商务合作
动脉网APP
可切换为仅中文
AbstractThe eco-epidemiology of zoonoses is often oversimplified to host-pathogen interactions while findings derived from global datasets are rarely directly transferable to smaller-scale contexts. Through a systematic literature search, we compiled a dataset of naturally occurring zoonotic interactions in Austria, spanning 1975–2022.
摘要人畜共患病的生态流行病学通常被过分简化为宿主-病原体相互作用,而来自全球数据集的发现很少直接转移到较小规模的环境中。通过系统的文献检索,我们收集了1975-2022年间奥地利自然发生的人畜共患相互作用的数据集。
We introduce the concept of zoonotic web to describe the complex relationships between zoonotic agents, their hosts, vectors, food, and environmental sources. The zoonotic web was explored through network analysis. After controlling for research effort, we demonstrate that, within the projected unipartite source-source network of zoonotic agent sharing, the most influential zoonotic sources are human, cattle, chicken, and some meat products.
我们引入人畜共患网络的概念来描述人畜共患病原体,宿主,媒介,食物和环境来源之间的复杂关系。通过网络分析探索了人畜共患网络。在控制了研究工作之后,我们证明,在预期的人畜共患病原体共享的单方来源网络中,最有影响力的人畜共患源是人类,牛,鸡和一些肉制品。
Analysis of the One Health 3-cliques (triangular sets of nodes representing human, animal, and environment) confirms the increased probability of zoonotic spillover at human-cattle and human-food interfaces. We characterise six communities of zoonotic agent sharing, which assembly patterns are likely driven by highly connected infectious agents in the zoonotic web, proximity to human, and anthropogenic activities.
对One Health 3-cliques(代表人,动物和环境的三角形节点集)的分析证实了人畜共患传染病在人畜和人类食物界面溢出的可能性增加。我们描述了六个人畜共患病原体共享社区的特征,这些组装模式可能是由人畜共患网络中高度连接的传染源,与人类的接近和人为活动驱动的。
Additionally, we report a frequency of emerging zoonotic diseases in Austria of one every six years. Here, we present a flexible network-based approach that offers insights into zoonotic transmission chains, facilitating the development of locally-relevant One Health strategies against zoonoses..
此外,我们报告了奥地利新出现的人畜共患疾病的频率为每六年一次。在这里,我们提出了一种灵活的基于网络的方法,该方法提供了对人畜共患传播链的见解,有助于制定针对人畜共患疾病的本地相关健康策略。。
IntroductionZoonoses are caused by pathogens naturally transmissible between humans and wild or domestic animals. Places where humans and animals or animal products interact create interfaces that facilitate zoonotic agent transmission. Notably, approximately 99% of endemic zoonotic infections in humans originate from domesticated animals, within anthropogenic environments, either directly or indirectly through contaminated food or vectors1.
引言人畜共患病是由人类与野生或家畜之间自然传播的病原体引起的。人类和动物或动物产品相互作用的地方创造了促进人畜共患传播的界面。值得注意的是,大约99%的人类地方性人畜共患感染源于人为环境中的驯化动物,直接或间接通过受污染的食物或媒介1。
Morand, et al.2 provided statistical evidence supporting the positive relationship between the duration of domestication and the diversity of zoonotic agents that humans share with each domestic species, which was initially hypothesised by McNeill3. In addition, over 60% of human emerging infectious diseases (EIDs) are zoonotic4.
Morand等[2]提供了统计证据,支持驯化持续时间与人类与每个家养物种共有的人畜共患病原体多样性之间的正相关关系,这最初是由McNeill3假设的。此外,超过60%的人类新发传染病(EIDs)是人畜共患的4。
Although direct zoonotic spillover from wildlife is rare and wildlife-to-human transmission typically occurs through indirect transmission1, more than 70% of these zoonotic emergences are caused by pathogens with a wildlife origin4. However, the full host breadth of endemic and emerging zoonotic agents, as well as their animal and environmental reservoirs are rarely identified nor mapped.In most zoonotic disease systems, interactions occur among multiple animal host species, environmental sources (including invertebrate vectors), and involve multiple infectious agents5.
虽然野生动物的直接人畜共患溢出很少见,野生动物向人类的传播通常通过间接传播1发生,但这些人畜共患突发事件中有70%以上是由野生动物来源的病原体引起的4。然而,很少发现或绘制出地方性和新兴人畜共患病原体及其动物和环境宿主的全部宿主范围。在大多数人畜共患疾病系统中,多种动物宿主物种,环境来源(包括无脊椎动物载体)之间发生相互作用,并涉及多种传染源5。
Therefore, exploring disease dynamics in these multi-source, multi-agent systems necessitates considering the complex ecology of the interactions, e.g., the host-pathogen community assemblages, the existence of environmental reservoirs, and the involvement of vectors5,6,7. Unfortunately, this complexity is often ignored due to the lack of comprehensive datasets, making it challenging to embrace a transdisciplinary perspective.
因此,在这些多源多智能体系统中探索疾病动态需要考虑相互作用的复杂生态学,例如宿主-病原体群落组合,环境水库的存在以及载体的参与5,6,7。不幸的是,由于缺乏全面的数据集,这种复杂性经常被忽视,因此采用跨学科的观点具有挑战性。
Furthermore, n.
此外,n。
Data availability
数据可用性
The raw dataset generated in this study, as well as its cleaned and validated version, are available in the Supplementary Code. The data has also been archived in the study repository on figshare with the identifier: https://doi.org/10.6084/m9.figshare.2530617795.
补充代码中提供了本研究中生成的原始数据集及其清理和验证版本。数据也已存档在figshare上的研究存储库中,标识符为:https://doi.org/10.6084/m9.figshare.2530617795.
Code availability
代码可用性
All analyses were conducted in R Statistical Software version 4.3.0 (2023-04-21) “Already Tomorrow”. The documented R scripts used for data cleaning, validation, processing, and analysis, are available in Supplementary Code. The READ.ME file contains the necessary instructions to run the code and replicate our results.
所有分析均在R统计软件版本4.3.0(2023-04-21)“已经明天”中进行。补充代码中提供了用于数据清理,验证,处理和分析的已记录的R脚本。阅读。ME文件包含运行代码和复制结果的必要说明。
These files have also been archived in the study repository on figshare95..
这些文件也已存档在figshare95的研究存储库中。。
ReferencesKock, R. & Caceres-Escobar, H. Situation analysis on the roles and risks of wildlife in the emergence of human infectious diseases. 112 (IUCN Species Survival Commission (SSC), Gland, Switzerland, 2022).Morand, S., McIntyre, K. M. & Baylis, M. Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters.
参考文献Kock,R。&Caceres-Escobar,H。关于野生动物在人类传染病出现中的作用和风险的情况分析。112(IUCN物种生存委员会(SSC),瑞士格兰德,2022)。Morand,S.,McIntyre,K.M。&Baylis,M。驯化动物和人畜共患起源的人类传染病:驯化时间很重要。
Infect. Genet. Evol. 24, 76–81 (2014).Article .
感染。遗传的。Evol。24, 76–81 (2014).第[UNK]条。
PubMed
PubMed
Google Scholar
谷歌学者
McNeill, W. Plagues and peoples. (Anchor Book Editions, 1976).Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).Article
麦克尼尔,W。瘟疫与人民。(Anchor Book Edition,1976)。Jones,K.E.等人,《新发传染病的全球趋势》。自然451990-993(2008)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Buhnerkempe, M. G. et al. Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics 10, 26–30 (2015).Article
Buhnerkempe,M.G.等人,《多宿主、多智能体系统中疾病生态学建模的八个挑战》。流行病10,26-30(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife-livestock-human interface. Trends Ecol. Evol. 32, 55–67 (2017).Article
Hassell,J.M.,Begon,M.,Ward,M.J.&Fèvre,E.M。城市化和疾病出现:野生动物-牲畜-人类界面的动态。趋势Ecol。进化。32,55-67(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dobson, A. Population dynamics of pathogens with multiple host species. Am. Nat. 164, S64–S78 (2004).Article
Dobson,A。具有多种宿主物种的病原体的种群动态。《美国国家汇编》第164卷第64-78页(2004年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).Article
Olival,K.J。等人。宿主和病毒特征预测哺乳动物的人畜共患溢出。自然546646-650(2017)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gómez, J. M., Nunn, C. L. & Verdú, M. Centrality in primate–parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. PNAS 110, 7738–7741 (2013).Article
Gómez,J.M.,Nunn,C.L。和Verdú,M。灵长类动物-寄生虫网络的中心性揭示了新发传染病向人类传播的潜力。PNAS 1107738–7741(2013)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Luis, A. D. et al. Network analysis of host–virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol. Lett. 18, 1153–1162 (2015).Article
对蝙蝠和啮齿动物宿主病毒群落的网络分析揭示了跨物种传播的决定因素。Ecol公司。利特。181153-1162(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cleaveland, S., Laurenson, M. K. & Taylor, L. H. Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 991–999 (2001).Article
Cleaveland,S.,Laurenson,M.K。&Taylor,L.H。人类及其家养哺乳动物的疾病:病原体特征,宿主范围和出现风险。菲洛斯。事务处理。R、 社会责任。生物科学学士。356991-999(2001)。文章
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ghai, R. R. et al. A generalizable One Health framework for the control of zoonotic diseases. Sci. Rep. 12, 8588 (2022).Article
Ghai,R.R.等人。用于控制人畜共患疾病的可推广的单一健康框架。科学。代表128588(2022)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Karesh, W. B. et al. Ecology of zoonoses: natural and unnatural histories. Lancet 380, 1936–1945 (2012).Article
Karesh,W.B.等人,《人畜共患病生态学:自然和非自然历史》。柳叶刀3801936-1945(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hirst, K. M. & Halsey, S. J. Bacterial zoonoses impacts to conservation of wildlife populations: a global synthesis. Front. Conserv. Sci. 4, https://doi.org/10.3389/fcosc.2023.1218153 (2023).Bernstein, A. S. et al. The costs and benefits of primary prevention of zoonotic pandemics. Sci.
Hirst,K.M.&Halsey,S.J。细菌人畜共患病对野生动物种群保护的影响:全球综合。正面。保存。科学。四、,https://doi.org/10.3389/fcosc.2023.1218153(2023年)。Bernstein,A.S.等人,《人畜共患流行病一级预防的成本和收益》。科学。
Adv. 8, eabl4183 (2022).Article .
Adv.8,eabl4183(2022)。文章。
ADS
广告
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
British Academy. The COVID Decade: understanding the long-term societal impacts of COVID-19. 172 (The British Academy, London, United Kingdom, 2021).Markotter, W. et al. Prevention of zoonotic spillover: From relying on response to reducing the risk at source. PLoS Pathog. 19, e1011504 (2023).Article .
英国学院。新型冠状病毒十年:了解新型冠状病毒的长期社会影响。172(英国科学院,英国伦敦,2021年)。Markotter,W.等人,《人畜共患传染病外溢的预防:从依靠应对措施到降低源头风险》。PLoS Pathog。19,e1011504(2023)。文章。
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. USA 100, 567–571 (2003).Article
LoGiudice,K.,Ostfeld,R.S.,Schmidt,K.A。&Keesing,F。传染病生态学:宿主多样性和群落组成对莱姆病风险的影响。程序。纳特尔。阿卡德。科学。美国100567-571(2003)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).Article
Keesing,F.等人,《生物多样性对传染病发生和传播的影响》。《自然》468647-652(2010)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).Article
Plowright,R.K.等人,《人畜共患溢出的途径》。自然修订版微生物学。15502-510(2017)。文章
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).Article
劳埃德·史密斯(Lloyd Smith),J.O。等人,《人-动物界面的流行病动力学》。科学3261362-1367(2009)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. USA 117, 9423–9430 (2020).Article
Mollentze,N。&Streicker,D.G。病毒人畜共患风险在哺乳动物和鸟类宿主的分类学顺序中是同质的。程序。纳特尔。阿卡德。科学。美国1179423–9430(2020)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carlson, C. J. et al. The global virome in one network (VIRION): an atlas of vertebrate-virus associations. mBio 13, e02985–02921 (2022).Article
Carlson,C.J.等人,《一个网络中的全球病毒体》(VIRION):脊椎动物病毒关联图谱。mBio 13,e02985–02921(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wardeh, M., Risley, C., McIntyre, M. K., Setzkorn, C. & Baylis, M. Database of host-pathogen and related species interactions, and their global distribution. Sci. Data 2, 150049 (2015).Article
Wardeh,M.,Risley,C.,McIntyre,M.K.,Setzkorn,C。&Baylis,M。宿主-病原体和相关物种相互作用及其全球分布数据库。科学。数据21150049(2015)。文章
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. PNAS 110, 8399–8404 (2013).Article
Jones,B.A.等人,《人畜共患病的出现与农业集约化和环境变化有关》。PNAS 1108399–8404(2013)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Geiser, E. Wie viele tierarten leben in Österreich? Erfassung, Hochrechnung und Abschätzung. Verh. Zool. Bot. Ges. Wien. 135, 81–93 (1998).
盖泽,E.奥地利有多少种动物?捕获、推断和估计。嗯。鞋底。机器人。维也纳。135, 81–93 (1998).
Google Scholar
谷歌学者
Statistik Austria. https://www.statistik.at/en (2023).Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).Article
奥地利统计局。https://www.statistik.at/en(2023).Bascompte,J.解开生命之网。《科学》325416-419(2009)。文章
ADS
广告
MathSciNet
MathSciNet
CAS
CAS
PubMed
PubMed
Google Scholar
谷歌学者
Pilosof, S., Morand, S., Krasnov, B. R. & Nunn, C. L. Potential parasite transmission in multi-host networks based on parasite sharing. PLoS ONE 10, e0117909 (2015).Article
Pilosof,S.,Morand,S.,Krasnov,B.R。&Nunn,C.L。基于寄生虫共享的多主机网络中潜在的寄生虫传播。PLoS ONE 10,e0117909(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
VanderWaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biol. Conserv. 169, 136–146 (2014).Article
VanderWaal,K.L.,Atwill,E.R.,Isbell,L.A。和McCowan,B。量化肯尼亚野生和家养有蹄类动物的微生物传播网络。生物保护。169136-146(2014)。文章
Google Scholar
谷歌学者
Newman, M. Networks: An Introduction 2nd edn, (Oxford University Press, Inc., 2018).Simmons, B. I. et al. Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos 128, 154–170 (2019).Article
Newman,M。Networks:简介第二版(牛津大学出版社,2018)。Simmons,B.I.等人,《二分生态网络中的主题:揭示间接相互作用》。Oikos 128154-170(2019)。文章
ADS
广告
Google Scholar
谷歌学者
Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).Article
Delmas,E.等人,分析物种相互作用的生态网络。《生物学》第94版,第16-36页(2019年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Granovetter, M. S. The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).Article
Granovetter,M.S。弱关系的强度。美国社会学杂志。781360-1380(1973)。文章
Google Scholar
谷歌学者
Combes, C. Parasitism: the ecology and evolution of intimate interactions. (University of Chicago Press, 2001).Bundeskanzleramt Österreich. Bundesgesetz zur Überwachung von Zoonosen und Zoonoseerregern (Zoonosengesetz). https://www.ris.bka.gv.at/eli/bgbl/I/2005/128 (2005).Casulli, A.
Combes,C.寄生虫:亲密互动的生态学和进化。(芝加哥大学出版社,2001年)。奥地利联邦总理府。《人畜共患病和人畜共患病原体监测联邦法案》(《人畜共患病法案》)。https://www.ris.bka.gv.at/eli/bgbl/I/2005/128(2005).卡苏利,A。
et al. Unveiling the incidences and trends of the neglected zoonosis cystic echinococcosis in Europe: a systematic review from the MEmE project. Lancet Infect. Dis. 23, e95–e107 (2023).Article .
揭示欧洲被忽视的人畜共患囊性包虫病的发病率和趋势:MEmE项目的系统综述。柳叶刀感染。Dis。23,e95–e107(2023)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Essack, S. Y. Environment: the neglected component of the One Health triad. Lancet Planet. Health 2, e238–e239 (2018).Article
Essack,S.Y。环境:一个健康三合会中被忽视的组成部分。柳叶刀星球。健康2,e238–e239(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Keusch, G. T. et al. Pandemic origins and a One Health approach to preparedness and prevention: Solutions based on SARS-CoV-2 and other RNA viruses. PNAS 119, e2202871119 (2022).Article
Keusch,G.T.等人,《大流行起源和一种健康的防备和预防方法:基于SARS-CoV-2和其他RNA病毒的解决方案》。PNAS 119,e2202871119(2022)。文章
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Semenza, J. C. & Suk, J. E. Vector-borne diseases and climate change: a European perspective. FEMS Microbiol. Lett. 365, https://doi.org/10.1093/femsle/fnx244 (2018).Bundeskanzleramt Österreich. Epidemiegesetz (BGBl. Nr. 186/1950). https://www.ris.bka.gv.at/Dokumente/BgblPdf/1950_186_0/1950_186_0.pdf (1950).World Organisation for Animal Health.
Semenza,J.C.&Suk,J.E.媒介传播疾病与气候变化:欧洲视角。FEMS微生物学。Lett。365,https://doi.org/10.1093/femsle/fnx244(2018).奥地利联邦总理府。《流行病法》(英国政府公报第186/1950号)。https://www.ris.bka.gv.at/Dokumente/BgblPdf/1950_186_0/1950_186_0.pdf(1950).世界动物卫生组织。
Terrestrial animal health code. https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/ (2022).Moreira-Soto, A. et al. Serological evidence that SARS-CoV-2 has not emerged in deer in Germany or Austria during the COVID-19 pandemic. Microorganisms 10, https://doi.org/10.3390/microorganisms10040748 (2022).Roberts, M.
陆地动物卫生法规。https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/(2022年)。Moreira Soto,A。等人。血清学证据表明,在新冠肺炎大流行期间,德国或奥地利的鹿中没有出现SARS-CoV-2。微生物10,https://doi.org/10.3390/microorganisms10040748(2022年)。罗伯茨,M。
G. & Heesterbeek, J. A. P. Characterizing reservoirs of infection and the maintenance of pathogens in ecosystems. J. R. Soc. Interface 17, 20190540 (2020).Article .
G、 &Heesterbeek,J.A.P。描述生态系统中感染宿主和病原体维持的特征。J、 R.Soc.Interface 1720190540(2020)。文章。
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bordes, F., Caron, A., Blasdell, K., de Garine-Wichatitsky, M. & Morand, S. Forecasting potential emergence of zoonotic diseases in South-East Asia: network analysis identifies key rodent hosts. J. Appl. Ecol. 54, 691–700 (2017).Article
Bordes,F.,Caron,A.,Blasdell,K.,de Garine Wichatitsky,M。&Morand,S。预测东南亚人畜共患疾病的潜在出现:网络分析确定了关键的啮齿动物宿主。J、 应用。Ecol公司。54691-700(2017)。文章
Google Scholar
谷歌学者
McHugo, G. P., Dover, M. J. & MacHugh, D. E. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics. BMC Biol. 17, 98 (2019).Article
McHugo,G.P.,Dover,M.J。&MacHugh,D.E。利用古代DNA和古基因组学解开家畜的起源和生物学。BMC生物。17,98(2019)。文章
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wells, K., Morand, S., Wardeh, M. & Baylis, M. Distinct spread of DNA and RNA viruses among mammals amid prominent role of domestic species. Glob. Ecol. Biogeogr. 29, 470–481 (2020).Article
Wells,K.,Morand,S.,Wardeh,M。&Baylis,M。在哺乳动物中DNA和RNA病毒的明显传播以及国内物种的突出作用。全球。Ecol公司。生物地理学。29470–481(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hopkins, S. R. et al. Environmental persistence of the world’s most burdensome infectious and parasitic diseases. Front. Public Health 10, https://doi.org/10.3389/fpubh.2022.892366(2022).Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology.
霍普金斯,S.R。等人,《世界上最繁重的传染病和寄生虫病的环境持久性》。正面。公共卫生10,https://doi.org/10.3389/fpubh.2022.892366(2022年)。Johnson,P.T.J.,de Roode,J.C。和Fenton,A。为什么传染病研究需要社区生态学。
Science 349, 1259504 (2015).Article .
科学3491259504(2015)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
European Food Safety Authority & European Centre for Disease Prevention. The European Union One Health 2022 Zoonoses Report. EFSA J. 21, p211202 (2023).Hald, T. et al. World Health Organization estimates of the relative contributions of food to the burden of disease due to selected foodborne hazards: a structured expert elicitation.
欧洲食品安全局和欧洲疾病预防中心。欧盟一健康2022人畜共患病报告。EFSA J.21,p211202(2023)。Hald,T.等人。世界卫生组织估计食物对选定食源性危害引起的疾病负担的相对贡献:结构化专家启发。
PLoS ONE11, e0145839 (2016).Article .
PLoS ONE11,e0145839(2016)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, L. et al. Epidemiology of foodborne disease outbreaks caused by nontyphoidal Salmonella in Zhejiang Province, China, 2010-2019. Foodborne Pathog. Dis. 18, 880–886 (2021).Article
Sun,L.等人。2010-2019年中国浙江省非伤寒沙门氏菌引起的食源性疾病暴发的流行病学。食源性病原体。Dis。18880-886(2021)。文章
CAS
CAS
PubMed
PubMed
Google Scholar
谷歌学者
Gallo, M., Ferrara, L., Calogero, A., Montesano, D. & Naviglio, D. Relationships between food and diseases: What to know to ensure food safety. Food Res. Int. 137, 109414 (2020).Article
Gallo,M.,Ferrara,L.,Calogero,A.,Montesano,D。和Naviglio,D。食物与疾病之间的关系:要知道什么才能确保食品安全。《食品研究Int.137109414》(2020)。文章
CAS
CAS
PubMed
PubMed
Google Scholar
谷歌学者
Mello, M. A. R., Bezerra, E. L. S. & Machado, I. C. Functional roles of Centridini oil bees and Malpighiaceae oil flowers in biome-wide pollination networks. Biotropica 45, 45–53 (2013).Article
Mello,M.A.R.,Bezerra,E.L.S。和Machado,I.C。Centridini油蜂和Malpighiaceae油花在整个生物群落授粉网络中的功能作用。Biotropica 45,45-53(2013)。文章
Google Scholar
谷歌学者
Haydon, D. T., Cleaveland, S., Taylor, L. H. & Laurenson, M. K. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg. Infect. Dis. 8, 1468–1473 (2002).Article
Haydon,D.T.,Cleaveland,S.,Taylor,L.H。&Laurenson,M.K。识别感染宿主:概念和实践挑战。紧急感染。Dis。81468-1473(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Caron, A., Cappelle, J., Cumming, G. S., de Garine-Wichatitsky, M. & Gaidet, N. Bridge hosts, a missing link for disease ecology in multi-host systems. Vet. Res. 46, 83 (2015).Article
Caron,A.,Cappelle,J.,Cumming,G.S.,de Garine Wichatitsky,M。&Gaidet,N。Bridge hosts,多宿主系统中疾病生态学缺失的环节。兽医。第46、83(2015)号决议。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kilpatrick, A. M. et al. West Nile virus risk assessment and the bridge vector paradigm. Emerg. Infect. Dis. 11, 425–429 (2005).Article
Kilpatrick,A.M.等人,《西尼罗河病毒风险评估和桥梁载体范例》。紧急感染。Dis。11425-429(2005)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ashford, R. W. When is a reservoir not a reservoir? Emerg. Infect. Dis. 9, 1495–1496 (2003).Article
什么时候水库不是水库?紧急感染。Dis。91495-1496(2003)。文章
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Halliday, J. E. et al. A framework for evaluating animals as sentinels for infectious disease surveillance. J. R. Soc. Interface 4, 973–984 (2007).Article
Halliday,J.E.等人,《评估动物作为传染病监测哨兵的框架》。J、 R.Soc.Interface 4973–984(2007)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Radici, A., Bevacqua, D., Miele, L. & Martinetti, D. Network-thinking to optimize surveillance and control of crop parasites. A review. Preprint at https://doi.org/10.48550/arXiv.42310.07442 (2023).Colman, E., Holme, P., Sayama, H. & Gershenson, C. Efficient sentinel surveillance strategies for preventing epidemics on networks.
Radici,A.,Bevacqua,D.,Miele,L。和Martinetti,D。网络思维优化作物寄生虫的监测和控制。回顾。预印于https://doi.org/10.48550/arXiv.42310.07442(2023年)。Colman,E.,Holme,P.,Sayama,H。&Gershenson,C。预防网络流行病的有效哨兵监测策略。
PLoS Comput. Biol. 15, e1007517 (2019).Article .
PLoS计算机。生物学杂志15,e1007517(2019)。文章。
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guenin, M.-J. et al. A participatory epidemiological and One Health approach to explore the community’s capacity to detect emerging zoonoses and surveillance network opportunities in the forest region of Guinea. PLoS Negl. Trop. Dis. 16, e0010462 (2022).Article
Guenin,M.-J.等人,《一种参与式流行病学和一种健康方法》,旨在探索社区在几内亚森林地区发现新出现的人畜共患病和监测网络机会的能力。公共科学图书馆。托普。Dis。16,e0010462(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Holme, P. Three faces of node importance in network epidemiology: Exact results for small graphs. Phys. Rev. E 96, 062305 (2017).Article
Holme,P。网络流行病学中节点重要性的三个方面:小图的精确结果。物理。修订版E 96062305(2017)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Griffin, J. M. et al. The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Prev. Vet. Med. 67, 237–266 (2005).Article
Griffin,J.M.等人,《去除獾对爱尔兰牛群结核病控制的影响》。上一页。兽医。医学67237-266(2005)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
Google Scholar
谷歌学者
Donnelly, C. A. et al. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426, 834–837 (2003).Article
Donnelly,C.A。等人。局部猎杀獾对英国牛结核病发病率的影响。《自然》426834-837(2003)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
Google Scholar
谷歌学者
Grange, Z. L. et al. Ranking the risk of animal-to-human spillover for newly discovered viruses. PNAS 118, e2002324118 (2021).Article
Grange,Z.L.等人对新发现的病毒的动物对人类溢出的风险进行了排名。PNAS 118,e2002324118(2021)。文章
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Washburne, A. D. et al. Percolation models of pathogen spillover. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180331 (2019).Article
Washburne,A.D.等人,《病原体外溢的渗流模型》。菲洛斯。事务处理。R、 社会学B生物学。科学。37420180331(2019)。文章
Google Scholar
谷歌学者
Lü, L. & Zhou, T. Link prediction in complex networks: a survey. Phys. A 390, 1150–1170 (2011).Article
Lü,L。&Zhou,T。复杂网络中的链接预测:一项调查。物理。A 3901150–1170(2011)。文章
Google Scholar
谷歌学者
Kim, M. & Leskovec, J. In Proceedings of the 2011 SIAM International Conference on Data Mining (SDM). 47–58 (2011).Clauset, A., Moore, C. & Newman, M. E. J. Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008).Article
Kim,M。&Leskovec,J。在2011年暹罗国际数据挖掘会议论文集(SDM)中。47-58(2011)。Clauset,A.,Moore,C。&Newman,M.E.J。层次结构和网络中缺失链接的预测。自然453,98-101(2008)。文章
ADS
广告
CAS
CAS
PubMed
PubMed
Google Scholar
谷歌学者
Guimerà, R. & Sales-Pardo, M. Missing and spurious interactions and the reconstruction of complex networks. PNAS 106, 22073–22078 (2009).Article
Guimerà,R。&Sales Pardo,M。缺失和虚假的互动以及复杂网络的重建。PNAS 10622073–22078(2009)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, C., Li, Z. & Zhou, L. Missing nodes detection for complex networks based on graph convolutional networks. J. Ambient Intell. Humaniz. Comput. 14, 9145–9158 (2023).Article
Liu,C.,Li,Z。&Zhou,L。基于图卷积网络的复杂网络缺失节点检测。J、 环境内部。人性化。计算机。149145–9158(2023)。文章
Google Scholar
谷歌学者
Yan, B. & Gregory, S. Finding missing edges in networks based on their community structure. Phys. Rev. E 85, 056112 (2012).Article
Yan,B。&Gregory,S。根据社区结构在网络中寻找缺失的边缘。物理。修订版E 85056112(2012)。文章
ADS
广告
Google Scholar
谷歌学者
Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).Article
Kaper,J.B.,Nataro,J.P。&Mobley,H.L。致病性大肠杆菌。自然修订版微生物学。2123-140(2004)。文章
CAS
CAS
PubMed
PubMed
Google Scholar
谷歌学者
Bass, D., Christison, K. W., Stentiford, G. D., Cook, L. S. J. & Hartikainen, H. Environmental DNA/RNA for pathogen and parasite detection, surveillance, and ecology. Trends Parasitol. 39, 285–304 (2023).Article
Bass,D.,Christison,K.W.,Stentiford,G.D.,Cook,L.S.J。&Hartikainen,H。用于病原体和寄生虫检测,监测和生态学的环境DNA/RNA。趋势寄生虫。39285-304(2023)。文章
CAS
CAS
PubMed
PubMed
Google Scholar
谷歌学者
Amman, F. et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat. Biotechnol. 40, 1814–1822 (2022).Article
Amman,F。等人。病毒变异解决了全国范围内SARS-CoV-2的废水监测。美国国家生物技术公司。401814-1822(2022)。文章
CAS
CAS
PubMed
PubMed
Google Scholar
谷歌学者
Dub, T. et al. Epidemic intelligence activities among national public and animal health agencies: a European cross-sectional study. BMC Public Health 23, 1488 (2023).Article
Dub,T.等人,《国家公共和动物卫生机构的流行病情报活动:欧洲横断面研究》。BMC公共卫生231488(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, V. L. & Madoff, L. C. ProMED-mail: An early warning system for emerging diseases. Clin. Infect. Dis. 39, 227–232 (2004).Article
Yu,V.L。和Madoff,L.C。ProMED mail:新兴疾病的早期预警系统。临床。感染。Dis。39227-232(2004)。文章
Google Scholar
谷歌学者
Gutiérrez-Sacristán, A. et al. Text mining and expert curation to develop a database on psychiatric diseases and their genes. Database 2017, bax043 (2017).Article
Gutiérrez-Sacristán,A.等人。开发精神疾病及其基因数据库的文本挖掘和专家管理。数据库2017,bax043(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Paraskevopoulos, S., Smeets, P., Tian, X. & Medema, G. Using Artificial Intelligence to extract information on pathogen characteristics from scientific publications. Int. J. Hyg. Environ. Health 245, 114018 (2022).Article
Paraskevopoulos,S.,Smeets,P.,Tian,X。&Medema,G。使用人工智能从科学出版物中提取有关病原体特征的信息。内景J.Hyg。环境。健康245114018(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Walker, V. R. et al. Evaluation of a semi-automated data extraction tool for public health literature-based reviews: Dextr. Environ. Int. 159, 107025 (2022).Article
Walker,V.R.等人。用于基于公共卫生文献的评论的半自动数据提取工具的评估:Dextr。环境。内景159107025(2022)。文章
CAS
CAS
PubMed
PubMed
Google Scholar
谷歌学者
Nandi, A. & Allen, L. J. S. Probability of a zoonotic spillover with seasonal variation. Infect. Dis. Model 6, 514–531 (2021).PubMed
Nandi,A.&Allen,L.J.S。人畜共患溢出的季节变化概率。感染。Dis。型号6514-531(2021)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Halliday, F. W., Heckman, R. W., Wilfahrt, P. A. & Mitchell, C. E. Past is prologue: host community assembly and the risk of infectious disease over time. Ecol. Lett. 22, 138–148 (2019).Article
Halliday,F.W.,Heckman,R.W.,Wilfahrt,P.A。和Mitchell,C.E。过去是序幕:宿主社区集会和随着时间的推移传染病的风险。Ecol公司。利特。22138-148(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Fagre, A. C. et al. Assessing the risk of human-to-wildlife pathogen transmission for conservation and public health. Ecol. Lett. 25, 1534–1549 (2022).Article
Fagre,A.C.等人,评估人类对野生动物病原体传播的风险,以保护和公共卫生。Ecol公司。利特。251534-1549(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst. Rev. 10, 89 (2021).Article
Page,M.J.等人,《PRISMA 2020声明:报告系统评价的最新指南》。系统。第10版,第89页(2021年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schoch, C. L. et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020, baaa062 (2020).Article
Schoch,C.L.等人,《NCBI分类学:管理、资源和工具的全面更新》。数据库2020,baaa062(2020)。文章
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).Article
Chamberlain,S.A.&Szöcs,E.taxize:R.F1000Res 2191(2013)中的分类学搜索和检索。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Newman, M. E. J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001).Article
Newman,M.E.J。科学合作网络。二。最短路径,加权网络和中心性。物理。修订版E 64016132(2001)。文章
ADS
广告
CAS
CAS
Google Scholar
谷歌学者
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).Article
Benjamini,Y。&Hochberg,Y。控制错误发现率:一种实用而强大的多重测试方法。J、 R.统计社会服务。B统计方法。57289-300(1995)。文章
MathSciNet
MathSciNet
Google Scholar
谷歌学者
Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006).Dormann, C., Gruber, B. & Fründ, J. Introducing the bipartite package: Analysing ecological networks. R News 8, 11–9 (2008).Traag, V. A., Waltman, L. & van Eck, N.
Csardi,G。和Nepusz,T。用于复杂网络研究的igraph软件包。Int.J.复杂系统。1695,1-9(2006)。Dormann,C.,Gruber,B。&Fründ,J。介绍二分包:分析生态网络。R新闻8,11-9(2008)。特拉格,V.A.,沃尔特曼,L。和范埃克,N。
J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).Article .
J、 从鲁汶到莱顿:保障良好的社区联系。科学。Rep.95233(2019)。文章。
ADS
广告
CAS
CAS
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).Article
Newman,M.E.J.&Girvan,M。发现和评估网络中的社区结构。物理。修订版E 69026113(2004)。文章
ADS
广告
CAS
CAS
Google Scholar
谷歌学者
Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008).Article
Blondel,V.D.,Guillaume,J.L.,Lambiotte,R。和Lefebvre,E。大型网络中社区的快速发展。J、 统计机械。理论实验2008,P10008(2008)。文章
Google Scholar
谷歌学者
Desvars-Larrive, A. et al. Repository for the paper: A One Health framework for exploring zoonotic interactions demonstrated through a case study. Figshare https://doi.org/10.6084/m9.figshare.25306177.v1 (2024).Article
Desvars Larrive,A。等人,《论文储存库:通过案例研究展示的探索人畜共患相互作用的单一健康框架》。Figshare公司https://doi.org/10.6084/m9.figshare.25306177.v1(2024年)。文章
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe authors thank Sina Sajjadi and Rafael Prieto-Curiel for their valuable insights and advice on network analysis.Author informationAuthors and AffiliationsCentre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, AustriaAmélie Desvars-Larrive, Anna Elisabeth Vogl, Gavrila Amadea Puspitarani & Annemarie KäsbohrerComplexity Science Hub, Vienna, AustriaAmélie Desvars-Larrive, Gavrila Amadea Puspitarani & Liuhuaying YangCentre of Pathobiology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, AustriaAnja JoachimAuthorsAmélie Desvars-LarriveView author publicationsYou can also search for this author in.
下载参考文献致谢作者感谢新浪Sajjadi和Rafael Prieto Curiel在网络分析方面的宝贵见解和建议。作者信息作者和附属机构维也纳兽医大学农场动物和食品系统科学临床系食品科学和兽医公共卫生研究所,维也纳,澳大利亚兽医学院,安娜·伊丽莎白·沃格尔,加夫里拉·阿马迪亚·普斯皮塔拉尼和安妮玛丽·科斯伯雷复杂性科学中心,维也纳,澳大利亚兽医学院,加夫里拉·阿马迪亚·普斯皮塔拉尼和刘华英病理生物学中心,维也纳兽医学院生物科学和病理生物学系,维也纳,澳大利亚ations您也可以在中搜索此作者。
PubMed Google ScholarAnna Elisabeth VoglView author publicationsYou can also search for this author in
PubMed Google ScholarAnna Elisabeth VoglView作者出版物您也可以在
PubMed Google ScholarGavrila Amadea PuspitaraniView author publicationsYou can also search for this author in
PubMed Google ScholarGavrila Amadea PuspitaraniView作者出版物您也可以在
PubMed Google ScholarLiuhuaying YangView author publicationsYou can also search for this author in
PubMed谷歌学术刘华英YangView作者出版物您也可以在
PubMed Google ScholarAnja JoachimView author publicationsYou can also search for this author in
PubMed Google ScholarAnja JoachimView作者出版物您也可以在
PubMed Google ScholarAnnemarie KäsbohrerView author publicationsYou can also search for this author in
PubMed Google ScholarAnnemarie KäsbohrerView作者出版物您也可以在
PubMed Google ScholarContributionsInitial concept: A.D-L.; Analysis design: A.D-L.; Data collection: A.V. and A.D-L.; Data collation and processing: A.D-L. and A.V.; Data analysis and modelling: A.D-L. and G.A.P.; Visualisation: A.D-L., L.Y. and G.A.P.; Writing (initial draft): A.D-L.
PubMed谷歌学术贡献概念:A.D-L。;分析设计:A.D-L。;数据收集:A.V.和A.D-L。;数据整理和处理:A.D-L。和A.V。;数据分析和建模:A.D-L。和G.A.P。;可视化:A.D-L.,L.Y.和G.A.P。;写作(初稿):A.D-L。
and A.V.; Writing (review and editing): A.D-L., A.V., G.A.P., L.Y., A.J. and A.K.Corresponding authorCorrespondence to.
和A.V。;写作(评论和编辑):A.D-L.,A.V.,G.A.P.,L.Y.,A.J.和A.K.对应作者回复。
Amélie Desvars-Larrive.Ethics declarations
阿米莉·德斯瓦尔斯·拉里夫。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Younjung Kim, Thierry Lefrançois and Marisa Peyre for their contribution to the peer review of this work. A peer review file is available.
《自然通讯》感谢Younjung Kim、Thierry Lefrançois和Marisa Peyre为这项工作的同行评审做出的贡献。同行评审文件可用。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary CodeReporting SummaryRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充代码报告摘要权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleDesvars-Larrive, A., Vogl, A.E., Puspitarani, G.A. et al. A One Health framework for exploring zoonotic interactions demonstrated through a case study.
转载和许可本文引用本文Desvars Larrive,A.,Vogl,A.E.,Puspitarani,G.A。等人。通过案例研究证明了探索人畜共患相互作用的一个健康框架。
Nat Commun 15, 5650 (2024). https://doi.org/10.1038/s41467-024-49967-7Download citationReceived: 26 February 2024Accepted: 24 June 2024Published: 15 July 2024DOI: https://doi.org/10.1038/s41467-024-49967-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》155650(2024)。https://doi.org/10.1038/s41467-024-49967-7Download引文接收日期:2024年2月26日接受日期:2024年6月24日发布日期:2024年7月15日OI:https://doi.org/10.1038/s41467-024-49967-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。