商务合作
动脉网APP
可切换为仅中文
AbstractTumor cells reprogram their metabolism to produce specialized metabolites that both fuel their own growth and license tumor immune evasion. However, the relationships between these functions remain poorly understood. Here, we report CRISPR screens in a mouse model of colo-rectal cancer (CRC) that implicates the dual specificity phosphatase 18 (DUSP18) in the establishment of tumor-directed immune evasion.
摘要肿瘤细胞重新编程其代谢以产生专门的代谢物,这些代谢物既能促进自身生长,又能使肿瘤免疫逃避。然而,这些功能之间的关系仍然知之甚少。在这里,我们报告了结直肠癌(CRC)小鼠模型中的CRISPR筛选,该模型暗示了双特异性磷酸酶18(DUSP18)在建立肿瘤定向免疫逃避中的作用。
Dusp18 inhibition reduces CRC growth rates, which correlate with high levels of CD8+ T cell activation. Mechanistically, DUSP18 dephosphorylates and stabilizes the USF1 bHLH-ZIP transcription factor. In turn, USF1 induces the SREBF2 gene, which allows cells to accumulate the cholesterol biosynthesis intermediate lanosterol and release it into the tumor microenvironment (TME).
Dusp18抑制降低CRC生长速率,这与高水平的CD8+T细胞活化相关。从机制上讲,DUSP18使USF1 bHLH-ZIP转录因子去磷酸化并稳定。反过来,USF1诱导SREBF2基因,该基因允许细胞积累胆固醇生物合成中间体羊毛甾醇并将其释放到肿瘤微环境(TME)中。
There, lanosterol uptake by CD8+ T cells suppresses the mevalonate pathway and reduces KRAS protein prenylation and function, which in turn inhibits their activation and establishes a molecular basis for tumor cell immune escape. Finally, the combination of an anti-PD-1 antibody and Lumacaftor, an FDA-approved small molecule inhibitor of DUSP18, inhibits CRC growth in mice and synergistically enhances anti-tumor immunity.
在那里,CD8+T细胞对羊毛甾醇的摄取抑制了甲羟戊酸途径,并降低了KRAS蛋白的异戊二烯化和功能,从而抑制了它们的活化,并为肿瘤细胞免疫逃逸奠定了分子基础。。
Collectively, our findings support the idea that a combination of immune checkpoint and metabolic blockade represents a rationally-designed, mechanistically-based and potential therapy for CRC..
总的来说,我们的研究结果支持这样的观点,即免疫检查点和代谢阻断的结合代表了一种合理设计的,基于机械的和潜在的CRC治疗方法。。
IntroductionWorld-wide, colorectal cancer (CRC) is the third most prevalent and the second most lethal malignancy1,2,3, the current treatment of which consists of surgical resection and chemotherapy4. With the initial success of melanoma and lung cancer treatment, immunotherapy has rapidly become a major treatment option for many solid cancers, including certain molecular subtypes of CRC5,6.
引言在世界范围内,结直肠癌(CRC)是第三大最常见和第二大致命的恶性肿瘤1,2,3,目前的治疗方法包括手术切除和化疗4。随着黑色素瘤和肺癌治疗的初步成功,免疫疗法已迅速成为许多实体癌的主要治疗选择,包括CRC5,6的某些分子亚型。
However, only about 15% of CRC patients currently benefit from immune checkpoint blockade (ICB) therapy6. One reason for this low response rate is that tumors remodel their microenvironment in ways that promote the exhaustion and inactivation of infiltrating CD8+ T cells, thereby leading to “immune escape”.
然而,目前只有约15%的CRC患者受益于免疫检查点阻断(ICB)治疗6。这种低反应率的一个原因是肿瘤以促进浸润性CD8+T细胞耗竭和失活的方式重塑其微环境,从而导致“免疫逃逸”。
CD8+ T cells initially infiltrate tumors and specifically recognize tumor antigens in order to initiate killing5. However, tumor cells can counter this by contributing to the formation of a variety of immunosuppressive tumor microenvironments (TMEs)7,8. These can limit the infiltration, activation and cytotoxicity of CD8+ T cells by reducing the display of MHC-I molecules on tumor cells9, suppressing IFN signaling10, repressing chemokine production11, altering the composition of the extracellular matrix12, and increasing the expression of co-inhibitory molecules such as PD-L113,14.
CD8+T细胞最初浸润肿瘤并特异性识别肿瘤抗原以启动杀伤5。然而,肿瘤细胞可以通过促进各种免疫抑制性肿瘤微环境(TME)的形成来对抗这种情况7,8。这些可以通过减少MHC-I分子在肿瘤细胞上的显示9,抑制IFN信号传导10,抑制趋化因子产生11,改变细胞外基质12的组成以及增加共抑制分子如PD-L113,14的表达来限制CD8+T细胞的浸润,活化和细胞毒性。
For example, TRIB3 can reduce CD8+ T cell infiltration and induce immune evasion by inhibiting the STAT1-CXCL10 axis in CRC15. Loss of mitochondrial electron transport chain complex II has also been shown to increase antigen presentation and T cell-mediated killing16. Oncogenic KRAS in tumor cells can inhibit the expression of IRF2, leading to high expression of CXCL3, which promotes the migration of myeloid-derived stem cells into the TME17.
例如,TRIB3可以通过抑制CRC15中的STAT1-CXCL10轴来减少CD8+T细胞浸润并诱导免疫逃避。线粒体电子传递链复合物II的丢失也被证明会增加抗原呈递和T细胞介导的杀伤16。肿瘤细胞中的致癌KRAS可以抑制IRF2的表达,导致CXCL3的高表达,从而促进骨髓来源的干细胞向TME17的迁移。
Finally, the down-regulation of tumor ACSL4 can inhibit ferr.
最后,肿瘤ACSL4的下调可以抑制ferr。
Data availability
数据可用性
The RNA-seq data generated in this study have been deposited in the Gene Expression Omnibus (GEO) database under the accession number GSE264145. The mass spectrometry proteomics data of MC38 cells generated in this study have been deposited to the ProteomeXchange Consortium database (http://proteomecentral.proteomexchange.
本研究中产生的RNA-seq数据已保存在Gene Expression Omnibus(GEO)数据库中,登录号为GSE264145。这项研究中产生的MC38细胞的质谱蛋白质组学数据已保存到ProteomeXchange Consortium数据库中(http://proteomecentral.proteomexchange.
org) under accession code PXD053284. The CRISPR screens data are provided in Supplementary Data 1. The cholesterol metabolomics data are provided in Supplementary Data 5. The transcriptomic data and methylation data used in this study are available in the CRC cases in The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/).
org),登录号为PXD053284。CRISPR屏幕数据在补充数据1中提供。胆固醇代谢组学数据在补充数据5中提供。本研究中使用的转录组数据和甲基化数据可在癌症基因组图谱(TCGA)数据库的CRC病例中获得(https://portal.gdc.cancer.gov/)。
A public single-cell RNA-seq data were available in the GEO database under the accession number GSE178341. The transcription factor binding site prediction was performed online with the JASPAR database (https://jaspar.genereg.net/) and humanTFDB database (http://bioinfo.life.hust.edu.cn/HumanTFDB). A public USF1 ChIP-seq data were available in the GEO database under accession number GSE32465.
GEO数据库中提供了公共单细胞RNA-seq数据,登录号为GSE178341。转录因子结合位点预测是通过JASPAR数据库在线进行的(https://jaspar.genereg.net/)和humanTFDB数据库(http://bioinfo.life.hust.edu.cn/HumanTFDB)。GEO数据库中提供了公开的USF1 ChIP-seq数据,登录号为GSE32465。
The remaining data are available within the Article, Supplementary Information or Source data file. Source data are provided with this paper..
其余数据可在文章,补充信息或源数据文件中找到。。。
ReferencesSiegel, R. L. et al. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 70, 145–164 (2020).Article
ReferenceSiegel,R.L.等人,《结直肠癌统计》,2020年。CA Cancer J.Clin。70145-164(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, J., Ma, X., Chakravarti, D., Shalapour, S. & DePinho, R. A. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 35, 787–820 (2021).Article
Li,J.,Ma,X.,Chakravarti,D.,Shalapour,S。&DePinho,R.A。结直肠癌的遗传和生物学标志。基因发展35787-820(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).Article
Wood,L.D.等人,《人类乳腺癌和结直肠癌的基因组景观》。科学3181108-1113(2007)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xie, Y. H., Chen, Y. X. & Fang, J. Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target 5, 22 (2020).Article
Xie,Y.H.,Chen,Y.X。和Fang,J.Y。结直肠癌靶向治疗的综合综述。信号传输管。具体目标5、22(2020年)。文章
CAS
中科院
Google Scholar
谷歌学者
Halle, S., Halle, O. & Forster, R. Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo. Trends Immunol. 38, 432–443 (2017).Article
。。38432-443(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ganesh, K. et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 16, 361–375 (2019).Article
Ganesh,K。等。结直肠癌的免疫治疗:原理,挑战和潜力。。肝病。16361-375(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ren, X. et al. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu. Rev. Immunol. 39, 583–609 (2021).Article
Ren,X。等人。从肿瘤微环境中免疫细胞的单细胞分析中获得的见解。年。修订版Immunol。39583-609(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Seton-Rogers, S. Oncogenes: driving immune evasion. Nat. Rev. Cancer 18, 67 (2018).Article
Seton Rogers,S。癌基因:驱动免疫逃避。Nat.Rev.Cancer 18,67(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836, (2011).Article
Neefjes,J.,Jongsma,M.L.,Paul,P。&Bakke,O。对MHC I类和MHC II类抗原呈递的系统理解。国家免疫修订版。11823-836,(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).Article
Ivashkiv,L.B。和Donlin,L.T。调节I型干扰素反应。国家免疫修订版。14,36-49(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017).Article
Nagarsheth,N.,Wicha,M.S。&Zou,W。癌症微环境中的趋化因子及其在癌症免疫治疗中的相关性。国家免疫修订版。17559-572(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, X. et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature 599, 673–678 (2021).Article
Sun,X。等人。肿瘤DDR1促进胶原纤维排列以引发免疫排斥。自然599673-678(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiong, W. J., Gao, Y., Wei, W. Y. & Zhang, J. F. Extracellular and nuclear PD-L1 in modulating cancer immunotherapy. Trends Cancer 7, 837–846 (2021).Article
Xiong,W.J.,Gao,Y.,Wei,W.Y。&Zhang,J.F。细胞外和核PD-L1在调节癌症免疫疗法中的作用。趋势癌症7837-846(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xiong, W. J. et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat. Commun. 13, 1700 (2022).Article
Xiong,W.J。等人。USP8抑制重塑发炎的肿瘤微环境,增强免疫疗法。国家公社。131700(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shang, S. et al. TRIB3 reduces CD8+T cell infiltration and induces immune evasion by repressing the STAT1-CXCL10 axis in colorectal cancer. Sci. Transl. Med. 14, eabf0992 (2022).Article
Shang,S。等人,TRIB3通过抑制结直肠癌中的STAT1-CXCL10轴来减少CD8+T细胞浸润并诱导免疫逃避。。翻译。医学杂志14,eabf0992(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mangalhara, K. C. et al. Manipulating mitochondrial electron flow enhances tumor immunogenicity. Science 381, 1316–1323 (2023).Article
Mangalhara,K.C.等人操纵线粒体电子流增强肿瘤免疫原性。科学3811316-1323(2023)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liao, W. et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell 35, 559–572 e557 (2019).Article
。癌细胞35559-572 e557(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liao, P. et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40, 365–378 e366 (2022).Article
Liao,P。等人。CD8(+)T细胞和脂肪酸通过ACSL4协调肿瘤铁浓化和免疫。癌细胞40365-378 e366(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baumgartner, C. K. et al. The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity. Nature 622, 850–862 (2023).Article
Baumgartner,C.K。等人,PTPN2/PTPN1抑制剂ABBV-CLS-484释放出有效的抗肿瘤免疫力。自然622850-862(2023)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dan, L. et al. The phosphatase PAC1 acts as a T cell suppressor and attenuates host antitumor immunity. Nat. Immunol. 21, 287–297 (2020).Article
Dan,L。等人。磷酸酶PAC1充当T细胞抑制剂并减弱宿主的抗肿瘤免疫力。自然免疫。。文章
Google Scholar
谷歌学者
Popescu, G., Robert, A., Howe, J. R. & Auerbach, A. Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature 430, 790–793 (2004).Article
Popescu,G.,Robert,A.,Howe,J.R。&Auerbach,A。反应机制决定NMDA受体对重复刺激的反应。《自然》430790–793(2004)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pu, J. et al. Hypoxia-induced HIF1A activates DUSP18-mediated MAPK14 dephosphorylation to promote hepatocellular carcinoma cell migration and invasion. Pathol. Res Pract. 237, 153955 (2022).Article
Pu,J。等人。缺氧诱导的HIF1A激活DUSP18介导的MAPK14去磷酸化以促进肝细胞癌细胞迁移和侵袭。病理学。Res实践。237153955(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zou, W. & Green, D. R. Beggars banquet: metabolism in the tumor immune microenvironment and cancer therapy. Cell Metab. 35, 1101–1113 (2023).Article
Zou,W。&Green,D.R。Beggers宴会:肿瘤免疫微环境中的代谢和癌症治疗。细胞代谢。351101-1113(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cheng, J. et al. Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8(+) T cells in the tumor microenvironment. Cell Metab. 35, 961–978 e910 (2023).Article
Cheng,J。等人。癌细胞衍生的富马酸盐抑制肿瘤微环境中CD8(+)T细胞的抗肿瘤能力。细胞代谢。35961–978 e910(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bell, H. N. et al. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metab. 35, 134–149 e136 (2023).Article
Bell,H.N。等人。微环境氨增强结直肠癌中的T细胞耗竭。细胞代谢。35134–149 e136(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nava Lauson, C. B. et al. Linoleic acid potentiates CD8(+) T cell metabolic fitness and antitumor immunity. Cell Metab. 35, 633–650 e639 (2023).Article
Nava Lauson,C.B。等人。亚油酸增强CD8(+)T细胞代谢适应性和抗肿瘤免疫力。细胞代谢。35633–650 e639(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).Article
Waldman,A.D.,Fritz,J.M。和Lenardo,M.J。癌症免疫治疗指南:从T细胞基础科学到临床实践。国家免疫修订版。20651-668(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Luo, J., Yang, H. & Song, B. L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).Article
Luo,J.,Yang,H。&Song,B.L。胆固醇稳态的机制和调节。Nat。Rev。Mol。Cell Biol。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Riscal, R., Skuli, N. & Simon, M. C. Even cancer cells watch their cholesterol! Mol. Cell 76, 220–231 (2019).Article
Riscal,R.,Skuli,N。和Simon,M.C。甚至癌细胞也在观察它们的胆固醇!。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mullen, P. J., Yu, R., Longo, J., Archer, M. C. & Penn, L. Z. The interplay between cell signalling and the mevalonate pathway in cancer. Nat. Rev. Cancer 16, 718–731 (2016).Article
Mullen,P.J.,Yu,R.,Longo,J.,Archer,M.C。&Penn,L.Z。癌症中细胞信号传导与甲羟戊酸途径之间的相互作用。《国家癌症评论》16718-731(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
King, R. J., Singh, P. K. & Mehla, K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol. 43, 78–92 (2022).Article
King,R.J.,Singh,P.K。和Mehla,K。胆固醇途径:对免疫力和癌症的影响。。43,78-92(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, B., Song, B. L. & Xu, C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat. Metab. 2, 132–141 (2020).Article
Huang,B.,Song,B.L。和Xu,C。癌症中的胆固醇代谢:机制和治疗机会。自然代谢。21132-141(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, X. et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 588, 693–698 (2020).Article
Liu,X。等人。PCSK9的抑制增强了癌症的免疫检查点治疗。。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goossens, P. et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 29, 1376–1389 e1374 (2019).Article
Goossens,P。等人。膜胆固醇流出驱动肿瘤相关巨噬细胞重编程和肿瘤进展。细胞代谢。291376-1389 e1374(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yang, W. et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).Article
Yang,W。等人。通过调节胆固醇代谢增强CD8(+)T细胞的抗肿瘤反应。自然531651-655(2016)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, Z. et al. Cancer cell-intrinsic XBP1 drives immunosuppressive reprogramming of intratumoral myeloid cells by promoting cholesterol production. Cell Metab. 34, 2018–2035 e2018 (2022).Article
Yang,Z。等人。癌细胞内在XBP1通过促进胆固醇产生来驱动肿瘤内骨髓细胞的免疫抑制重编程。细胞代谢。342018–2035 e2018(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yan, C. et al. Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity. Cancer Cell 41, 1276–1293 e1211 (2023).Article
。癌细胞411276-1293 e1211(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xiao, J. et al. Targeting 7-dehydrocholesterol reductase integrates cholesterol metabolism and IRF3 activation to eliminate infection. Immunity 52, 109–122 e106 (2020).Article
Xiao,J。等人。靶向7-脱氢胆固醇还原酶整合胆固醇代谢和IRF3激活以消除感染。免疫力52109-122 e106(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Morgens, D. W. et al. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat. Commun. 8, 15178 (2017).Article
Morgens,D.W.等人。高通量筛选中使用Cas9毒性进行脱靶活性的基因组规模测量。国家公社。815178(2017)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, Q. et al. KLF5 inhibition potentiates anti-PD1 efficacy by enhancing CD8(+) T-cell-dependent antitumor immunity. Theranostics 13, 1381–1400 (2023).Article
Wu,Q。等人。KLF5抑制通过增强CD8(+)T细胞依赖性抗肿瘤免疫力来增强抗PD1功效。Theranostics 131381-1400(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Colic, M. et al. Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Med. 11, 52 (2019).Article
Colic,M.等人,用drugZ鉴定CRISPR筛选的化学发生相互作用。基因组医学11,52(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article
Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550 (2018). -+.Article
Jiang,P。等人。T细胞功能障碍和排斥的特征预测癌症免疫治疗反应。《自然医学》241550(2018)。-+。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, C. et al. Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8+T cells. Cell Metab. 36, 1168 (2024).Article
Hu,C。等人。肿瘤分泌的FGF21通过重新连接CD8+T细胞的胆固醇代谢而充当免疫抑制剂。细胞代谢。361168(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Baba, T. et al. Ad4BP/SF-1 regulates cholesterol synthesis to boost the production of steroids. Commun. Biol. 1, 18 (2018).Article
。Commun公司。生物学1,18(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, M. et al. Maf links Neuregulin1 signaling to cholesterol synthesis in myelinating Schwann cells. Genes Dev. 32, 645–657 (2018).Article
Kim,M.等人,Maf将神经调节蛋白1信号传导与髓鞘雪旺细胞中的胆固醇合成联系起来。Genes Dev.32645-657(2018)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, Y. et al. Osteoblasts impair cholesterol synthesis in chondrocytes via Notch1 signalling. Cell Prolif. 54, e13156 (2021).Article
Yang,Y。等人。成骨细胞通过Notch1信号传导损害软骨细胞中的胆固醇合成。细胞增殖。54,e13156(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cai, D. et al. RORγ is a targetable master regulator of cholesterol biosynthesis in a cancer subtype. Nat. Commun. 10, 4621 (2019).Article
Cai,D。等人。RORγ是癌症亚型中胆固醇生物合成的可靶向主要调节剂。国家公社。104621(2019)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, F., Kou, J., Liu, Z., Li, W. & Du, W. MYC enhances cholesterol biosynthesis and supports cell proliferation through SQLE. Front. Cell Dev. Biol. 9, 655889 (2021).Article
Yang,F.,Kou,J.,Liu,Z.,Li,W。&Du,W。MYC通过SQLE增强胆固醇生物合成并支持细胞增殖。正面。细胞开发生物学。9655889(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lupp, S. et al. The upstream stimulatory factor USF1 is regulated by protein kinase CK2 phosphorylation. Cell. Signal. 26, 2809–2817 (2014).Article
Lupp,S。等人。上游刺激因子USF1受蛋白激酶CK2磷酸化调节。细胞。信号。262809-2817(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Song, B. L., Javitt, N. B. & DeBose-Boyd, R. A. Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metab. 1, 179–189 (2005).Article
Song,B.L.,Javitt,N.B。&DeBose-Boyd,R.A。Insig介导的HMG-CoA还原酶降解受羊毛甾醇(胆固醇合成的中间体)刺激。细胞代谢。1179-189(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xia, Y. F. et al. A combination therapy for KRAS-driven lung adenocarcinomas using lipophilic bisphosphonates and rapamycin. Sci. Transl. Med. 6, 263ra161 (2014).Article
Xia,Y.F.等人。使用亲脂性双膦酸盐和雷帕霉素治疗KRAS驱动的肺腺癌。。翻译。医学杂志6263RA161(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinforma. 14, 7 (2013).Article
Hänzelmann,S.,Castelo,R。&Guinney,J。GSVA:微阵列和RNA-Seq数据的基因组变异分析。BMC生物信息学。14,7(2013)。文章
Google Scholar
谷歌学者
Van Goor, F. et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc. Natl Acad. Sci. 108, 18843–18848 (2011).Article
Van Goor,F。等人。研究药物VX-809在体外纠正F508del-CFTR蛋白加工缺陷。程序。国家科学院。。10818843–18848(2011)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Patterson, K. I., Brummer, T., O’Brien, P. M. & Daly, R. J. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem. J. 418, 475–489 (2009).Article
。生物化学。J、 418475-489(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vande Voorde, J. et al. Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target. Nat. Metab. 5, 1303–1318 (2023).Article
Vande Voorde,J。等人。代谢谱分析对结直肠癌进行分层,并揭示腺苷高半胱氨酸酶作为治疗靶点。自然代谢。51303-1318(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pavlova, N. N., Zhu, J. & Thompson, C. B. The hallmarks of cancer metabolism: still emerging. Cell Metab. 34, 355–377 (2022).Article
巴甫洛娃,N.N.,朱,J。和汤普森,C.B。癌症代谢的标志:仍在出现。细胞代谢。34355-377(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Parrales, A. et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat. Cell Biol. 18, 1233–1243 (2016).Article
Parrales,A。等人,DNAJA1通过甲羟戊酸途径控制错误折叠的突变型p53的命运。自然细胞生物学。181233-1243(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schmick, M. et al. KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport. Cell 157, 459–471 (2014).Article
Schmick,M。等人,KRas通过溶解,捕获和囊泡运输的空间循环定位于质膜。细胞157459-471(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sun, X. et al. Lanosterol synthase loss of function decreases the malignant phenotypes of HepG2 cells by deactivating the Src/MAPK signaling pathway. Oncol. Lett. 26, 295 (2023).Article
Sun,X。等人。羊毛甾醇合酶功能丧失通过使Src/MAPK信号通路失活来降低HepG2细胞的恶性表型。Oncol公司。利特。26295(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nguyen, T. P. et al. Selective and brain-penetrant lanosterol synthase inhibitors target glioma stem-like cells by inducing 24(S),25-epoxycholesterol production. Cell Chem. Biol. 30, 214–229 e218 (2023).Article
Nguyen,T.P.等人。选择性和脑渗透性羊毛甾醇合酶抑制剂通过诱导24(S),25-环氧胆固醇的产生来靶向神经胶质瘤干细胞样细胞。细胞化学。生物学30214-229 e218(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Maione, F. et al. The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination. Sci. Rep. 5, 9054 (2015).Article
胆固醇生物合成酶氧化角鲨烯环化酶是损害肿瘤血管生成和转移扩散的新靶点。。Rep.59054(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rao, C. V., Newmark, H. L. & Reddy, B. S. Chemopreventive effect of farnesol and lanosterol on colon carcinogenesis. Cancer Detect. Prev. 26, 419–425 (2002).Article
Rao,C.V.,Newmark,H.L。和Reddy,B.S。法尼醇和羊毛甾醇对结肠癌发生的化学预防作用。癌症检测。上一页。26419-425(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mafuvadze, B., Liang, Y. & Hyder, S. M. Cholesterol synthesis inhibitor RO 48-8071 suppresses transcriptional activity of human estrogen and androgen receptor. Oncol. Rep. 32, 1727–1733 (2014).Article
Mafuvadze,B.,Liang,Y。&Hyder,S.M。胆固醇合成抑制剂RO 48-8071抑制人雌激素和雄激素受体的转录活性。Oncol公司。《代表》321727–1733(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liang, Y. et al. Cholesterol biosynthesis inhibitors as potent novel anti-cancer agents: suppression of hormone-dependent breast cancer by the oxidosqualene cyclase inhibitor RO 48-8071. Breast Cancer Res. Treat. 146, 51–62 (2014).Article
Liang,Y。等人。胆固醇生物合成抑制剂作为有效的新型抗癌剂:氧化角鲨烯环化酶抑制剂RO 48-8071抑制激素依赖性乳腺癌。乳腺癌研究治疗。146,51-62(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, B. B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).Article
Wang,B.B.等人。使用MAGeCKFlute对合并的CRISPR遗传筛选进行综合分析。自然协议。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhu, Y. H. et al. Dynamic regulation of ME1 phosphorylation and acetylation affects lipid metabolism and colorectal tumorigenesis. Mol. Cell 77, 138 (2020).Article
Zhu,Y.H.等。ME1磷酸化和乙酰化的动态调节影响脂质代谢和结直肠肿瘤发生。摩尔细胞77138(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, T. Z. et al. Ion mobility-based sterolomics reveals spatially and temporally distinctive sterol lipids in the mouse brain. Nat. Commun. 12, 4343 (2021).Article
Li,T.Z.等人。基于离子迁移率的固醇组学揭示了小鼠大脑中空间和时间上独特的固醇脂质。国家公社。124343(2021年)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haslene-Hox, H. et al. A new method for isolation of interstitial fluid from human solid tumors applied to proteomic analysis of ovarian carcinoma tissue. Plos One 6, e19217 (2011).Article
Haslene Hox,H。等人。一种从人实体瘤中分离间质液的新方法,用于卵巢癌组织的蛋白质组学分析。Plos One 6,e19217(2011)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Forli, S. et al. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 11, 905–919 (2016).Article
Forli,S.等人。使用AutoDock套件进行计算蛋白质-配体对接和虚拟药物筛选。自然协议。11905-919(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).Article
Martinez-Molina,D。等人。使用细胞热位移测定法监测药物靶标在细胞和组织中的参与。科学341,84-87(2013)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Jafari, R. et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122 (2014).Article
Jafari,R。等人。用于评估细胞中药物-靶标相互作用的细胞热位移测定。自然协议。92100-2122(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hao, Y. H. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573 (2021).Article
Hao,Y.H.等人。多模式单细胞数据的综合分析。细胞1843573(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe authors thank Profs. Jinfang Zhang (Wuhan University, Wuhan, China) for B16-F10 cells and Congqing Jiang (Wuhan University, Wuhan, China) for CRC patient samples. This work was supported by grants from the National Nature Science Foundation of China (32270828, 92057108, 81772609 to Y.L.); the Special Foundation for Major Science and Technology Program of Hubei Province (2022ACA005 to Y.L.); the Fundamental Research Funds for the Central Universities (2042022dx0003, 2042021kf0229 to Y.L.); Sino-foreign Joint Scientific Research Platform Seed Fund of Wuhan University (WHUZZJJ202204 to Y.L.); Technical support from Instrument Platform Center (Medical Research Institute, Wuhan University, Wuhan, China) and support from Mass Spectrometry Platform (College of Life Science, Wuhan University, Wuhan, China).Author informationAuthors and AffiliationsDepartment of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, ChinaXiaojun Zhou, Genxin Wang, Chenhui Tian, Lin Du & Youjun LiFrontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, ChinaXiaojun Zhou, Genxin Wang, Chenhui Tian, Lin Du & Youjun LiDivision of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, USAEdward V.
下载参考文献致谢作者感谢Profs。张金芳(武汉大学,武汉,中国)用于B16-F10细胞,姜从清(武汉大学,武汉,中国)用于CRC患者样品。这项工作得到了国家自然科学基金(322708289205710881772609给Y.L.)的资助;湖北省重大科技专项基金(2022ACA005至Y.L.);中央大学基础研究基金(2042022DX00032041KF0229至Y.L.);;仪器平台中心(武汉大学医学研究所,中国武汉)的技术支持和质谱平台(武汉大学生命科学学院,中国武汉)的支持。作者信息作者和附属机构武汉大学中南医院结直肠和肛门外科,武汉大学生命科学学院湖北省细胞稳态重点实验室,湖北武汉,430072,周晓军,王根新,田晨辉,杜林和于军武汉大学泰康生命医学中心医学研究所免疫与代谢科学中心,湖北武汉,430071,周晓军,王根新,田晨辉,杜林和于军,美国宾夕法尼亚州匹兹堡市匹兹堡市匹兹堡儿童医院血液学/肿瘤学系,15224,美国爱德华五世。
ProchownikDepartment of Microbiology and Molecular Genetics of UPMC, Pittsburgh, PA, 15224, USAEdward V. ProchownikThe Pittsburgh Liver Research Center, The Hillman Cancer Institute of UPMC, Pittsburgh, PA, 15224, USAEdward V. ProchownikAuthorsXiaojun ZhouView author publicationsYou can also s.
普华永道大学微生物学和分子遗传学系,宾夕法尼亚州匹兹堡,15224,美国爱德华兹诉普华永道大学匹兹堡肝脏研究中心,美国爱德华兹诉普华永道大学希尔曼癌症研究所,宾夕法尼亚州匹兹堡,15224,美国爱德华兹诉普华永道大学作者周晓军观点作者出版物你也可以。
PubMed Google ScholarGenxin WangView author publicationsYou can also search for this author in
PubMed基金会Google Scholarship王查看作者出版物您也可以在
PubMed Google ScholarChenhui TianView author publicationsYou can also search for this author in
PubMed Google ScholarChenhui TianView作者出版物您也可以在
PubMed Google ScholarLin DuView author publicationsYou can also search for this author in
PubMed Google ScholarLin DuView作者出版物您也可以在
PubMed Google ScholarEdward V. ProchownikView author publicationsYou can also search for this author in
PubMed Google ScholarEdward V.ProchownikView作者出版物您也可以在
PubMed Google ScholarYoujun LiView author publicationsYou can also search for this author in
PubMed Google ScholarYoujun LiView作者出版物您也可以在
PubMed Google ScholarContributionsX.Z. and Y.L. designed the study; X.Z. performed most of the experiments; X.Z., G.W., C.T., and L.D. constructed plasmids; X.Z. performed to analyze sequencing and clinical data; X.Z., G.W. performed animal experiments. All authors discussed the results.
PubMed谷歌学术贡献x。Z、 和Y.L.设计了这项研究;十、 Z.进行了大部分实验;十、 Z.,G.W.,C.T。和L.D.构建的质粒;十、 Z.进行测序和临床数据分析;十、 Z.,G.W.进行了动物实验。。
X.Z., E.P., and Y.L. wrote the manuscript with comments from all authors.Corresponding authorCorrespondence to.
十、 Z.,E.P。和Y.L.撰写了手稿,并附上了所有作者的评论。。
Youjun Li.Ethics declarations
李友军。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Ping-Chih Ho, Weiyi Peng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢Ping Chih Ho,Weiyi Peng和另一位匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Supplementary Data 6Reporting SummarySource dataSource DataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5补充数据6报告摘要源数据源数据权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleZhou, X., Wang, G., Tian, C. et al. Inhibition of DUSP18 impairs cholesterol biosynthesis and promotes anti-tumor immunity in colorectal cancer.
转载和许可本文引用本文Zhou,X.,Wang,G.,Tian,C。等人。抑制DUSP18会损害胆固醇的生物合成并促进结直肠癌的抗肿瘤免疫力。
Nat Commun 15, 5851 (2024). https://doi.org/10.1038/s41467-024-50138-xDownload citationReceived: 05 February 2024Accepted: 02 July 2024Published: 12 July 2024DOI: https://doi.org/10.1038/s41467-024-50138-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》155851(2024)。https://doi.org/10.1038/s41467-024-50138-xDownload引文接收日期:2024年2月5日接受日期:2024年7月2日发布日期:2024年7月12日OI:https://doi.org/10.1038/s41467-024-50138-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。