45, 889–902 (2016).Article .

豁免45889-902(2016)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bottcher, J. P. et al. Functional classification of memory CD8(+) T cells by CX3CR1 expression. Nat. Commun. 6, 8306 (2015).Article

Bottcher,J.P。等人。通过CX3CR1表达对记忆CD8(+)T细胞进行功能分类。国家公社。68306(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Holz, L. E. et al. CD8(+) T cell activation leads to constitutive formation of liver tissue-resident memory T cells that seed a large and flexible niche in the liver. Cell Rep. 25, 68–79 e64 (2018).Article

Holz,L.E.等人,CD8(+)T细胞活化导致肝组织驻留记忆T细胞的组成型形成,其在肝脏中播种大而灵活的生态位。Cell Rep.25,68-79 e64(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Ann. Rev. Immunol. 37, 457–495 (2015).Article

McLane,L.M.,Abdel Hakeem,M.S。&Wherry,E.J。慢性病毒感染和癌症期间CD8 T细胞耗竭。Ann.Rev.Immunol。37457-495(2015)。文章

Google Scholar

谷歌学者

Dion, S., Bourgine, M., Godon, O., Levillayer, F. & Michel, M. L. Adeno-associated virus-mediated gene transfer leads to persistent hepatitis B virus replication in mice expressing HLA-A2 and HLA-DR1 molecules. J. Virol. 87, 5554–5563 (2013).Article

Dion,S.,Bourgine,M.,Godon,O.,Levillayer,F。&Michel,M.L。腺相关病毒介导的基因转移导致表达HLA-A2和HLA-DR1分子的小鼠中持续的乙型肝炎病毒复制。J、 维罗尔。875554-5563(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sprinzl, M. F., Oberwinkler, H., Schaller, H. & Protzer, U. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier. J. Virol. 75, 5108–5118 (2001).Article

Sprinzl,M.F.,Oberwinkler,H.,Schaller,H。&Protzer,U。通过腺病毒载体将乙型肝炎病毒基因组转移到培养的细胞和小鼠中:跨越物种屏障。J、 维罗尔。755108-5118(2001)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, L. R. et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8+ T cells and successful immunotherapy against chronic viral liver infection. Nat. Immunol. 14, 574–583 (2013).Article

Huang,L.R.等人。肝内髓样细胞聚集体能够使CD8+T细胞局部增殖,并成功地对慢性病毒性肝脏感染进行免疫治疗。自然免疫。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Michler, T. et al. Knockdown of virus antigen expression increases therapeutic vaccine efficacy in high-titer hepatitis B virus carrier mice. Gastroenterology 158, 1762–1775 (2020).Article

Michler,T。等人。病毒抗原表达的敲低增加了高滴度乙型肝炎病毒携带者小鼠的治疗性疫苗功效。胃肠病学1581762-1775(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Reignat, S. et al. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J. Exp. Med. 195, 1089–1101 (2002).Article

Reignat,S.等人,《逃避高病毒载量衰竭:慢性乙型肝炎病毒感染中四聚体结合改变的CD8细胞》。J、 实验医学1951089-1101(2002)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5, e12776 (2010).Article

Huynh Thu,V.A.,Irrthum,A.,Wehenkel,L。&Geurts,P。使用基于树的方法从表达数据推断调控网络。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bouchard, A. et al. Hippo signal transduction mechanisms in T cell immunity. Immune Netw. 20, e36–e36 (2020).Article

Bouchard,A。等人。T细胞免疫中的Hippo信号转导机制。免疫网络。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nguyen, S. et al. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8(+) T cells. Sci. Transl. Med. 11, eaax4077 (2019).Article

Nguyen,S。等人。HIV的精英控制与淋巴组织CD8(+)T细胞中不同的功能和转录特征有关。科学。翻译。医学杂志11,eaax4077(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Borlikova, G. & Endo, S. Inducible cAMP early repressor (ICER) and brain functions. Mol. Neurobiol. 40, 73–86 (2009).Article

Borlikova,G。&Endo,S。诱导型cAMP早期阻遏物(ICER)和脑功能。分子神经生物学。40,73-86(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Conche, C., Boulla, G., Trautmann, A. & Randriamampita, C. T cell adhesion primes antigen receptor-induced calcium responses through a transient rise in adenosine 3’,5’-cyclic monophosphate. Immunity 30, 33–43 (2009).Article

Conche,C.,Boulla,G.,Trautmann,A。&Randriamampita,C。T细胞粘附通过腺苷3',5'-环磷酸的瞬时升高引发抗原受体诱导的钙反应。豁免30,33-43(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Molina, C. A., Foulkes, N. S., Lalli, E. & Sassone-Corsi, P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 75, 875–886 (1993).Article

Molina,C.A.,Foulkes,N.S.,Lalli,E。&Sassone-Corsi,P。CREM的诱导性和负自动调节:替代启动子指导ICER(一种早期反应阻遏物)的表达。细胞75875-886(1993)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bodor, J. et al. Suppression of T-cell responsiveness by inducible cAMP early repressor (ICER). J. Leukoc. Biol. 69, 1053–1059 (2001).Article

Bodor,J。等人。通过诱导型cAMP早期阻遏物(ICER)抑制T细胞反应性。J、 白血病。生物学691053-1059(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bodor, J., Fehervari, Z., Diamond, B. & Sakaguchi, S. ICER/CREM-mediated transcriptional attenuation of IL-2 and its role in suppression by regulatory T cells. Eur. J. Immunol. 37, 884–895 (2007).Article

Bodor,J.,Fehervari,Z.,Diamond,B。&Sakaguchi,S。ICER/CREM介导的IL-2转录减弱及其在调节性T细胞抑制中的作用。欧洲免疫学杂志。37884-895(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Parish, I. A. et al. The molecular signature of CD8+ T cells undergoing deletional tolerance. Blood 113, 4575–4585 (2009).Article

Parish,I.A。等人。经历缺失耐受的CD8+T细胞的分子特征。血液1134575-4585(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maine, C. J., Teijaro, J. R., Marquardt, K. & Sherman, L. A. PTPN22 contributes to exhaustion of T lymphocytes during chronic viral infection. Proc. Natl Acad. Sci. USA 113, e7231–e7239 (2016).Article

缅因州,C.J.,Teijaro,J.R.,Marquardt,K。&Sherman,L.A。PTPN22在慢性病毒感染期间导致T淋巴细胞耗竭。程序。国家科学院。科学。美国113,e7231–e7239(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rauen, T., Hedrich, C. M., Tenbrock, K. & Tsokos, G. C. cAMP responsive element modulator: a critical regulator of cytokine production. Trends Mol. Med. 19, 262–269 (2013).Article

Rauen,T.,Hedrich,C.M.,Tenbrock,K。&Tsokos,G.C。cAMP反应元件调节剂:细胞因子产生的关键调节剂。趋势分子医学19262-269(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bopp, T. et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med. 204, 1303–1310 (2007).Article

Bopp,T。等人。环磷酸腺苷是调节性T细胞介导的抑制的关键成分。J、 实验医学2041303-1310(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Klein, M. et al. Repression of cyclic adenosine monophosphate upregulation disarms and expands human regulatory T cells. J. Immunol. 188, 1091–1097 (2012).Article

Klein,M。等人。抑制环磷酸腺苷上调解除并扩大人类调节性T细胞。J、 免疫。1881091-1097(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Stross, L. et al. Foxp3+ regulatory T cells protect the liver from immune damage and compromise virus control during acute experimental hepatitis B virus infection in mice. Hepatology 56, 873–883 (2012).Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance.

在小鼠急性实验性乙型肝炎病毒感染期间,Foxp3+调节性T细胞保护肝脏免受免疫损伤并损害病毒控制。肝病学56873-883(2012)。Limmer,A。等人。肝内皮细胞向CD8+T细胞有效呈递外源抗原导致抗原特异性T细胞耐受。

Nat. Med. 6, 1348–1354 (2000).Article .

《自然医学》61348-1354(2000)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Seamon, K., Daly, J., Metzger, H., De Souza, N. & Reden, J. Structure–activity relationships for activation of adenylate cyclase by the diterpene forskolin and its derivatives. J. Med. Chem. 26, 436–439 (1983).Article

Seamon,K.,Daly,J.,Metzger,H.,De Souza,N。&Reden,J。二萜毛喉素及其衍生物激活腺苷酸环化酶的结构-活性关系。J、 医学化学。26436-439(1983)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mastelic-Gavillet, B. et al. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8(+) T cells. J. Immunother. Cancer 7, 257 (2019).Article

Mastelic Gavillet,B。等人。腺苷介导外周和肿瘤浸润性CD8(+)T细胞的功能和代谢抑制。J、 免疫疗法。癌症7257(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Allard, B., Longhi, M. S., Robson, S. C. & Stagg, J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol. Rev. 276, 121–144 (2017).Article

Allard,B.,Longhi,M.S.,Robson,S.C。&Stagg,J。外核苷酸酶CD39和CD73:新型检查点抑制剂靶标。免疫。修订版276121-144(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sorrentino, C. et al. Adenosine A2A receptor stimulation inhibits TCR-induced Notch1 sctivation in CD8+ T-cells. Front. Immunol. 10, 162 (2019).Article

Sorrentino,C。等人。腺苷A2A受体刺激抑制TCR诱导的CD8+T细胞中Notch1的活化。正面。免疫。10162(2019)。文章

MathSciNet

MathSciNet

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sassone-Corsi, P. The cyclic AMP pathway. Cold Spring Harb. Perspect. Biol. 4, a011148 (2012).Article

。冷泉兔。透视图。生物学杂志4,a011148(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wehbi, V. L. & Taskén, K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells—role of anchored protein kinase A signaling units. Front. Immunol. 7, 222 (2016).Article

Wehbi,V.L。&Taskén,K。cAMP介导的T细胞免疫调节的分子机制锚定蛋白激酶A信号传导单元的作用。正面。免疫。7222(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vang, T. et al. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J. Exp. Med. 193, 497–507 (2001).Article

Vang,T。等人。通过cAMP依赖性蛋白激酶激活COOH末端Src激酶(Csk)抑制通过T细胞受体的信号传导。J、 实验医学193497-507(2001)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hořejší, V., Zhang, W. & Schraven, B. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat. Rev. Immunol. 4, 603–616 (2004).Article

Hořejší,V.,Zhang,W。&Schraven,B。跨膜衔接蛋白:免疫受体信号传导的组织者。国家免疫修订版。4603-616(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).Article

Yao,C。等人。单细胞RNA-seq揭示TOX是慢性感染中CD8+T细胞持久性的关键调节因子。自然免疫。20890-901(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).Article

Khan,O.等人,TOX转录和表观遗传学编程CD8+T细胞耗竭。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Beltra, J.-C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841 (2020).Article

Beltra,J.-C.等人。四种耗尽的CD8+T细胞亚群的发育关系揭示了潜在的转录和表观遗传景观控制机制。豁免52825-841(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Blank, C. U. et al. Defining T cell exhaustion. Nat. Rev. Immunol. 19, 665–674 (2019).Article

Blank,C.U.等人定义T细胞衰竭。国家免疫修订版。19665-674(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wen, Y. et al. Visualizing lymphocytic choriomeningitis virus infection in cells and living mice. iScience 25, 105090 (2022).Article

Wen,Y。等人。在细胞和活体小鼠中观察淋巴细胞脉络丛脑膜炎病毒感染。iScience 25105090(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, L. R. et al. Transfer of HBV genomes using low doses of adenovirus vectors leads to persistent infection in immune competent mice. Gastroenterology 142, 1447–1450 (2012).Article

Huang,L.R。等人。使用低剂量腺病毒载体转移HBV基因组导致免疫活性小鼠持续感染。胃肠病学1421447-1450(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).Article

Bankhead,P。等。QuPath:用于数字病理图像分析的开源软件。科学。代表716878(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schrage, A. et al. Murine CD146 is widely expressed on endothelial cells and is recognized by the monoclonal antibody ME-9F1. Histochem. Cell Biol. 129, 441–451 (2008).Article

Schrage,A。等人。鼠CD146在内皮细胞上广泛表达,并被单克隆抗体ME-9F1识别。组织化学。细胞生物学。129441-451(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wittlich, M. et al. Liver sinusoidal endothelial cell cross-priming is supported by CD4 T cell-derived IL-2. J. Hepatol. 66, 978–986 (2017).Article

Wittlich,M。等人。肝窦内皮细胞交叉引发由CD4 T细胞衍生的IL-2支持。J、 肝病。66978-986(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dudek, M. et al. IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 T cells cross-primed by liver sinusoidal endothelial cells. Cell Rep. 38, 110389 (2022).Article

。Cell Rep.38110389(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

European Association for the Study of the Liver EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 67, 370–398 (2017).Article

欧洲肝脏研究协会EASL 2017乙型肝炎病毒感染管理临床实践指南。J、 肝病。67370–398(2017)。文章

Google Scholar

谷歌学者

Nauerth, M. et al. Flow cytometry-based TCR-ligand Koff-rate assay for fast avidity screening of even very small antigen-specific T cell populations ex vivo. Cytometry A 89, 816–825 (2016).Article

Nauerth,M。等人。基于流式细胞术的TCR配体Koff率测定法,用于离体快速亲和力筛选甚至非常小的抗原特异性T细胞群。细胞计数A 89816-825(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).Article

Macosko,E.Z.等人。使用纳升液滴对单个细胞进行高度平行的全基因组表达谱分析。细胞1611202-1214(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article

Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).Article

Picelli,S。等人。使用Smart-seq2从单细胞中提取全长RNA-seq。。9171-181(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 77 (2016).Article

Hashimshony,T。等人CEL-Seq2:敏感的高度多重单细胞RNA-Seq。基因组生物学。17,77(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sagar, Herman, J. S., Pospisilik, J. A. & Grün D. High-throughput single-cell RNA sequencing and data analysis. Methods Mol. Biol. 1766, 257–283 (2018).Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).Article .

Sagar,Herman,J.S.,Pospisilik,J.A。&Grün D。高通量单细胞RNA测序和数据分析。方法分子生物学。1766257-283(2018)。Mackay,L.K.等人。皮肤CD103+CD8+组织驻留记忆T细胞的发育途径。自然免疫。141294-1301(2013)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Smyth, G. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds Gentleman, R. et al.) 397–420 (Springer, 2005).Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).Article .

Smyth,G。使用R和Bioconductor的生物信息学和计算生物学解决方案(eds Gentleman,R。et al。)397-420(Springer,2005)。。科学352459-463(2016)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mahi, N. A., Najafabadi, M. F., Pilarczyk, M., Kouril, M. & Medvedovic, M. GREIN: an interactive web platform for re-analyzing GEO RNA-seq data. Sci. Rep. 9, 7580 (2019).Article

Mahi,N.A.,Najafabadi,M.F.,Pilarczyk,M.,Kouril,M。&Medvedovic,M.GREIN:用于重新分析GEO RNA-seq数据的交互式网络平台。科学。代表97580(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rouillard, A. D. et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database 2016, baw100 (2016).Article

harmonizome:一组经过处理的数据集,用于服务和挖掘有关基因和蛋白质的知识。数据库2016,baw100(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article

Subramanian,A。等人。基因集富集分析:一种基于知识的方法,用于解释全基因组表达谱。程序。国家科学院。科学。美国10215545–15550(2005)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chawla, K., Tripathi, S., Thommesen, L., Lægreid, A. & Kuiper, M. TFcheckpoint: a curated compendium of specific DNA-binding RNA polymerase II transcription factors. Bioinformatics 29, 2519–2520 (2013).Article

Chawla,K.,Tripathi,S.,Thommesen,L.,Lægreid,A。&Kuiper,M。TFcheckpoint:特定DNA结合RNA聚合酶II转录因子的精选纲要。生物信息学292519-2520(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Casper, J. et al. The UCSC Genome Browser database: 2018 update. Nucleic Acids Res. 46, D762–D769 (2018).Article

Casper,J。等人。UCSC基因组浏览器数据库:2018年更新。核酸研究46,D762–D769(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).Article

Khan,A.等人,《JASPAR 2018:转录因子结合谱开放获取数据库及其网络框架的更新》。核酸研究46,D260–D266(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP–Seq analysis. Nucleic Acids Res. 46, D252–d259 (2018).Article

。核酸研究46,D252-d259(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).Article

Shannon,P。等。Cytoscape:用于生物分子相互作用网络集成模型的软件环境。基因组研究132498-2504(2003)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012).Article

Gerstein,M.B.等人。源自ENCODE数据的人类调节网络的体系结构。自然489,91-100(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).Article

Köster,J。&Rahmann,S。Snakemake-一种可扩展的生物信息学工作流引擎。生物信息学282520-2522(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article

Bolger,A.M.,Lohse,M。和Usadel,B。Trimmomatic:用于Illumina序列数据的柔性修剪器。生物信息学302114-2120(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article

Dobin,A。等人STAR:超快通用RNA-seq比对仪。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2014).Article

Anders,S.,Pyl,P。T。&Huber,W。HTSeq-一种用于处理高通量测序数据的Python框架。生物信息学31166-169(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Galletti, G. et al. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 21, 1552–1562 (2020).Article

Galletti,G。等人。在人类中具有不同命运承诺的干细胞样CD8+记忆T细胞祖细胞的两个子集。自然免疫。211552-1562(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zappia, L. & Oshlack, A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience 7, giy083 (2018).Article

Zappia,L。&Oshlack,A。聚类树:用于评估多分辨率聚类的可视化。Gigascience 7,giy083(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Andreatta, M. & Carmona, S. J. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).Article

Andreatta,M。&Carmona,S.J。UCell:强大且可扩展的单细胞基因特征评分。计算机。结构。生物技术。J、 。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

HBV_CORE_NAIVE.zip. Figshare https://figshare.com/s/245d38cb7c4901b70b3f (2022).A liver immune rheostat regulates CD8 T cell immunity in chronic HBV infection. Figshare https://figshare.com/s/0198184966164a2aabf4 (2024).Sandu, I. et al. Landscape of exhausted virus-specific CD8 T cells in chronic LCMV infection.

HBV\u CORE\u NAIVE.zip。Figshare公司https://figshare.com/s/245d38cb7c4901b70b3f(2022年)。肝脏免疫变阻器调节慢性HBV感染中的CD8 T细胞免疫。Figshare公司https://figshare.com/s/0198184966164a2aabf4(2024年)。Sandu,I。等人。慢性LCMV感染中耗尽的病毒特异性CD8 T细胞的景观。

Cell Rep. 32, 108078 (2020).Article .

Cell Rep.32108078(2020)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank the LiverConsortium, supported by Janssen Pharma, for providing data on intrahepatic CD8 T cells isolated from patients with chronic hepatitis B. We thank the tissue bank from the Institute of Pathology, School of Medicine and Health at TUM for contributing human liver tissue samples.

下载参考文献致谢我们感谢Janssen Pharma支持的LiverConsortium提供了从慢性乙型肝炎患者中分离出的肝内CD8 T细胞的数据。我们感谢TUM医学与健康学院病理学研究所的组织库提供了人类肝脏组织样本。

This study was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (CRC-TRR179 to P.A.K., U.P., M.H., R.T., C.H. and D.W.; CRC1160 to M.H.; CRC1371, CRC1054, ZE 832/6-1 and ZE 832/8-1 to D.Z.; DFG grants 424926990 and 442405234 to J.P.B.; and DFG grants INST 95/1763-1, 95/1738-1 and 95-1651-1 to P.A.K.), by grants from the German Center for Infection Research Munich site (P.A.K., U.P.

这项研究得到了德国科学基金会(DFG)的资助(CRC-TRR179授予P.A.K.,U.P.,M.H.,R.T.,C.H.和D.W.;CRC1160授予M.H.;CRC1371,CRC1054,ZE 832/6-1和ZE 832/8-1授予D.Z.;DFG授予J.P.B 424926990和442405234.;DFG授予INST 95/1763-1、95/1738-1和95-1651-1授予P.A.K.)慕尼黑感染研究网站(P.A.K.,U.P。

and D.W.) and by the EU (TherVacB to U.P. and P.A.K.) and ERC AG to GB 786462. M.H. was supported by the DFG Heisenberg programme, A.O. was supported by the Swiss National Science Foundation (SNSF), grant 310030_146140 and P.J.M. was supported by FOR2599 and CRC-TRR127.FundingOpen access funding provided by Technische Universität München.Author informationAuthor notesThese authors contributed equally: Miriam Bosch, Nina KallinAuthors and AffiliationsInstitute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, GermanyMiriam Bosch, Nina Kallin, Sainitin Donakonda, Hannah Wintersteller, Silke Hegenbarth, Anna Fürst, Sutirtha Chattopadhyay, Philippa Meiser, Katrin Manske, Annika Schneider, Vincent Steinbacher, Jan P.

和D.W.)以及欧盟(TherVacB to U.P.和P.A.K.)和ERC AG to GB 786462。M、 H.得到了DFG海森堡计划的支持,A.O.得到了瑞士国家科学基金会(SNSF)的支持,grant 310030\u 146140和P.J.M.得到了FOR2599和CRC-TRR127.FundingOpen access资助的支持,由慕尼黑工业大学提供。作者信息作者注意到这些作者做出了同样的贡献:米里亚姆·博世(Miriam Bosch),尼娜·卡林纳斯(Nina KallinAuthors)及其附属机构慕尼黑工业大学(TUM)医学与健康学院分子免疫学研究所,慕尼黑,德国米里亚姆·博世(GermanyMiriam Bosch),尼娜·卡林(Nina Kallin),赛尼汀·多纳康达(Sainitin Donakonda),汉娜·温特斯特勒(Hannah Wintersteller),西尔克·黑根巴特(Silke Hegenbarth),安娜·福斯特(Anna Fürst),萨蒂尔莎·查托帕迪亚(Sutirtha。

Böttcher, Dirk Wohlleber & Percy A. KnolleRoche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, Basel, SwitzerlandJitao David Zhang, Nadine Kumpesa, Vera Griesser, Jean-Christophe Hoflack, Juliane Siebourg-Polster & Souphalone LuangsayThird.

Böttcher,Dirk Wohlleber&Percy A.KnolleRoche Pharmaceutical Research and Early Development(pRED),罗氏创新中心巴塞尔,巴塞尔,瑞士大卫·张,Nadine Kumpesa,Vera Griesser,Jean-Christophe Hoflack,Juliane Siebourg Polster&Souphalone Luangsaythrth。

PubMed Google ScholarNina KallinView author publicationsYou can also search for this author in

PubMed Google ScholarNina KallinView作者出版物您也可以在

PubMed Google ScholarSainitin DonakondaView author publicationsYou can also search for this author in

PubMed Google ScholarSainitin DonakondaView作者出版物您也可以在

PubMed Google ScholarJitao David ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者Jitao David ZhangView作者出版物您也可以在

PubMed Google ScholarHannah WinterstellerView author publicationsYou can also search for this author in

PubMed Google ScholarHannah WinterstellerView作者出版物您也可以在

PubMed Google ScholarSilke HegenbarthView author publicationsYou can also search for this author in

PubMed Google ScholarSilke HegenbarthView作者出版物您也可以在

PubMed Google ScholarKathrin HeimView author publicationsYou can also search for this author in

PubMed Google ScholarKathrin HeimView作者出版物您也可以在

PubMed Google ScholarCarlos RamirezView author publicationsYou can also search for this author in

PubMed Google ScholarCarlos RamirezView作者出版物您也可以在

PubMed Google ScholarAnna FürstView author publicationsYou can also search for this author in

PubMed Google ScholarAnna FürstView作者出版物您也可以在

PubMed Google ScholarElias Isaac LattoufView author publicationsYou can also search for this author in

PubMed Google ScholarElias Isaac LattoufView作者出版物您也可以在

PubMed Google ScholarMartin FeuerherdView author publicationsYou can also search for this author in

PubMed Google ScholarMartin FeuerherdView作者出版物您也可以在

PubMed Google ScholarSutirtha ChattopadhyayView author publicationsYou can also search for this author in

PubMed Google ScholarSutirtha Chattopadhayview作者出版物您也可以在

PubMed Google ScholarNadine KumpesaView author publicationsYou can also search for this author in

PubMed Google ScholarNadine KumpesaView作者出版物您也可以在

PubMed Google ScholarVera GriesserView author publicationsYou can also search for this author in

PubMed Google ScholarVera GriesserView作者出版物您也可以在

PubMed Google ScholarJean-Christophe HoflackView author publicationsYou can also search for this author in

PubMed谷歌学者Jean Christophe HoflackView作者出版物您也可以在

PubMed Google ScholarJuliane Siebourg-PolsterView author publicationsYou can also search for this author in

PubMed Google ScholarJulianeSiebourg PolsterView作者出版物您也可以在

PubMed Google ScholarCarolin MoglerView author publicationsYou can also search for this author in

PubMed Google ScholarLeo SwadlingView author publicationsYou can also search for this author in

PubMed Google ScholarLeo SwadlingView作者出版物您也可以在

PubMed Google ScholarLaura J. PallettView author publicationsYou can also search for this author in

PubMed Google ScholarLaura J.PallettView作者出版物您也可以在

PubMed Google ScholarPhilippa MeiserView author publicationsYou can also search for this author in

PubMed Google ScholarPhilippa MeiserView作者出版物您也可以在

PubMed Google ScholarKatrin ManskeView author publicationsYou can also search for this author in

PubMed Google ScholarKatrin ManskeView作者出版物您也可以在

PubMed Google ScholarGustavo P. de AlmeidaView author publicationsYou can also search for this author in

PubMed Google ScholarGustavo P.de AlmeidaView作者出版物您也可以在

PubMed Google ScholarAnna D. KosinskaView author publicationsYou can also search for this author in

PubMed Google ScholarIoana SanduView author publicationsYou can also search for this author in

PubMed Google Scholariaana SanduView作者出版物您也可以在

PubMed Google ScholarAnnika SchneiderView author publicationsYou can also search for this author in

PubMed谷歌ScholarAnnika SchneiderView作者出版物您也可以在

PubMed Google ScholarVincent SteinbacherView author publicationsYou can also search for this author in

PubMed谷歌学者Vincent SteinbacherView作者出版物您也可以在

PubMed Google ScholarYan TengView author publicationsYou can also search for this author in

PubMed Google ScholarYan TengView作者出版物您也可以在

PubMed Google ScholarJulia SchnabelView author publicationsYou can also search for this author in

PubMed谷歌学者Julia SchnabelView作者出版物您也可以在

PubMed Google ScholarFabian TheisView author publicationsYou can also search for this author in

PubMed Google ScholarAdam J. GehringView author publicationsYou can also search for this author in

PubMed Google ScholarAndre BoonstraView author publicationsYou can also search for this author in

PubMed Google ScholarAndre BoonstraView作者出版物您也可以在

PubMed Google ScholarHarry L. A. JanssenView author publicationsYou can also search for this author in

PubMed谷歌学者Harry L.A.JanssenView作者出版物您也可以在

PubMed Google ScholarMichiel VandenboschView author publicationsYou can also search for this author in

PubMed Google Scholarmachiel VandenboschView作者出版物您也可以在

PubMed Google ScholarEva CuypersView author publicationsYou can also search for this author in

PubMed Google ScholarEva CuypersView作者出版物您也可以在

PubMed Google ScholarRupert ÖllingerView author publicationsYou can also search for this author in

PubMed Google ScholarRupertÖllingerView作者出版物您也可以在

PubMed Google ScholarThomas EngleitnerView author publicationsYou can also search for this author in

PubMed Google ScholarThomas EngleitnerView作者出版物您也可以在

PubMed Google ScholarRoland RadView author publicationsYou can also search for this author in

PubMed Google Scholarland RadView作者出版物您也可以在

PubMed Google ScholarKatja SteigerView author publicationsYou can also search for this author in

PubMed Google ScholarKatja SteigerView作者出版物您也可以在

PubMed Google ScholarAnnette OxeniusView author publicationsYou can also search for this author in

PubMed Google Scholarannete OxeniusView作者出版物您也可以在

PubMed Google ScholarWan-Lin LoView author publicationsYou can also search for this author in

PubMed Google ScholarWan Lin LoView作者出版物您也可以在

PubMed Google ScholarVictoria KlepschView author publicationsYou can also search for this author in

PubMed Google ScholarVictoria KlepschView作者出版物您也可以在

PubMed Google ScholarGottfried BaierView author publicationsYou can also search for this author in

PubMed Google ScholarGottfried BaierView作者出版物您也可以在

PubMed Google ScholarBernhard HolzmannView author publicationsYou can also search for this author in

PubMed Google ScholarBernhard HolzmannView作者出版物您也可以在

PubMed Google ScholarMala K. MainiView author publicationsYou can also search for this author in

PubMed Google ScholarMala K.MainiView作者出版物您也可以在

PubMed Google ScholarRon HeerenView author publicationsYou can also search for this author in

PubMed Google ScholarRon HeerenView作者出版物您也可以在

PubMed Google ScholarPeter J. MurrayView author publicationsYou can also search for this author in

PubMed Google ScholarPeter J.MurrayView作者出版物您也可以在

PubMed Google ScholarRobert ThimmeView author publicationsYou can also search for this author in

PubMed Google ScholarRobert ThimmeView作者出版物您也可以在

PubMed Google ScholarCarl HerrmannView author publicationsYou can also search for this author in

PubMed谷歌学术评论作者出版物您也可以在

PubMed Google ScholarUlrike ProtzerView author publicationsYou can also search for this author in

PubMed Google ScholarUlrike ProtzerView作者出版物您也可以在

PubMed Google ScholarJan P. BöttcherView author publicationsYou can also search for this author in

PubMed Google ScholarJan P.BöttcherView作者出版物您也可以在

PubMed Google ScholarDietmar ZehnView author publicationsYou can also search for this author in

PubMed Google ScholarDietmar ZehnView作者出版物您也可以在

PubMed Google ScholarDirk WohlleberView author publicationsYou can also search for this author in

PubMed Google ScholarDirk WohlleberView作者出版物您也可以在

PubMed Google ScholarGeorg M. LauerView author publicationsYou can also search for this author in

PubMed Google ScholarGeorg M.LauerView作者出版物您也可以在

PubMed Google ScholarMaike HofmannView author publicationsYou can also search for this author in

PubMed Google ScholarMaike HofmannView作者出版物您也可以在

PubMed Google ScholarSouphalone LuangsayView author publicationsYou can also search for this author in

PubMed Google ScholarSouphalone LuangsayView作者出版物您也可以在

PubMed Google ScholarPercy A. KnolleView author publicationsYou can also search for this author in

PubMed Google ScholarPercy A.KnolleView作者出版物您也可以在

PubMed Google ScholarContributionsM.B., N. Kallin, H.W., S.H., K.H., A.F., N. Kumpesa, V.G., J.-C.H., L.S., L.J.P., P.M., K.M., A.K., A.S., V.S., Y.T., M.V., E.C., R.Ö., T.E., K.S., A.D.K. and J.S.-P. performed the experiments. A.J.G., A.B., H.L.A.J., B.H., G.M.L., M.H. and R.T.

PubMed谷歌学术贡献。B、 ,N.Kallin,H.W.,S.H.,K.H.,A.F.,N.Kumpesa,V.G.,J.-C.H.,L.S.,L.J.P.,P.M.,K.M.,A.K.,A.S.,V.S.,Y.T.,M.V.,E.C.,R.Ö。,T、 E.,K.S.,A.D.K.和J.S.-P.进行了实验。A、 J.G.,A.B.,H.L.A.J.,B.H.,G.M.L.,M.H.和R.T。

provided essential reagents or data for analysis. S.D., J.D.Z., C.R., E.I.L., M.F., S.C., C.M., G.P.d.A., I.S., J.S., F.T., R.R., A.O., W.-L.L., V.K., G.B., M.K.M., R.H., P.J.M., R.T., C.H., U.P., J.P.B., D.Z., D.W., G.M.L., S.L. and P.A.K. analysed data. M.B., S.D., J.D.Z., P.J.M., M.K.M., R.T., G.M.L., S.L., U.P.

提供用于分析的基本试剂或数据。S、 D.,J.D.Z.,C.R.,E.I.L.,M.F.,S.C.,C.M.,G.P.D.A.,I.S.,J.S.,F.T.,R.R.,A.O.,W.-L.L.,V.K.,G.B.,M.K.M.,R.H.,P.J.M.,R.T.,C.H.,U.P.,J.P.B.,D.Z.,D.W.,G.M.L.,S.L.和P.A.K.分析数据。M、 B.,S.D.,J.D.Z.,P.J.M.,M.K.M.,R.T.,G.M.L.,S.L.,U.P。

and P.A.K. wrote the manuscript.Corresponding authorCorrespondence to.

P.A.K.写了手稿。对应作者对应。

Percy A. Knolle.Ethics declarations

珀西·A·诺尔。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature thanks Antonio Bertoletti, Tobias Bopp, Arash Grakoui and Cliona OʼFarrelly for their contribution to the peer review of this work. Peer reviewer reports are available.

《自然》杂志感谢安东尼奥·贝托莱蒂(AntonioBertoletti)、托拜厄斯·波普(TobiasBopp)、阿拉什·格拉科伊(ArashGrakoui)和克利奥娜·奥法雷利(ClionaO'Farrelly)为这项工作的同行评审所作的贡献。同行评审报告可供查阅。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 Kinetics of infection and frequencies of antigen-specific CD8 T cells during hepatotropic adenoviral infection.a,b, In vivo bioluminescence imaging kinetic after hepatotropic infection and quantification (two-way ANOVA with Tukey’s multiple comparisons; d0: resolved vs.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据图和表扩展数据图1嗜肝腺病毒感染期间感染的动力学和抗原特异性CD8 T细胞的频率。a,b,嗜肝感染后的体内生物发光成像动力学和定量(双向ANOVA与Tukey多重比较;d0:解析vs。

chronic Padj=0.9295, resolved vs. uninfected Padj=0.0959, chronic vs. uninfected Padj=0.1498; d1: resolved vs. chronic Padj=0.9902, resolved vs. uninfected Padj=0.0209, chronic vs. uninfected Padj=0.1021; d3: resolved vs. chronic Padj=0.2179, resolved vs. uninfected Padj=0.1025, chronic vs. uninfected Padj=0.1269; d5: resolved vs.

慢性Padj=0.9295,消退与未感染Padj=0.0959,慢性与未感染Padj=0.1498;d1:解决与慢性Padj=0.9902,解决与未感染Padj=0.0209,慢性与未感染Padj=0.1021;d3:解决与慢性Padj=0.2179,解决与未感染Padj=0.1025,慢性与未感染Padj=0.1269;d5:解决vs。

chronic Padj=0.1413, resolved vs. uninfected Padj=0.1270, chronic vs. uninfected Padj=0.0168; d7: resolved vs. chronic: Padj=0.8271, resolved vs. uninfected Padj=0.5733, chronic vs. uninfected Padj=0.1293; d17: resolved vs. chronic Padj=0.3965, resolved vs. uninfected Padj=0.6564, chronic vs. uninfected Padj=0.3961; d46: resolved vs.

慢性Padj=0.1413,消退与未感染Padj=0.1270,慢性与未感染Padj=0.0168;d7:解决与慢性:Padj=0.8271,解决与未感染Padj=0.5733,慢性与未感染Padj=0.1293;d17:解决与慢性Padj=0.3965,解决与未感染Padj=0.6564,慢性与未感染Padj=0.3961;d46:解决vs。

chronic Padj=0.0218, resolved vs. uninfected Padj=0.0766, chronic vs. uninfected Padj=0.0219; d98: resolved vs. chronic Padj=0.0087, resolved vs. uninfected Padj=0.8296, chronic vs. uninfected Padj=0.0087; n = 5). c, Quantification of adenoviral copies in liver tissue (two-way ANOVA with Sidak’s multiple comparison, resolved vs.

慢性Padj=0.0218,消退与未感染Padj=0.0766,慢性与未感染Padj=0.0219;d98:解决与慢性Padj=0.0087,解决与未感染Padj=0.8296,慢性与未感染Padj=0.0087;n=5)。c、 。

chronic Padj<0.0001 for all timepoints, n = 4). d,e, Liver immunohistochemistry detecting GFP-expressing virus-infected hepatocytes in brown (scale bar 50 µm) and quantification (two-way ANOVA with Tukey’s multiple comparisons for Padj, n = 3). f, Time kinetics of sALT (two-way ANOVA with Tukey’s multiple comparison, .

所有时间点的慢性Padj<0.0001,n=4)。d、 e,肝脏免疫组织化学检测棕色(比例尺50μm)中表达GFP的病毒感染的肝细胞和定量(双向ANOVA与Tukey对Padj的多重比较,n=3)。f、 盐的时间动力学(双向方差分析与Tukey的多重比较。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleBosch, M., Kallin, N., Donakonda, S. et al. A liver immune rheostat regulates CD8 T cell immunity in chronic HBV infection.

Nature (2024). https://doi.org/10.1038/s41586-024-07630-7Download citationReceived: 19 September 2022Accepted: 30 May 2024Published: 10 July 2024DOI: https://doi.org/10.1038/s41586-024-07630-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《自然》(2024)。https://doi.org/10.1038/s41586-024-07630-7Download引文接收日期:2022年9月19日接收日期:2024年5月30日发布日期:2024年7月10日OI:https://doi.org/10.1038/s41586-024-07630-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

Hepatitis BViral infection

乙型肝炎病毒感染

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。