商务合作
动脉网APP
可切换为仅中文
AbstractA broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature.
摘要广泛的脑部病理严重依赖于脉管系统,脑血管疾病是全球死亡的主要原因。然而,人脑脉管系统的细胞和分子结构仍未完全了解1。在这里,我们对来自68名人类胎儿和成年患者的117个样品中的606380个新鲜分离的内皮细胞,血管周围细胞和其他组织来源的细胞进行了单细胞RNA测序分析,以构建发育中的胎儿,成人对照和患病人脑血管系统的分子图谱。
We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature.
我们确定了健康胎儿和成人大脑脉管系统的广泛分子异质性,以及五种血管依赖性中枢神经系统(CNS)病理,包括脑肿瘤和脑血管畸形。我们确定了动静脉分化的改变和重新激活的胎儿以及患病脉管系统中保守的失调基因和途径。
Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell–cell interaction analyses predict substantial endothelial-to-perivascular cell ligand–receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks.
病理性内皮细胞表现出中枢神经系统特异性的丧失,并显示MHC II类分子的上调,表明中枢神经系统内皮细胞的非典型特征。细胞间相互作用分析预测内皮细胞与血管周围细胞配体-受体的大量串扰,包括免疫相关和血管生成途径,从而揭示了内皮在脑神经血管单元信号网络中的核心作用。
Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies..
我们的单细胞大脑图谱提供了对发育中的,成人/对照和患病的人脑血管系统的分子结构和异质性的见解,并为未来的研究提供了有力的参考。。
MainThe brain vasculature is important for both the proper functioning of the normal brain as well as for a variety of vascular-dependent CNS pathologies such as brain tumours, brain vascular malformations, stroke and neurodegenerative diseases1,2,3,4,5,6,7,8,9. A better understanding of the underlying cellular and molecular mechanisms and architecture of the vasculature during brain development, in the healthy adult brain, as well as in vascular-dependent brain diseases, has broad implications for both the biological understanding as well as the therapeutic targeting of the pathological brain vasculature10,11,12,13,14,15.
Main脑血管系统对于正常大脑的正常功能以及各种血管依赖性中枢神经系统疾病(如脑肿瘤,脑血管畸形,中风和神经退行性疾病)都很重要1,2,3,4,5,6,7,8,9。更好地了解大脑发育过程中,健康成人大脑以及血管依赖性脑部疾病中血管系统的潜在细胞和分子机制和结构,对生物学理解以及治疗靶向都有广泛的意义。病理性脑血管10,11,12,13,14,15。
Vascular growth and network formation, involving endothelial cells (ECs) and other cells of the neurovascular unit (NVU), are highly dynamic during brain development, almost quiescent in the healthy adult brain and reactivated in a variety of angiogenesis-dependent brain pathologies, including brain tumours and brain vascular malformations3,7,16,17,18,19,20,21, thereby activating ECs and perivascular cells (PVCs) of the NVU and other tissue-derived cells (hereafter collectively referred to as PVCs).
涉及内皮细胞(EC)和神经血管单元(NVU)的其他细胞的血管生长和网络形成在大脑发育过程中是高度动态的,在健康的成年大脑中几乎静止,并在各种血管生成依赖性脑病理中重新激活,包括脑肿瘤和脑血管畸形3,7,16,17,18,19,20,21,从而激活NVU和其他组织来源细胞(以下统称为PVC)的EC和血管周围细胞(PVC)。
However, it is unclear which molecular signalling cascades are reactivated and how they regulate brain tumour and brain vascular malformation vascularization and growth.The CNS vasculature has unique features such as the blood–brain barrier (BBB) and the NVU22,23,24. During development, various CNS-specific and general signalling pathways drive CNS angiogenesis3,7,23,25,26,27.
然而,尚不清楚哪些分子信号级联被重新激活,以及它们如何调节脑肿瘤和脑血管畸形的血管形成和生长。中枢神经系统脉管系统具有独特的功能,例如血脑屏障(BBB)和NVU22,23,24。在发育过程中,各种中枢神经系统特异性和一般信号通路驱动中枢神经系统血管生成3,7,23,25,26,27。
The brain vasculature also displays an arteriovenous (AV) endothelial hierarchy similar to peripheral vascular beds28,29,30. Developmentally regulated signalling axes in ECs are thought to contribute to the establishment of CNS-specific properties as well as AV specification of the e.
。EC中发育调节的信号轴被认为有助于建立CNS特异性特性以及e的AV规范。
Data availability
数据可用性
All data are now accessible under Gene Expression Omnibus accession number GSE256493. An interactive website is available at https://waelchli-lab-human-brain-vasculature-atlas.ethz.ch, https://brain-vasc.cells.ucsc.edu and https://cellxgene.cziscience.com/collections/c95ca269-68a7-47c5-82db-da227f31b598 on which the data can visualized and downloaded..
现在可以在Gene Expression Omnibus登录号GSE256493下访问所有数据。交互式网站位于https://waelchli-lab-human-brain-vasculature-atlas.ethz.ch,https://brain-vasc.cells.ucsc.edu和https://cellxgene.cziscience.com/collections/c95ca269-68a7-47c5-82db-da227f31b598数据可以在其上可视化和下载。。
Code availability
代码可用性
Most of our analyses are standard workflows and we have now deposited the source code at GitHub (https://github.com/Waelchli-lab/Single-cell-atlas-of-the-human-brain-vasculature-accross-development-adulthood-and-disease) to improve reproducibility our results. The generated Seurat objects of FACS-sorted (CD31+CD45−) ECs for the individual entities can be downloaded from https://doi.org/10.5281/zenodo.10058183, and for the overall merges from https://doi.org/10.5281/zenodo.10057779.
我们的大多数分析都是标准的工作流程,现在我们已经将源代码存放在GitHub(https://github.com/Waelchli-lab/Single-cell-atlas-of-the-human-brain-vasculature-accross-development-adulthood-and-disease)为了提高重复性,我们的结果。为各个实体生成的FACS排序(CD31+CD45-)EC的Seurat对象可以从https://doi.org/10.5281/zenodo.10058183,以及从https://doi.org/10.5281/zenodo.10057779.
The generated Seurat objects of unsorted ECs and PVCs for individual entities can be downloaded from https://doi.org/10.5281/zenodo.10058371, and for the overall merges from https://doi.org/10.5281/zenodo.10058563. The generated Monocle 3 CDS pseudotime objects of FACS-sorted (CD31+CD45−) ECs can be downloaded from https://doi.org/10.5281/zenodo.10058766.
为单个实体生成的未排序EC和PVC的Seurat对象可以从https://doi.org/10.5281/zenodo.10058371,以及从https://doi.org/10.5281/zenodo.10058563.生成的FACS分选(CD31+CD45-)EC的Monocle 3 CDS伪时间对象可以从https://doi.org/10.5281/zenodo.10058766.
The generated diffusion map objects of FACS-sorted (CD31+CD45−) ECs can be downloaded from https://doi.org/10.5281/zenodo.10060876. The generated RNA velocity objects of FACS-sorted (CD31+CD45−) ECs of individual pathological entities can be downloaded from https://doi.org/10.5281/zenodo.10065659; the fetal and adult/control brains from https://doi.org/10.5281/zenodo.10066390; the overall merge of brain tumours from https://doi.org/10.5281/zenodo.10066538; and the overall merge of pathological entities from https://doi.org/10.5281/zenodo.10066703..
生成的FACS分选(CD31+CD45-)EC的扩散图对象可以从https://doi.org/10.5281/zenodo.10060876.生成的单个病理实体的FACS分选(CD31+CD45-)EC的RNA速度对象可以从https://doi.org/10.5281/zenodo.10065659;胎儿和成人/对照大脑https://doi.org/10.5281/zenodo.10066390;来自大脑肿瘤的整体合并https://doi.org/10.5281/zenodo.10066538;以及来自https://doi.org/10.5281/zenodo.10066703..
ReferencesWälchli, T. et al. Shaping the brain vasculature in development and disease in the single-cell era. Nat. Rev. Neurosci. 24, 271–298 (2023).Article
参考文献Wälchli,T。等人。在单细胞时代塑造发育和疾病中的脑血管系统。神经科学杂志。24271-298(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cho, C., Smallwood, P. M. & Nathans, J. Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-Specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron 95, 1221–1225 (2017).Article
Cho,C.,Smallwood,P.M。&Nathans,J.Reck和Gpr124是哺乳动物中枢神经系统血管生成和血脑屏障调节中Wnt7a/Wnt7b特异性信号传导的必需受体辅因子。神经元951221-1225(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wälchli, T. et al. Wiring the vascular network with neural cues: a CNS perspective. Neuron 87, 271–296 (2015).Article
Wälchli,T.等人。用神经线索连接血管网络:中枢神经系统的观点。神经元87271-296(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sweeney, M. D., Kisler, K., Montagne, A., Toga, A. W. & Zlokovic, B. V. The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci. 21, 1318–1331 (2018).Article
Sweeney,M.D.,Kisler,K.,Montagne,A.,Toga,A.W。&Zlokovic,B.V。脑血管系统在神经退行性疾病中的作用。自然神经科学。211318-1331(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zlokovic, B. V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).Article
Zlokovic,B.V。健康和慢性神经退行性疾病中的血脑屏障。神经元57178-201(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kuhnert, F. et al. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330, 985–989 (2010).Article
Kuhnert,F。等人。孤儿G蛋白偶联受体GPR124对中枢神经系统血管生成的重要调节。科学330985-989(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chang, J. et al. Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nat. Med. 23, 450–460 (2017).Article
Chang,J。等人。Gpr124对于中枢神经系统疾病的血脑屏障完整性至关重要。《自然医学》23450-460(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Anderson, K. D. et al. Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc. Natl Acad. Sci. USA 108, 2807–2812 (2011).Article
血管生成发芽进入神经组织需要Gpr124,一种孤儿G蛋白偶联受体。程序。国家科学院。科学。美国1082807–2812(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, Y. & Nathans, J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev. Cell 31, 248–256 (2014).Article
Zhou,Y。&Nathans,J。Gpr124通过促进配体特异性经典wnt信号传导来控制CNS血管生成和血脑屏障完整性。Dev.Cell 31248–256(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9, 653–660 (2003).Article
Carmeliet,P。健康和疾病中的血管生成。《自然医学》9653-660(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).Article
Carmeliet,P。&Jain,R.K。血管生成的分子机制和临床应用。自然473298-307(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).Article
。细胞146873-887(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).Article
Carmeliet,P。生命,疾病和医学中的血管生成。自然438932-936(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Quaegebeur, A., Lange, C. & Carmeliet, P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 71, 406–424 (2011).Article
Quaegebeur,A.,Lange,C。&Carmeliet,P。健康和疾病中的神经血管联系:分子机制和治疗意义。神经元71406-424(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ghobrial, M. The human brain vasculature shows a distinct expression pattern of SARS-CoV-2 entry factors. Preprint at bioRxiv https://doi.org/10.1101/2020.10.10.334664 (2020).Wälchli, T. et al. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain.
。bioRxiv预印本https://doi.org/10.1101/2020.10.10.334664(2020年)。Wälchli,T.等人。出生后小鼠大脑中血管生成,灌注血管和内皮尖端细胞的定量评估。
Nat. Protoc. 10, 53–74 (2015).Wälchli, T. et al. Hierarchical imaging and computational analysis of three-dimensional vascular network architecture in the entire postnatal and adult mouse brain. Nat. Protoc. 16, 4564–4610 (2021).Article .
。10,53-74(2015)。Wälchli,T.等人。整个出生后和成年小鼠大脑中三维血管网络结构的分层成像和计算分析。。164564-4610(2021)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Nikolaev, S. I. et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N. Engl. J. Med. 378, 250–261 (2018).Article
Nikolaev,S.I.等人。脑动静脉畸形中的体细胞激活KRAS突变。N、 英语。J、 医学杂志378250-261(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wälchli, T. et al. Nogo-A is a negative regulator of CNS angiogenesis. Proc. Natl Acad. Sci. USA 110, E1943–E1952 (2013).Article
Wälchli,T。等人。Nogo-A是中枢神经系统血管生成的负调节剂。程序。国家科学院。科学。美国110,E1943–E1952(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wälchli, T. et al. Nogo-A regulates vascular network architecture in the postnatal brain. J. Cereb. Blood Flow Metab. 37, 614–631 (2017).Article
Wälchli,T。等人。Nogo-A调节出生后大脑的血管网络结构。J、 塞雷布。血流代谢。37614-631(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schwab, M. et al. Nucleolin promotes angiogenesis and endothelial metabolism along the oncofetal axis in the human brain vasculature. JCI Insight 8, e143071 (2023).Article
Schwab,M。等人。核仁素促进人脑血管系统中沿癌胚轴的血管生成和内皮代谢。JCI Insight 8,e143071(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).Article
Arvanitis,C.D.,Ferraro,G.B。和Jain,R.K。脑肿瘤和转移瘤中的血脑屏障和血肿瘤屏障。《自然评论》癌症20,26-41(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Engelhardt, B. Development of the blood-brain barrier. Cell Tissue Res. 314, 119–129 (2003).Article
Engelhardt,B。血脑屏障的发展。细胞组织研究314119-129(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Engelhardt, B. Blood-brain barrier differentiation. Science 334, 1652–1653 (2011).Article
Engelhardt,B。血脑屏障分化。科学3341652-1653(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mancuso, M. R., Kuhnert, F. & Kuo, C. J. Developmental angiogenesis of the central nervous system. Lymphat. Res. Biol. 6, 173–180 (2008).Article
。淋巴结。生物研究。6173-180(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Daneman, R. et al. Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl Acad. Sci. USA 106, 641–646 (2009).Article
Daneman,R。等人,中枢神经系统血管生成需要Wnt/β-连环蛋白信号传导,而非非中枢神经系统血管生成。程序。国家科学院。科学。美国106641-646(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liebner, S. et al. Wnt/β-catenin signaling controls development of the blood-brain barrier. J. Cell Biol. 183, 409–417 (2008).Article
Liebner,S。等人。Wnt/β-连环蛋白信号传导控制血脑屏障的发展。J、 细胞生物学。183409-417(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).Article
Vanlandewijck,M.等人。脑血管系统中细胞类型和分区的分子图谱。自然554475-480(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Majno, G. & Palade, G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J. Biophys. Biochem. Cytol. 11, 571–605 (1961).Article
Majno,G。&Palade,G.E。炎症研究。组胺和血清素对血管通透性的影响:电子显微镜研究。J、 生物物理。生物化学。细胞醇。11571-605(1961)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Simionescu, M., Simionescu, N. & Palade, G. E. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J. Cell Biol. 67, 863–885 (1975).Article
Simionescu,M.,Simionescu,N。&Palade,G.E。血管内皮细胞连接的节段分化。微脉管系统。J、 细胞生物学。67863-885(1975)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 303–309 (2020).Article
Han,X。等人。在单细胞水平上构建人类细胞景观。自然581303-309(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).Article
Litviňuková,M.等人,成人心脏细胞。《自然》588466–472(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).Article
Travaglini,K.J.等人。来自单细胞RNA测序的人肺分子细胞图谱。《自然》587619-625(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Garcia, F. J. et al. Single-cell dissection of the human brain vasculature. Nature 603, 893–899 (2022).Article
Garcia,F.J.等人。人脑血管系统的单细胞解剖。自然603893-899(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).Article
Yang,A.C.等人。人脑血管图谱揭示了阿尔茨海默病风险的多种介质。自然603885-892(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022).Article
Winkler,E.A。等人。正常和畸形人脑脉管系统的单细胞图谱。科学375,eabi7377(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Crouch, E. E. et al. Ensembles of endothelial and mural cells promote angiogenesis in prenatal human brain. Cell 185, 3753–3769 (2022).Article
Crouch,E.E.等人。内皮细胞和壁细胞的集合促进了产前人脑的血管生成。细胞1853753-3769(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779 (2020).Article
Kalucka,J。等人。小鼠内皮细胞的单细胞转录组图谱。细胞180764-779(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marin-Padilla, M. The human brain intracerebral microvascular system: development and structure. Front. Neuroanat. 6, 38 (2012).Article
Marin Padilla,M。人脑脑内微血管系统:发育和结构。正面。神经解剖学。6,38(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saunders, N. R., Liddelow, S. A. & Dziegielewska, K. M. Barrier mechanisms in the developing brain. Front. Pharmacol. 3, 46 (2012).Article
桑德斯(Saunders,N.R.),利德洛(Liddelow,S.A.)和吉列夫斯卡(Dziegielwska),K.M。发育中大脑的屏障机制。正面。药理学。3,46(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saunders, N. R., Dziegielewska, K. M., Mollgard, K. & Habgood, M. D. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J. Physiol. 596, 5723–5756 (2018).Article
桑德斯,N.R.,Dziegielwska,K.M.,Mollgard,K。&Habgood,M.D。胎儿和新生儿大脑屏障机制的生理学和分子生物学。J、 生理学。5965723-5756(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jabbour, P. M., Tjoumakaris, S. I. & Rosenwasser, R. H. Endovascular management of intracranial aneurysms. Neurosurg. Clin. N. Am. 20, 383–398 (2009).Article
Jabbour,P.M.,Tjoumakaris,S.I。和Rosenwasser,R.H。颅内动脉瘤的血管内治疗。神经外科临床。N、 上午20383-398(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Xu, R., Pisapia, D. & Greenfield, J. P. Malignant transformation in glioma steered by an angiogenic switch: defining a role for bone marrow-derived cells. Cureus 8, e471 (2016).PubMed
Xu,R.,Pisapia,D。&Greenfield,J.P。由血管生成开关控制的胶质瘤恶性转化:定义骨髓来源细胞的作用。Cureus 8,e471(2016)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jain, R. K. et al. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 8, 610–622 (2007).Article
Jain,R.K.等人,《脑肿瘤中的血管生成》。神经科学杂志。8610-622(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Das, S. & Marsden, P. A. Angiogenesis in glioblastoma. N. Engl. J. Med. 369, 1561–1563 (2013).Article
。N、 英语。J、 医学3691561-1563(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lorger, M., Krueger, J. S., O’Neal, M., Staflin, K. & Felding-Habermann, B. Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain. Proc. Natl Acad. Sci. USA 106, 10666–10671 (2009).Article
Lorger,M.,Krueger,J.S.,O'Neal,M.,Staflin,K。&Felding-Habermann,B。肿瘤细胞整合素αVbeta3的激活控制大脑中的血管生成和转移生长。程序。国家科学院。科学。美国10610666–10671(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Barresi, V. Angiogenesis in meningiomas. Brain Tumor Pathol. 28, 99–106 (2011).Article
Barresi,V。脑膜瘤中的血管生成。脑肿瘤病理。28,99-106(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).Article
Picelli,S。等人。使用Smart-seq2从单细胞中提取全长RNA-seq。。9171-181(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xie, Y. et al. Key molecular alterations in endothelial cells in human glioblastoma uncovered through single-cell RNA sequencing. JCI Insight 6, e150861 (2021).PubMed
Xie,Y.等。通过单细胞RNA测序发现的人类胶质母细胞瘤内皮细胞的关键分子改变。JCI Insight 6,e150861(2021)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Parab, S., Quick, R. E. & Matsuoka, R. L. Endothelial cell-type-specific molecular requirements for angiogenesis drive fenestrated vessel development in the brain. eLife 10, e64295 (2021).Article
Parab,S.,Quick,R.E。和Matsuoka,R.L。血管生成的内皮细胞类型特异性分子要求驱动大脑中的开窗血管发育。eLife 10,e64295(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wisniewska-Kruk, J. et al. Plasmalemma vesicle-associated protein has a key role in blood-retinal barrier loss. Am. J. Pathol. 186, 1044–1054 (2016).Article
Wisniewska-Kruk,J。等人。质膜囊泡相关蛋白在血-视网膜屏障丧失中起关键作用。美国J.Pathol。1861044-1054(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bosma, E. K., van Noorden, C. J. F., Schlingemann, R. O. & Klaassen, I. The role of plasmalemma vesicle-associated protein in pathological breakdown of blood-brain and blood-retinal barriers: potential novel therapeutic target for cerebral edema and diabetic macular edema. Fluids Barriers CNS 15, 24 (2018).Article .
Bosma,E.K.,van Noorden,C.J.F.,Schlingemann,R.O。&Klaassen,I.质膜囊泡相关蛋白在血脑和血视网膜屏障病理破坏中的作用:脑水肿和糖尿病性黄斑水肿的潜在新治疗靶点。流体屏障CNS 15,24(2018)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carson-Walter, E. B. et al. Plasmalemmal vesicle associated protein-1 is a novel marker implicated in brain tumor angiogenesis. Clin. Cancer Res. 11, 7643–7650 (2005).Article
。。癌症研究117643-7650(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, H. et al. Targeting endothelial cell-specific molecule 1 protein in cancer: a promising therapeutic approach. Front. Oncol. 11, 687120 (2021).Article
Zhang,H.等。靶向内皮细胞特异性分子1蛋白在癌症中的作用:一种有前途的治疗方法。正面。Oncol公司。11687120(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McCracken, I. R. et al. Transcriptional dynamics of pluripotent stem cell-derived endothelial cell differentiation revealed by single-cell RNA sequencing. Eur. Heart J. 41, 1024–1036 (2020).Article
McCracken,I.R.等人。通过单细胞RNA测序揭示多能干细胞衍生的内皮细胞分化的转录动力学。《欧洲心脏杂志》411024-1036(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dieterich, L. C. et al. Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFβ2 in vascular abnormalization. J. Pathol. 228, 378–390 (2012).Article
Dieterich,L.C。等人。人胶质母细胞瘤血管的转录谱表明VEGF-a和TGFβ2在血管异常中的关键作用。J、 病理学。228378-390(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, Z. et al. Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc. Natl Acad. Sci. USA 118, e2023216118 (2021).Article
Huang,Z.等人。通过单细胞转录组学分析评估性别和衰老对免疫细胞景观的影响。程序。国家科学院。科学。美国118,e2023216118(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, X. et al. Single-cell transcriptional profiling reveals sex and age diversity of gene expression in mouse endothelial cells. Front. Genet. 12, 590377 (2021).Article
。正面。基因。12590377(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hajdarovic, K. H. et al. Single-cell analysis of the aging female mouse hypothalamus. Nat. Aging 2, 662–678 (2022).Article
Hajdarovic,K.H.等人。衰老雌性小鼠下丘脑的单细胞分析。《自然衰老》2662-678(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).Article
Hao,Y.等人。多模式单细胞数据的综合分析。细胞1843573-3587(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).Article
Stuart,T。等人。单细胞数据的综合集成。细胞1771888-1902(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).Article
Butler,A.,Hoffman,P.,Smibert,P.,Papalexi,E。&Satija,R。整合不同条件,技术和物种的单细胞转录组数据。美国国家生物技术公司。36411-420(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).Article
Satija,R.,Farrell,J.A.,Gennert,D.,Schier,A.F。&Regev,A。单细胞基因表达数据的空间重建。美国国家生物技术公司。33495-502(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer's risk. Nature 603, 885–892 (2022).Yang, A. C. et al. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020).Article
Yang,A.C.等人。人脑血管图谱揭示了阿尔茨海默病风险的多种介质。自然603885-892(2022)。Yang,A.C.等人。随着年龄的增长,转胞吞作用的改变会损害生理性血脑运输。自然583425-430(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, M. B. et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep. 30, 4418–4432 (2020).Article
Chen,M.B.等人。脑内皮细胞是与年龄相关的循环线索的精细传感器。Cell Rep.304418–4432(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).Article
Halpern,K.B.等人。单细胞空间重建揭示了哺乳动物肝脏的全球分工。自然542352-356(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
He, L. et al. Analysis of the brain mural cell transcriptome. Sci. Rep. 6, 35108 (2016).Article
He,L。等人。脑壁细胞转录组的分析。科学。代表635108(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Garcia, F. J. et al. Single-cell dissection of the human brain vasculature. Nature 603, 893–899 (2022).Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).Article
Garcia,F.J.等人。人脑血管系统的单细胞解剖。自然603893-899(2022)。Schaum,N.等人,《20个小鼠器官的单细胞转录组学产生了一个鼠表》,《自然》562367-372(2018)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Platel, V., Faure, S., Corre, I. & Clere, N. Endothelial-to-mesenchymal transition (EndoMT): roles in tumorigenesis, metastatic extravasation and therapy resistance. J. Oncol. 2019, 8361945–8361945 (2019).Article
。J、 Oncol公司。20198361945–8361945(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Suvà, M. L. & Tirosh, I. The glioma stem cell model in the era of single-cell genomics. Cancer Cell 37, 630–636 (2020).Article
Suvà,M.L。&Tirosh,I。单细胞基因组学时代的神经胶质瘤干细胞模型。癌细胞37630-636(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Suvà, M. L. et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157, 580–594 (2014).Article
Suvà,M.L.等人。重建和重编程胶质母细胞瘤干细胞样细胞的肿瘤增殖潜力。细胞157580-594(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, R. et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468, 829–833 (2010).Article
Wang,R。等人。胶质母细胞瘤干细胞样细胞产生肿瘤内皮。《自然》468829–833(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ricci-Vitiani, L. et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824–828 (2010).Article
Ricci-Vitiani,L。等人。通过胶质母细胞瘤干细胞样细胞的内皮分化形成肿瘤血管。《自然》468824-828(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Prabavathy, D., Swarnalatha, Y. & Ramadoss, N. Lung cancer stem cells-origin, characteristics and therapy. Stem Cell Invest. 5, 6 (2018).Article
Prabavathy,D.,Swarnalatha,Y。&Ramadoss,N。肺癌干细胞的起源,特征和治疗。干细胞投资。5,6(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Lawton, M. T. et al. Brain arteriovenous malformations. Nat. Rev. Dis. Primers 1, 15008 (2015).Article
Lawton,M.T.等。脑动静脉畸形。Nat.Rev.Dis。底漆1,15008(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Malinverno, M. et al. Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nat. Commun. 10, 2761 (2019).Article
Malinverno,M。等人。内皮细胞克隆扩增在脑海绵状血管畸形发展中的作用。国家公社。102761(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Orsenigo, F. et al. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. eLife 9, e61413 (2020).Article
Orsenigo,F。等人。以单细胞分辨率绘制脑海绵状血管畸形中的内皮细胞多样性。eLife 9,e61413(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhu, I. et al. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell 185, 1431–1443 (2022).Article
Zhu,I.等人。细胞疗法中程序化基因调控的合成受体的模块化设计。细胞1851431-1443(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Uhlen, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).Article
Uhlen,M。等人。基于组织的人类蛋白质组图谱。科学3471260419(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tang, M. et al. Evaluating single-cell cluster stability using the Jaccard similarity index. Bioinformatics 37, 2212–2214 (2021).Article
。生物信息学372212-2214(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sjostedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020).Article
Sjostedt,E.等人。人类、猪和小鼠大脑中蛋白质编码基因的图谱。科学367,eaay5947(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).Article
Hodge,R.D.等人在人与小鼠皮层中具有不同特征的保守细胞类型。自然573,61-68(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).Article
Jin,S.等人。使用CellChat推断和分析细胞间通信。国家公社。121088(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).Article
Efremova,M.,Vento-Tormo,M.,Teichmann,S.A。和Vento-Tormo,R.CellPhoneDB:从多亚基配体-受体复合物的组合表达推断细胞间通讯。。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Farnsworth, R. H., Lackmann, M., Achen, M. G. & Stacker, S. A. Vascular remodeling in cancer. Oncogene 33, 3496–3505 (2014).Article
Farnsworth,R.H.,Lackmann,M.,Achen,M.G。和Stacker,S.A。癌症中的血管重塑。癌基因333496-3505(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).Article
Trapnell,C。等人。通过单细胞的伪时间顺序揭示了细胞命运决定的动力学和调节因子。美国国家生物技术公司。32381-386(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ji, Z. & Ji, H. TSCAN: tools for single-cell analysis. R package v.1.34.0 (2022).La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).Article
Ji,Z。&Ji,H。TSCAN:单细胞分析工具。R包v.1.34.0(2022)。La Manno,G。等人。单细胞的RNA速度。自然560494-498(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).Article
Bergen,V.,Lange,M.,Peidli,S.,Wolf,F.A。&Theis,F.J。通过动力学建模将RNA速度推广到瞬时细胞状态。美国国家生物技术公司。381408-1414(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).Article
Angerer,P。等人,《命运:R.生物信息学321241-1243(2016)中大规模单细胞数据的扩散图》。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat. Neurosci. 22, 1892–1902 (2019).Article
Munji,R.N.等人在健康和疾病模型中分析小鼠脑内皮转录组揭示了一个核心的血脑屏障功能障碍模块。自然神经科学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saili, K. S. et al. Blood-brain barrier development: systems modeling and predictive toxicology. Birth Defects Res. 109, 1680–1710 (2017).Article
Saili,K.S.等人。血脑屏障发育:系统建模和预测毒理学。出生缺陷决议1091680-1710(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saunders, N. R. et al. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Front. Neurosci. 8, 404 (2014).Article
桑德斯(Saunders,N.R.)等人,《血脑屏障通透性研究的对与错:走过100年的历史》。正面。神经科学。8404(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Virgintino, D. et al. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem. Cell Biol. 122, 51–59 (2004).Article
Virgintino,D。等人。成人和发育中人脑中紧密连接蛋白的免疫定位。组织化学。细胞生物学。122,51-59(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Daneman, R. & Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 7, a020412 (2015).Article
Daneman,R。&Prat,A。血脑屏障。冷泉兔。透视图。生物学杂志7,a020412(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ben-Zvi, A. et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509, 507–511 (2014).Article
Ben Zvi,A。等人。Mfsd2a对血脑屏障的形成和功能至关重要。《自然》509507–511(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, S. C. et al. Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis. CNS Neurosci. Ther. 23, 947–960 (2017).Article
Ma,S.C.等人。Claudin-5通过改变脑微血管内皮细胞的增殖,迁移和粘附来调节血脑屏障通透性,以防止肺癌转移。中枢神经系统神经科学。他们。23947-960(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37, 21–36 (2020).Article
Goveia,J.等人。一种用于鉴定肺肿瘤内皮细胞异质性和血管生成候选物的综合基因表达谱分析方法。癌细胞37,21-36(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Andreone, B. J. et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94, 581–594 (2017).Article
。神经元94581-594(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
O’Brown, N. M., Megason, S. G. & Gu, C. Suppression of transcytosis regulates zebrafish blood-brain barrier function. eLife 8, e47326 (2019).Article
O'Brown,N.M.,Megason,S.G。和Gu,C。抑制转胞吞作用调节斑马鱼血脑屏障功能。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood-brain barrier. Cell 163, 1064–1078 (2015).Article
Zhao,Z.,Nelson,A.R.,Betsholtz,C.&Zlokovic,B.V。血脑屏障的建立和功能障碍。细胞1631064-1078(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).Article
单细胞RNA测序证实了转移性肺腺癌的分子和细胞重编程。国家公社。112285(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang, Y. Q. et al. Investigating mechanisms of response or resistance to immune checkpoint inhibitors by analyzing cell-cell communications in tumors before and after programmed cell death-1 (PD-1) targeted therapy: an integrative analysis using single-cell RNA and bulk-RNA sequencing data.
Jiang,Y.Q.等人。通过分析程序性细胞死亡-1(PD-1)靶向治疗前后肿瘤中的细胞间通讯来研究对免疫检查点抑制剂的反应或抗性机制:使用单细胞RNA和大量RNA测序数据的综合分析。
Oncoimmunology 10, 1908010 (2021).Article .
肿瘤免疫学101908010(2021)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank N. Krayenbühl, M. Germans, O. Bozinov, P. Bijlenga, P.-Y. Dietrich and V. Dutoit for help with the human adult tissue asservation; the donors and the staff at the RCWIH Biobank, the Lunenfeld-Tanenbaum Research Institute, the Mount Sinai Hospital/UHN Department of Obstetrics and Gynaecology, and Maximilian Niit for help with the human fetal specimen asservation, preparation and IHC staining (https://biobank.lunenfeld.ca); E.
下载参考文献致谢我们感谢N.Krayenbühl,M.Germans,O.Bozinov,P.Bijlenga,P.-Y.Dietrich和V.Dutoit对成人组织保存的帮助;RCWIH生物库,Lunenfeld Tanenbaum研究所,西奈山医院/UHN妇产科以及Maximilian Niit的捐赠者和工作人员为人类胎儿标本的保存,制备和IHC染色提供了帮助(https://biobank.lunenfeld.ca);E。
Speck and the members of the Flow Cytometry Facility, Krembil Discovery Tower, University Health Network for help with the FACS sorting; G. Basi, J. Cirlan, C. Dumrese and M. Kisielow for help with the scRNA-seq experiments; A. M. Sababi and M. M. Saad for help with the computational analysis; J. L.
Speck和大学健康网络Krembil Discovery Tower流式细胞仪设施的成员帮助进行FACS分选;G、 ;A、 M.Sababi和M.M.Saad帮助进行计算分析;J、 L。
Gorman for help with the IMC experiments; the members of the University Health Network, Laboratory Medicine-Pathology Research Program and Melanie Peralta for help with adult specimen preparation and IHC staining; N. C. Ji for help with the illustrations; A. Thomson for help with English proofreading; A.
戈尔曼帮助IMC实验;大学健康网络,实验医学病理学研究计划和Melanie Peralta的成员帮助进行成人标本制备和IHC染色;N、 C.Ji为插图提供帮助;A、 汤姆森帮助英语校对;答:。
Keller, F. Kern, T. Nowakowski, E. Winkler, M. Kellis, N. Sun, A. Regev, G. Eraslan, F. J. Theis, J. Shin, M. Prinz, R. Sankowski, R. Adams, S. Teichmann, L. Yang, A. Maria Cujba and N. Huang for their scientific inputs and advice regarding computational integration methods, the covariates age and sex, and overall discussion of our manuscript and figures.
Keller,F。Kern,T。Nowakowski,E。Winkler,M。Kellis,N。Sun,A。Regev,G。Eraslan,F。J。Theis,J。Shin,M。Prinz,R。Sankowski,R。Adams,S。Teichmann,L。Yang,A。Maria Cujba和N。Huang,感谢他们关于计算积分方法,协变量年龄和性别以及我们手稿和数字的整体讨论的科学投入和建议。
We acknowledge the following financial support for the research, and/or publication of this Article: T.W. was supported by the OPO Foundation, the Swiss Cancer Research foundation (KFS-3880-02-2016-R, KFS-4758-02-2019-R), the Stiftung zur Krebsbekämpfung, the Kurt und Senta Herrmann Foundation, Forschungskredit of the University of Zurich, the .
我们感谢以下对本文研究和/或发表的财政支持:T.W.得到了OPO基金会,瑞士癌症研究基金会(KFS-3880-02-2016-R,KFS-4758-02-2019-R),Stiftung zur Krebsbekämpfung,Kurt und Senta Herrmann Foundation,苏黎世大学Forschungskredit的支持。
PubMed Google ScholarMoheb GhobrialView author publicationsYou can also search for this author in
PubMed谷歌学术评论GhobrialView作者出版物您也可以在
PubMed Google ScholarMarc SchwabView author publicationsYou can also search for this author in
PubMed Google ScholarMarc SchwabView作者出版物您也可以在
PubMed Google ScholarShigeki TakadaView author publicationsYou can also search for this author in
PubMed Google ScholarShigeki TakadaView作者出版物您也可以在
PubMed Google ScholarHang ZhongView author publicationsYou can also search for this author in
PubMed Google ScholarHang ZhongView作者出版物您也可以在
PubMed Google ScholarSamuel SuntharalinghamView author publicationsYou can also search for this author in
PubMed Google ScholarSamuel SuntharalinghamView作者出版物您也可以在
PubMed Google ScholarSandra VetiskaView author publicationsYou can also search for this author in
PubMed Google ScholarSandra VetiskaView作者出版物您也可以在
PubMed Google ScholarDaymé Rodrigues GonzalezView author publicationsYou can also search for this author in
PubMed Google ScholarDayméRodrigues GonzalezView作者出版物您也可以在
PubMed Google ScholarRuilin WuView author publicationsYou can also search for this author in
PubMed Google ScholarHubert RehrauerView author publicationsYou can also search for this author in
PubMed Google ScholarHubert RehrauerView作者出版物您也可以在
PubMed Google ScholarAnuroopa DineshView author publicationsYou can also search for this author in
PubMed Google ScholarAnuroopa DineshView作者出版物您也可以在
PubMed Google ScholarKai YuView author publicationsYou can also search for this author in
PubMed Google ScholarEdward L. Y. ChenView author publicationsYou can also search for this author in
PubMed Google ScholarJeroen BisschopView author publicationsYou can also search for this author in
PubMed Google ScholarJeroen BisschopView作者出版物您也可以在
PubMed Google ScholarFiona FarnhammerView author publicationsYou can also search for this author in
PubMed Google ScholarFiona FarnhammerView作者出版物您也可以在
PubMed Google ScholarAnn MansurView author publicationsYou can also search for this author in
PubMed Google ScholarAnn MansurView作者出版物您也可以在
PubMed Google ScholarJoanna KaluckaView author publicationsYou can also search for this author in
PubMed Google ScholarJoannaKaluckaview作者出版物您也可以在
PubMed Google ScholarItay TiroshView author publicationsYou can also search for this author in
PubMed Google ScholarItay TiroshView作者出版物您也可以在
PubMed Google ScholarLuca RegliView author publicationsYou can also search for this author in
PubMed Google ScholarLuca RegliView作者出版物您也可以在
PubMed Google ScholarKarl SchallerView author publicationsYou can also search for this author in
PubMed Google ScholarKarl SchallerView作者出版物您也可以在
PubMed Google ScholarKarl FreiView author publicationsYou can also search for this author in
PubMed谷歌学术评论作者出版物您也可以在
PubMed Google ScholarTroy KetelaView author publicationsYou can also search for this author in
PubMed Google ScholarTroy KetelaView作者出版物您也可以在
PubMed Google ScholarMark BernsteinView author publicationsYou can also search for this author in
PubMed Google ScholarMark BernsteinView作者出版物您也可以在
PubMed Google ScholarPaul KongkhamView author publicationsYou can also search for this author in
PubMed Google ScholarPeter CarmelietView author publicationsYou can also search for this author in
PubMed谷歌学者CarmelitView作者出版物您也可以在
PubMed Google ScholarTaufik ValianteView author publicationsYou can also search for this author in
PubMed Google ScholarTaufik ValiantView作者出版物您也可以在
PubMed Google ScholarPeter B. DirksView author publicationsYou can also search for this author in
PubMed Google ScholarMario L. SuvaView author publicationsYou can also search for this author in
PubMed Google ScholarMario L.SuvaView作者出版物您也可以在
PubMed Google ScholarGelareh ZadehView author publicationsYou can also search for this author in
PubMed Google Scholargelaeh ZadehView作者出版物您也可以在
PubMed Google ScholarViviane TabarView author publicationsYou can also search for this author in
PubMed Google ScholarViviane TabarView作者出版物您也可以在
PubMed Google ScholarRalph SchlapbachView author publicationsYou can also search for this author in
PubMed Google Scholaralph SchlapbachView作者出版物您也可以在
PubMed Google ScholarHartland W. JacksonView author publicationsYou can also search for this author in
PubMed Google ScholarHartland W.JacksonView作者出版物您也可以在
PubMed Google ScholarKatrien De BockView author publicationsYou can also search for this author in
PubMed Google ScholarKatrien De BockView作者出版物您也可以在
PubMed Google ScholarJason E. FishView author publicationsYou can also search for this author in
PubMed Google ScholarJason E.FishView作者出版物您也可以在
PubMed Google ScholarPhilippe P. MonnierView author publicationsYou can also search for this author in
PubMed Google ScholarPhilippe P.MonnierView作者出版物您也可以在
PubMed Google ScholarGary D. BaderView author publicationsYou can also search for this author in
PubMed Google ScholarGary D.BaderView作者出版物您也可以在
PubMed Google ScholarIvan RadovanovicView author publicationsYou can also search for this author in
PubMed Google ScholarIvan RadovanovicView作者出版物您也可以在
PubMed Google ScholarContributionsT.W. had the idea for the study. T.W. and I.R. conceived the study. T.W. designed the experiments, wrote the manuscript, analysed the data, designed the figures and made the figures with M.G. with the help of M.S.; I.R., T.W., L.R., K.S., M.B., P.K., G.Z.
PubMed谷歌学术贡献者。W、 有这个研究的想法。T、 W.和I.R.构思了这项研究。T、 W.设计实验,撰写手稿,分析数据,设计数字,并在M.S.的帮助下与M.G.一起制作数字。;一、 R.,T.W.,L.R.,K.S.,M.B.,P.K.,G.Z。
and T.V. acquired the tissue. M.G., M.S., S.S. and S.V. performed the cell isolation experiments. T.W. and K.F. developed the initial isolation experiments. M.G. (majority of the analysis), M.S., H.Z., D.R.G. and H.R. performed the single-cell data processing and analysed the data with T.W.; T.W. and G.D.B.
T.V.获得了组织。M、 。T、 W.和K.F.开发了初始隔离实验。M、 G.(大部分分析),M.S.,H.Z.,D.R.G.和H.R.进行了单细胞数据处理,并用T.W.分析了数据。;T、 W.和G.D.B。
supervised the data analysis and interpreted data. R.S. and T.K. helped with single-cell data processing. M.G., M.S. and G.D.B. developed the computational methods with the help of T.W.; S.T., S.S., R.W. and K.Y. performed the IF stainings and RNA scope experiments, and S.T., R.W., K.Y., M.G., M.S., J.E.F.
监督数据分析和解释数据。R、 S.和T.K.帮助进行单细胞数据处理。M、 G.,M.S.和G.D.B.在T.W.的帮助下开发了计算方法。;S、 T.,S.S.,R.W.和K.Y.进行了IF染色和RNA范围实验,S.T.,R.W.,K.Y.,M.G.,M.S.,J.E.F。
and T.W. analysed and interpreted the data. M.S., R.W., J.E.F. and T.W. selected the final IF images. A.D. E.L.Y.C. and H.W.J. performed the IMC staining, and A.D., M.S., H.W.J. and T.W. analysed and interpreted the data. M.S., H.W.J. and T.W. selected the final IMC images. T.W., I.R., G.D.B. and P.P.M.
和T.W.分析并解释了数据。M、 S.,R.W.,J.E.F.和T.W.选择了最终的IF图像。A、 D.E.L.Y.C.和H.W.J.进行了IMC染色,A.D.,M.S.,H.W.J.和T.W.分析并解释了数据。M、 S.,H.W.J.和T.W.选择了最终的IMC图像。T、 W.,I.R.,G.D.B.和P.P.M。
acquired funding. T.W., P.P.M., I.R. and G.D.B. edited the final version of the manuscript. M.G., M.S. and J.B. helped edit the manuscript. P.P.M., K.D.B., J.E.F., M.L.S., P.B.D., P.C., V.T., G.Z., T.V., I.R. and G.D.B. provided critical inputs to the manuscript. T.W. supervised all of the research.
获得资金。T、 W.,P.P.M.,I.R.和G.D.B.编辑了手稿的最终版本。M、 G.,M.S.和J.B.帮助编辑了手稿。P、 P.M.,K.D.B.,J.E.F.,M.L.S.,P.B.D.,P.C.,V.T.,G.Z.,T.V.,I.R.和G.D.B.为手稿提供了关键的输入。T、 W.监督了所有的研究。
All of the authors read and approved the final manuscript.Corresponding authorCorrespondence to.
所有作者都阅读并批准了最终稿件。对应作者对应。
Thomas Wälchli.Ethics declarations
托马斯·沃克利。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature thanks Konstantin Khodosevich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
《自然》杂志感谢康斯坦丁·霍多塞维奇(KonstantinKhodosevich)和另一位匿名审稿人对这项工作的同行评审做出的贡献。同行评审报告可供查阅。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 Construction of a molecular single-cell atlas of the human brain vasculature across development, adulthood and disease and of the fetal peripheral vasculature - studied entities and inter-tissue heterogeneity.Figure shows studied entities and inter-tissue heterogeneity of sorted vascular endothelial cells.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据图和表扩展数据图1构建跨越发育,成年和疾病以及胎儿外周脉管系统的人脑脉管系统的分子单细胞图谱-研究实体和组织间异质性。图显示了分选的血管内皮细胞的研究实体和组织间异质性。
a,b, Scheme of the different tissue types present in the study with respective sample/patient numbers of fetal (a) and adult (b) origins. c, Piechart showing relative abundance and percentage of ECs from each tissue collected. d, Composite UMAP plots of sorted and in silico-quality checked (ECs, coloured by tissue of origin.
a、 b,研究中存在的不同组织类型的方案,以及胎儿(a)和成人(b)起源的各自样本/患者数量。c、 Piechart显示收集的每个组织中EC的相对丰度和百分比。d、 分类和计算机质量检查的复合UMAP图(EC,由起源组织着色。
e, Violin plots of the expression of the top marker genes of each tissue type, percentage of cells expressing the marker gene is indicated on the right. f, Endothelial cells transcriptome correlation heatmap and hierarchical clustering of all tissues analysed. g, Dotplot heatmap of the fetal brain vs fetal periphery endothelial signature.
e、 每种组织类型的顶部标记基因表达的小提琴图,右侧显示了表达标记基因的细胞百分比。f、 内皮细胞转录组相关性热图和所有组织的分层聚类分析。g、 胎儿大脑与胎儿外周内皮特征的点图热图。
h, Expression heatmap of top ranking marker genes in the indicated tissues. Colour scale: red, high expression; white, intermediate expression; blue, low expression.Extended Data Fig. 2 Validation of angiogenic and EndoMT markers in vascular ECs of the fetal, adult and pathological brain vasculature using RNAscope, IF and IMC.a-g, Volcano plots showing the differential expression analysis comparing endothelial cells from adult/control brains (left) and the indicated entity (right) (Wald test, Benjamini Hochberg correction; P-value < 0.05 and log2FC ≥ 0.25 coloured significant in red, PLVAP dot is coloured b.
h、 指定组织中排名最高的标记基因的表达热图。色阶:红色,高表达;白色,中间表达;蓝色,表情低沉。扩展数据图2使用RNAscope,IF和IMC.a-g验证胎儿,成人和病理性脑血管系统的血管内皮细胞中的血管生成和EndoMT标记,火山图显示差异表达分析,比较来自成人/对照大脑的内皮细胞(左)和指示的实体(右)(Wald检验,Benjamini-Hochberg校正;P值<0.05,log2FC≥0.25红色显着,PLVAP点为b色。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleWälchli, T., Ghobrial, M., Schwab, M. et al. Single-cell atlas of the human brain vasculature across development, adulthood and disease.
转载和许可本文引用本文Wälchli,T.,Ghobrial,M.,Schwab,M。等人的《跨发育,成年和疾病的人脑血管系统单细胞图谱》。
Nature (2024). https://doi.org/10.1038/s41586-024-07493-yDownload citationReceived: 17 October 2021Accepted: 30 April 2024Published: 10 July 2024DOI: https://doi.org/10.1038/s41586-024-07493-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《自然》(2024)。https://doi.org/10.1038/s41586-024-07493-yDownload引文收到日期:2021年10月17日接受日期:2024年4月30日发布日期:2024年7月10日OI:https://doi.org/10.1038/s41586-024-07493-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。