EN
登录

天然质谱和结构研究揭示了脂质对MsbA-核苷酸相互作用的调节

Native mass spectrometry and structural studies reveal modulation of MsbA–nucleotide interactions by lipids

Nature 等信源发布 2024-07-15 23:29

可切换为仅中文


AbstractThe ATP-binding cassette (ABC) transporter, MsbA, plays a pivotal role in lipopolysaccharide (LPS) biogenesis by facilitating the transport of the LPS precursor lipooligosaccharide (LOS) from the cytoplasmic to the periplasmic leaflet of the inner membrane. Despite multiple studies shedding light on MsbA, the role of lipids in modulating MsbA-nucleotide interactions remains poorly understood.

摘要ATP结合盒(ABC)转运蛋白MsbA通过促进LPS前体脂多糖(LOS)从细胞质向内膜周质小叶的转运,在脂多糖(LPS)的生物发生中起着关键作用。尽管多项研究揭示了MsbA,但脂质在调节MsbA核苷酸相互作用中的作用仍然知之甚少。

Here we use native mass spectrometry (MS) to investigate and resolve nucleotide and lipid binding to MsbA, demonstrating that the transporter has a higher affinity for adenosine 5’-diphosphate (ADP). Moreover, native MS shows the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL) can tune the selectivity of MsbA for adenosine 5’-triphosphate (ATP) over ADP.

在这里,我们使用天然质谱(MS)来研究和解析核苷酸和脂质与MsbA的结合,证明该转运蛋白对腺苷5'-二磷酸(ADP)具有更高的亲和力。此外,天然MS显示LPS前体3-脱氧-D-甘露基-oct-2-果糖酸(Kdo)2-脂质A(KDL)可以调节MsbA对ADP上腺苷5'-三磷酸(ATP)的选择性。

Guided by these studies, four open, inward-facing structures of MsbA are determined that vary in their openness. We also report a 2.7 Å-resolution structure of MsbA in an open, outward-facing conformation that is not only bound to KDL at the exterior site, but with the nucleotide binding domains (NBDs) adopting a distinct nucleotide-free structure.

在这些研究的指导下,确定了MsbA的四个开放的向内结构,它们的开放性各不相同。我们还报告了MsbA的2.7Å分辨率结构,该结构呈开放的向外构象,不仅在外部位点与KDL结合,而且核苷酸结合域(NBD)采用独特的无核苷酸结构。

The results obtained from this study offer valuable insight and snapshots of MsbA during the transport cycle..

从这项研究中获得的结果为运输周期中的MsbA提供了有价值的见解和快照。。

IntroductionGram-negative bacteria, including E. coli, possess a complex envelope consisting of an inner membrane and an outer membrane separated by the periplasm1,2,3. The inner membrane forms a typical phospholipid bilayer surrounding the cytoplasm of bacteria, while the outer membrane adopts an asymmetric structure, with phospholipids comprising the inner leaflet and lipopolysaccharides (LPS) as the major component of the outer leaflet1,2,3.

引言革兰氏阴性细菌,包括大肠杆菌,具有复杂的包膜,由内膜和由周质隔开的外膜组成1,2,3。内膜在细菌细胞质周围形成典型的磷脂双层,而外膜采用不对称结构,磷脂包含内小叶和脂多糖(LPS)作为外小叶的主要成分1,2,3。

LPS plays a vital role in maintaining an effective outer membrane barrier, providing resistance against antibiotics and various environmental stresses4,5. Notably, MsbA, a member of the ATP-binding cassette superfamily, plays a crucial role in LPS biosynthesis by facilitating the flipping of the LPS-precursor lipooligosaccharide (LOS) from the cytoplasmic side of the inner membrane to the periplasmic side6,7.

LPS在维持有效的外膜屏障,提供对抗生素和各种环境压力的抗性方面起着至关重要的作用4,5。值得注意的是,作为ATP结合盒超家族成员的MsbA通过促进LPS前体脂寡糖(LOS)从内膜的细胞质侧翻转到周质侧,在LPS生物合成中起着至关重要的作用6,7。

The essentiality of E. coli MsbA is evident from studies reporting that MsbA knockouts are lethal7,8, making this transporter an attractive target for developing antibiotics that inhibit function thereby combating multidrug-resistant infections.Numerous investigations have shed light on the function, structure, and mechanism of MsbA9,10,11,12,13,14,15,16,17.

大肠杆菌MsbA的重要性从报道MsbA敲除是致命的7,8的研究中显而易见,这使得该转运蛋白成为开发抑制功能从而对抗多药耐药性感染的抗生素的有吸引力的靶标。大量研究揭示了MsbA9,10,11,12,13,14,15,16,17的功能,结构和机制。

MsbA forms a homodimer and exhibits a topology similar to other ABC transporters, comprising two NBDs and two transmembrane domains (TMDs) containing 12 transmembrane helices18,19. More specifically, the NBDs contain a RecA-type ATP binding core (RecAcore), composed of six beta sheets and four alpha helices (helices A-D), that is decorated with three additional beta sheets and an alpha-helical subdomain (ABCα)20,21.

MsbA形成同型二聚体,并表现出与其他ABC转运蛋白相似的拓扑结构,包括两个NBD和两个跨膜结构域(TMD),其中包含12个跨膜螺旋18,19。更具体地说,NBD包含一个RecA型ATP结合核心(RecAcore),由六个β折叠和四个α螺旋(螺旋a-D)组成,并用三个额外的β折叠和一个α螺旋子域(ABCα)20,21。

Other conserved motifs of the NBDs of MsbA include the hydrophobic residue of the A-loop (residue 351), Walker A or P-loop (GxxGxGK(S/T), where x denotes any.

MsbA的NBD的其他保守基序包括A环(残基351),Walker A或P环(GxxGxGK(S/T)的疏水残基,其中x表示任何。

(1)

(1)

[P]total represents total protein concentration:$${\left[P\right]}_{{total}}=\left[P\right]+\,{\varSigma }_{{{{{{\rm{i}}}}}}=1}^{n}\left[P{L}_{i}\right]=\left[P\right]+\,{\varSigma }_{{{{{{\rm{i}}}}}}=1}^{n}\left[P\right]{[L]}^{i}{\varPi }_{j=1}^{i}{K}_{{Aj}}$$

[P] total表示总蛋白质浓度:$${\左[P \右]}}{{总}}=\左[P \右]+\,{\ varSigma}{{{{\ rm{i}}}}}=1}^{n}\左[P{L}_{i} \right]=\left[P\right]+\,{\varSigma}}u{{{{{\ rm{i}}}}=1}^{n}\left[P\right]{[L]}^{i}{\varPi}}uj=1}^{i}{K}_{{Aj}}$$

(2)

(2)

The above equation can be rearranged to calculate the mole fraction (Fn) of PLn:$${F}_{n}=\frac{\left[P{L}_{n}\right]}{{\left[P\right]}_{{total}}}=\frac{{\left[L\right]}_{{free}}^{n}{\prod }_{j=1}^{n}{K}_{{Aj}}}{1+{\sum }_{i=1}^{n}{\left[L\right]}_{{free}}^{i}{\prod }_{j=1}^{i}{K}_{{Aj}}}$$.

可以重新排列上述方程式以计算PLn的摩尔分数(Fn):$${F}_{n} =\frac{\left[P{L}_{n} \right]}{{\left[P\right]}}{{{total}}=\frac{{\left[L\right]}}{{free}}^{n}{\prod}}{uj=1}^{n}{K}_{{Aj}}}{1+{\ sum}}{i=1}^{n}{\左[右]}}}{{自由}}^{i}{\ prod}}{j=1}^{i}{K}_{{{Aj}}$$。

(3)

(3)

where [L]free is the free ligand concentration at equilibrium, which can be calculated with known [P]total:$${\left[L\right]}_{{free}}={\left[L\right]}_{{total}}-{\left[P\right]}_{{total}}{\sum }_{i=1}^{n}i{F}_{i}$$

其中[L]free是平衡时的游离配体浓度,可以用已知的[P]总量计算:$${\左[L \右]}{{自由}={\左[L \右]}{{{总}-{\左[P \右]}{{总}{\和}{i=1}^{n}i{F}_{我}$$

(4)

(4)

To obtain KAn, the sequential ligand binding model was globally fit to the mole fraction data by minimization of pseudo-\({\chi }^{2}\) function:$${\chi }^{2}=\,{\sum }_{i=0}^{n}{\sum }_{j=1}^{d}{({F}_{i,\, j,\exp }-{F}_{i,\, j,{calc}})}^{2}$$

为了获得KAn,通过最小化伪函数:$${{chi}^{2}=\,{sum}{i=0}^{n}{sum}{j=1}^{d},将顺序配体结合模型全局拟合到摩尔分数数据{({F}_{i,\,j,\ exp}-{F}_{i,\,j,{计算}}^{2}$$

(5)

(5)

where n is the number of bound ligands and d is the number of the experimental mole fraction data points.Sample preparation for single-particle cryoEMTo prepare samples for cryoEM studies, MsbA was pre-saturated with copper(II). Excess copper and glycerol were removed using a desalting column.

其中n是结合配体的数量,d是实验摩尔分数数据点的数量。单颗粒冷冻电镜的样品制备为了制备用于冷冻电镜研究的样品,将MsbA用铜(II)预饱和。使用脱盐柱除去过量的铜和甘油。

Peak fractions were pooled and concentrated to 10 mg ml−1. Vitrification was performed using a Vitrobot Mark IV (Thermo Fisher) operating at 8 °C and 100% humidity. A total of 3.5 μL of sample in cryoEM buffer (150 mM NaCl, 20 mM TRIS, 0.065% C10E5, pH 7.4) incubated with 1 mM MgCl2, 1 mM ATP and 194 µM KDL at 4 °C for 6 h was applied to holey carbon grids (Quantifoil 300 mesh Cu 1.2/1.3) glow-discharged for 30 s.

合并峰级分并浓缩至10mg/ml。使用在8℃和100%湿度下操作的Vitrobot Mark IV(Thermo Fisher)进行玻璃化冷冻。将在cryoEM缓冲液(150mM NaCl,20mM TRIS,0.065%C10E5,pH 7.4)中的总共3.5μL样品与1mM MgCl 2,1mM ATP和194μMKDL在4℃下孵育6小时,应用于多孔碳栅(Quantifoil 300目Cu 1.2/1.3)辉光放电30秒。

The grids were blotted for 5 s at blotting force 1 using standard Vitrobot filter paper (Ted Pella, 47000-100), and then plunged into liquid ethane.Data collection for single-particle cryoEMData collection was performed at the Advanced Electron Microscopy Facility at the University of Chicago. The dataset was collected as movie stacks with a Titan Krios electron microscope operating at 300 kV, equipped with a K3 direct detector camera.

使用标准Vitrobot滤纸(Ted Pella,47000-100)在吸墨力1下将网格吸干5秒,然后浸入液体乙烷中。单粒子cryoEMData收集的数据收集是在芝加哥大学的高级电子显微镜设备上进行的。该数据集被收集为电影堆栈,其中Titan Krios电子显微镜在300 kV下运行,配备有K3直接探测器相机。

Images were recorded at a nominal magnification of 81,000× at super-resolution counting mode by image shift. The total exposure time was set to 4 s with a frame recorded every 0.1 s, resulting in 40 frames in a single stack with a total exposure around 50 electrons/Å2. The defocus range was set at −1.0 to −2.5 μm.

通过图像移位,在超分辨率计数模式下以81000倍的标称放大率记录图像。总曝光时间设置为4秒,每0.1秒记录一帧,导致单个堆栈中有40帧,总曝光量约为50个电子/Å2。散焦范围设置为-1.0至-2.5μm。

See Supplementary Table 4 for the details of data collection parameters.Image processing for single-particle cryoEMCollected movies were processed using CryoSPARC59 and RELION60. The detailed data processing flow is shown in Supplementary Fig. 13. Briefly, stage drift and anisotropic motion of the stack images wer.

有关数据收集参数的详细信息,请参见补充表4。单粒子冷冻的图像处理使用CryoSPARC59和RELION60处理收集的电影。详细的数据处理流程如补充图13所示。简要介绍了叠加图像的阶段漂移和各向异性运动。

Data availability

数据可用性

MsbA cryoEM structures and maps have been deposited in the PDB and EMDB as follows: 8TSO and EMD-41596, 8TSP and EMD-41597, 8TSQ and EMD-41598, 8TSS and EMD-41560; and 8TSR and EMD-41599. Previously reported protein structures used in this study are: 3B5W (open, inward-facing MsbA), 8DMO (open, inward-facing MsbA), 6BL6 (open, inward-facing Salmonella typhimurium MsbA), 8DMM (vanadate-trapped MsbA bound to KDL), 6BPL (MsbA in complex with LPS and G907), and 7BCW (vanadate-trapped MsbA).

MsbA cryoEM结构和图谱已保存在PDB和EMDB中,如下所示:8TSO和EMD-41596、8TSP和EMD-41597、8TSQ和EMD-41598、8TSS和EMD-41560;和8TSR和EMD-41599。本研究中使用的先前报道的蛋白质结构是:3B5W(开放的,向内的MsbA),8DMO(开放的,向内的MsbA),6BL6(开放的,向内的鼠伤寒沙门氏菌MsbA),8DMM(钒酸盐捕获的MsbA与KDL结合),6BPL(与LPS和G907复合的MsbA)和7BCW(钒酸盐捕获的MsbA)。

Native MS data has been deposited at Zenodo (https://doi.org/10.5281/zenodo.10845033). Source data are provided with this paper..

本机MS数据已保存在Zenodo(https://doi.org/10.5281/zenodo.10845033)。本文提供了源数据。。

Code availability

代码可用性

Python code to determine individual equilibrium binding constants is available at https://github.com/LaganowskyLab (https://doi.org/10.5281/zenodo.11040823).

用于确定单个平衡结合常数的Python代码可在https://github.com/LaganowskyLab(笑声)(https://doi.org/10.5281/zenodo.11040823)。

ReferencesKamio, Y. & Nikaido, H. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry 15, 2561–2570 (1976).Article

参考文献Kamio,Y。&Nikaido,H。鼠伤寒沙门氏菌的外膜:磷脂头基在外部培养基中对磷脂酶c和溴化氰活化的葡聚糖的可及性。生物化学152561-2570(1976)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).Article

Nikaido,H。重新审视细菌外膜通透性的分子基础。微生物。分子生物学。修订版67593-656(2003)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Simpson, B. W. & Trent, M. S. Pushing the envelope: LPS modifications and their consequences. Nat. Rev. Microbiol. 17, 403–416 (2019).Article

Simpson,B.W。和Trent,M.S。推动信封:LPS修改及其后果。自然修订版微生物学。17403-416(2019)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).Article

Raetz,C.R。和Whitfield,C。脂多糖内毒素。年。生物化学评论。71635-700(2002)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Doerrler, W. T. Lipid trafficking to the outer membrane of Gram-negative bacteria. Mol. Microbiol. 60, 542–552 (2006).Article

Doerrler,W.T。脂质运输到革兰氏阴性菌的外膜。分子微生物学。60542-552(2006)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Okuda, S., Sherman, D. J., Silhavy, T. J., Ruiz, N. & Kahne, D. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat. Rev. Microbiol. 14, 337–345 (2016).Article

Okuda,S.,Sherman,D.J.,Silhavy,T.J.,Ruiz,N。&Kahne,D。脂多糖在外膜上的运输和组装:PEZ模型。自然修订版微生物学。14337-345(2016)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Polissi, A. & Georgopoulos, C. Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. Mol. Microbiol. 20, 1221–1233 (1996).Article

Polissi,A。&Georgopoulos,C。大肠杆菌msbA基因的突变分析和特性,编码必需的ABC家族转运蛋白。分子微生物。201221-1233(1996)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Doerrler, W. T., Reedy, M. C. & Raetz, C. R. An Escherichia coli mutant defective in lipid export. J. Biol. Chem. 276, 11461–11464 (2001).Article

Doerrler,W.T.,Reedy,M.C。和Raetz,C.R。一种脂质输出缺陷的大肠杆菌突变体。J、 生物。化学。27611461-11464(2001)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Dong, J., Yang, G. & McHaourab, H. S. Structural basis of energy transduction in the transport cycle of MsbA. Science 308, 1023–1028 (2005).Article

Dong,J.,Yang,G。&McHaourab,H.S。MsbA运输周期中能量转导的结构基础。科学3081023-1028(2005)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Mi, W. et al. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237 (2017).Article

Mi,W。等人。MsbA介导的脂多糖转运的结构基础。自然549233-237(2017)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lyu, J. et al. Structural basis for lipid and copper regulation of the ABC transporter MsbA. Nat. Commun. 13, 7291 (2022).Article

Lyu,J.等人。ABC转运蛋白MsbA脂质和铜调节的结构基础。国家公社。137291(2022)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ward, A., Reyes, C. L., Yu, J., Roth, C. B. & Chang, G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc. Natl Acad. Sci. USA 104, 19005–19010 (2007).Article

Ward,A.,Reyes,C.L.,Yu,J.,Roth,C.B。&Chang,G。ABC转运蛋白MsbA的灵活性:交替使用扭曲。程序。国家科学院。科学。美国10419005-19010(2007)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ho, H. et al. Structural basis for dual-mode inhibition of the ABC transporter MsbA. Nature 557, 196–201 (2018).Article

Ho,H.等人。ABC转运蛋白MsbA双模式抑制的结构基础。自然557196-201(2018)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Borbat, P. P. et al. Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis. PLoS Biol. 5, e271 (2007).Article

Borbat,P。P。等人。ATP水解诱导的ABC转运蛋白MsbA的构象运动。《公共科学图书馆·生物学》。5,e271(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zoghbi, M. E., Fuson, K. L., Sutton, R. B. & Altenberg, G. A. Kinetics of the association/dissociation cycle of an ATP-binding cassette nucleotide-binding domain. J. Biol. Chem. 287, 4157–4164 (2012).Article

Zoghbi,M.E.,Fuson,K.L.,Sutton,R.B。&Altenberg,G.A。ATP结合盒核苷酸结合结构域的缔合/解离循环的动力学。J、 生物。化学。2874157-4164(2012)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Moeller, A. et al. Distinct conformational spectrum of homologous multidrug ABC transporters. Structure 23, 450–460 (2015).Article

Moeller,A。等人。同源多药ABC转运蛋白的独特构象谱。结构23450-460(2015)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Padayatti, P. S. et al. Structural insights into the lipid A transport pathway in MsbA. Structure 27, 1114–1123 e1113 (2019).Article

Padayatti,P.S.等人。对MsbA中脂质A转运途径的结构见解。结构271114-1123 e1113(2019)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rees, D. C., Johnson, E. & Lewinson, O. ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10, 218–227 (2009).Article

Rees,D.C.,Johnson,E。和Lewinson,O。ABC transporters:改变的力量。Nat。Rev。Mol。Cell Biol。10218-227(2009)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Locher, K. P. Review. Structure and mechanism of ATP-binding cassette transporters. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 239–245 (2009).Article

Locher,K.P。评论。ATP结合盒转运蛋白的结构和机制。菲洛斯。事务处理。R、 社会责任。生物科学学士。364239-245(2009)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Dawson, R. J. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006).Article

Dawson,R.J。和Locher,K.P。细菌多药ABC转运蛋白的结构。自然443180-185(2006)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Thomas, C. & Tampe, R. Structural and mechanistic principles of ABC transporters. Annu. Rev. Biochem. 89, 605–636 (2020).Article

Thomas,C。&Tampe,R。ABC转运蛋白的结构和机械原理。年。生物化学评论。89605-636(2020)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Procko, E., O’Mara, M. L., Bennett, W. F., Tieleman, D. P. & Gaudet, R. The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J. 23, 1287–1302 (2009).Article

Procko,E.,O'Mara,M.L.,Bennett,W.F.,Tieleman,D.P。&Gaudet,R。ABC转运蛋白的机制:抗原肽转运蛋白结构和功能研究的一般教训。FASEB J.231287–1302(2009)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Galazzo, L. et al. The ABC transporter MsbA adopts the wide inward-open conformation in E. coli cells. Sci. Adv. 8, eabn6845 (2022).Article

Galazzo,L。等人。ABC转运蛋白MsbA在大肠杆菌细胞中采用宽内向开放构象。科学。Adv.8,eabn6845(2022)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Doerrler, W. T. & Raetz, C. R. ATPase activity of the MsbA lipid flippase of Escherichia coli. J. Biol. Chem. 277, 36697–36705 (2002).Article

Doerrler,W.T。&Raetz,C.R。大肠杆菌MsbA脂质翻转酶的ATPase活性。J、 生物。化学。27736697–36705(2002)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Eckford, P. D. & Sharom, F. J. Functional characterization of Escherichia coli MsbA: interaction with nucleotides and substrates. J. Biol. Chem. 283, 12840–12850 (2008).Article

Eckford,P.D。和Sharom,F.J。大肠杆菌MsbA的功能表征:与核苷酸和底物的相互作用。J、 生物。化学。28312840–12850(2008)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Siarheyeva, A. & Sharom, F. J. The ABC transporter MsbA interacts with lipid A and amphipathic drugs at different sites. Biochem. J. 419, 317–328 (2009).Article

Siarheyeva,A。&Sharom,F.J。ABC转运蛋白MsbA在不同位点与脂质A和两亲性药物相互作用。生物化学。J、 419317-328(2009)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Raetz, C. R. et al. Kdo2-lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4. J. Lipid Res. 47, 1097–1111 (2006).Article

Raetz,C.R。等人。大肠杆菌的Kdo2脂质A,一种通过TLR-4激活巨噬细胞的内毒素。J、 脂质研究471097-1111(2006)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Bolla, J. R., Agasid, M. T., Mehmood, S. & Robinson, C. V. Membrane protein-lipid interactions probed using mass spectrometry. Annu. Rev. Biochem. 88, 85–111 (2019).Article

Bolla,J.R.,Agasid,M.T.,Mehmood,S。&Robinson,C.V。使用质谱法探测膜蛋白-脂质相互作用。年。生物化学评论。88,85-111(2019)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Marcoux, J. & Robinson, CarolV. Twenty years of gas phase structural biology. Structure 21, 1541–1550 (2013).Article

Marcoux,J。和Robinson,CarolV。二十年的气相结构生物学。结构211541-1550(2013)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Robinson, C. V. From molecular chaperones to membrane motors: through the lens of a mass spectrometrist. Biochem. Soc. Trans. 45, 251–260 (2017).Article

Robinson,C.V。从分子伴侣到膜马达:通过质谱学家的镜头。生物化学。社会事务。45251-260(2017)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barrera, N. P., Di Bartolo, N., Booth, P. J. & Robinson, C. V. Micelles protect membrane complexes from solution to vacuum. Science 321, 243–246 (2008).Article

Barrera,N.P.,Di Bartolo,N.,Booth,P.J。&Robinson,C.V。胶束保护膜复合物从溶液到真空。科学321243-246(2008)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Laganowsky, A., Reading, E., Hopper, J. T. S. & Robinson, C. V. Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8, 639–651 (2013).Article

Laganowsky,A.,Reading,E.,Hopper,J.T.S。&Robinson,C.V。完整膜蛋白复合物的质谱分析。自然协议。8639-651(2013)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marcoux, J. et al. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc. Natl Acad. Sci. USA 110, 9704–9709 (2013).Article

Marcoux,J。等人。质谱揭示了核苷酸,脂质和药物与多药耐药外排泵结合的协同作用。程序。国家科学院。科学。美国1109704–9709(2013)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Allison, T. M. et al. Quantifying the stabilizing effects of protein–ligand interactions in the gas phase. Nat. Commun. 6, 8551 https://www.nature.com/articles/ncomms9551#supplementary-information (2015).Article

Allison,T.M.等人,《定量蛋白质-配体相互作用在气相中的稳定作用》。国家公社。68551个https://www.nature.com/articles/ncomms9551#supplementary-信息(2015)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Bechara, C. et al. A subset of annular lipids is linked to the flippase activity of an ABC transporter. Nat. Chem. 7, 255–262 (2015).Article

Bechara,C。等人。环状脂质的一个子集与ABC转运蛋白的翻转酶活性有关。自然化学。7255-262(2015)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Gault, J. et al. High-resolution mass spectrometry of small molecules bound to membrane proteins. Nat. Methods 13, 333–336 (2016).Article

Gault,J.等人。与膜蛋白结合的小分子的高分辨率质谱。《自然方法》13333–336(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cong, X., Liu, Y., Liu, W., Liang, X. & Laganowsky, A. Allosteric modulation of protein-protein interactions by individual lipid binding events. Nat. Commun. 8, 2203 (2017).Article

Cong,X.,Liu,Y.,Liu,W.,Liang,X。&Laganowsky,A。通过个体脂质结合事件对蛋白质-蛋白质相互作用的变构调节。国家公社。82203(2017)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).Article

Gupta,K。等人。界面脂质在稳定膜蛋白低聚物中的作用。自然541421-424(2017)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yen, H. Y. et al. PtdIns(4,5)P(2) stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018).Article

Yen,H.Y.等人,PtdIns(4,5)P(2)稳定GPCR的活性状态并增强G蛋白偶联的选择性。自然559423-427(2018)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y. et al. Selective binding of a toxin and phosphatidylinositides to a mammalian potassium channel. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-09333-4 (2019).Schrecke, S. et al. Selective regulation of human TRAAK channels by biologically active phospholipids. Nat. Chem.

Liu,Y.等人。毒素和磷脂酰肌醇与哺乳动物钾通道的选择性结合。国家公社。10https://doi.org/10.1038/s41467-019-09333-4(2019年)。Schrecke,S.等人。通过生物活性磷脂选择性调节人TRAAK通道。自然化学。

Biol. 17, 89–95 (2021).Article .

《生物学》第17期,第89-95页(2021年)。第[UNK]条。

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Agasid, M. T., Sorensen, L., Urner, L. H., Yan, J. & Robinson, C. V. The effects of sodium ions on ligand binding and conformational states of G protein-coupled receptors-insights from mass spectrometry. J. Am. Chem. Soc. 143, 4085–4089 (2021).Article

Agasid,M.T.,Sorensen,L.,Urner,L.H.,Yan,J。&Robinson,C.V。钠离子对G蛋白偶联受体配体结合和构象状态的影响来自质谱的见解。J、 美国化学。Soc.1434085–4089(2021年)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, Y. et al. Cupric ions selectively modulate TRAAK-phosphatidylserine interactions. J. Am. Chem. Soc. 144, 7048–7053 (2022).Article

Zhu,Y。等人。铜离子选择性调节TRAAK-磷脂酰丝氨酸相互作用。J、 美国化学。Soc.1447048–7053(2022年)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, S. et al. Capturing a rhodopsin receptor signalling cascade across a native membrane. Nature 604, 384–390 (2022).Article

Chen,S.等人。通过天然膜捕获视紫红质受体信号级联反应。《自然》604384–390(2022)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yen, H. Y. et al. Mass spectrometry captures biased signalling and allosteric modulation of a G-protein-coupled receptor. Nat. Chem. 14, 1375–1382 (2022).Article

Yen,H.Y.等人。质谱法捕获G蛋白偶联受体的偏向信号传导和变构调节。自然化学。141375-1382(2022)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Daneshfar, R., Kitova, E. N. & Klassen, J. S. Determination of protein−ligand association thermochemistry using variable-temperature nanoelectrospray mass spectrometry. J. Am. Chem. Soc. 126, 4786–4787 (2004).Article

Daneshfar,R.,Kitova,E.N。和Klassen,J.S。使用变温纳米电喷雾质谱法测定蛋白质-配体缔合热化学。J、 美国化学。Soc.1264786–4787(2004年)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Cong, X. et al. Determining membrane protein-lipid binding thermodynamics using native mass spectrometry. J. Am. Chem. Soc. 138, 4346–4349 (2016).Article

Cong,X。等人。使用天然质谱法测定膜蛋白脂质结合热力学。J、 美国化学。Soc.1384346–4349(2016)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Moghadamchargari, Z. et al. Intrinsic GTPase activity of K-RAS monitored by native mass spectrometry. Biochemistry 58, 3396–3405 (2019).Article

Moghadamchargari,Z。等人。通过天然质谱监测K-RAS的内在GTPase活性。生物化学583396-3405(2019)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Qiao, P. et al. Entropy in the molecular recognition of membrane protein-lipid interactions. J. Phys. Chem. Lett. 12, 12218–12224 (2021).Article

Qiao,P。等人。膜蛋白-脂质相互作用分子识别中的熵。J、 物理。化学。利特。121218-12224(2021)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Walker, T. et al. Dissecting the thermodynamics of ATP binding to GroEL one nucleotide at a time. ACS Cent. Sci. 9, 466–475 (2023).Article

Walker,T.等人剖析了ATP与GroEL一次结合一个核苷酸的热力学。ACS分。科学。9466-475(2023)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Klebe, G. Applying thermodynamic profiling in lead finding and optimization. Nat. Rev. Drug Discov. 14, 95–110 (2015).Article

Klebe,G。将热力学分析应用于铅的发现和优化。《药物目录》修订版。14,95-110(2015)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).Article

Marty,M.T.等人,《质量和离子迁移率谱的贝叶斯反卷积:从二元相互作用到多分散系综》。肛门。化学。874370–4376(2015)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. M. & Rock, C. O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6, 222–233 (2008).Article

Zhang,Y.M。和Rock,C.O。细菌中的膜脂质稳态。Nat。Rev。Microbiol。6222-233(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Parsons, J. B. & Rock, C. O. Bacterial lipids: metabolism and membrane homeostasis. Prog. Lipid Res. 52, 249–276 (2013).Article

Parsons,J.B。和Rock,C.O。细菌脂质:代谢和膜稳态。程序。脂质研究52249-276(2013)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Doshi, R. et al. Molecular disruption of the power stroke in the ATP-binding cassette transport protein MsbA. J. Biol. Chem. 288, 6801–6813 (2013).Article

Doshi,R。等人。ATP结合盒转运蛋白MsbA中功率中风的分子破坏。J、 生物。化学。2886801-6813(2013)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bonifer, C. & Glaubitz, C. MsbA: an ABC transporter paradigm. Biochem. Soc. Trans. https://doi.org/10.1042/BST20211030 (2021).Locher, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23, 487–493 (2016).Article

Bonifer,C。&Glaubitz,C。MsbA:ABC转运蛋白范例。生物化学。社会事务。https://doi.org/10.1042/BST20211030(2021年)。Locher,K.P。ATP结合盒(ABC)转运蛋白的机制多样性。自然结构。分子生物学。23487-493(2016)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Laganowsky, A. et al. Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci. 19, 1031–1043 (2010).Article

Laganowsky,A。等人。截短的αA和αB晶体蛋白的晶体结构揭示了对眼晶状体功能重要的多分散性的结构机制。蛋白质科学。191031-1043(2010)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Article

Punjani,A.,Rubinstein,J.L.,Fleet,D.J。&Brubaker,M.A。cryoSPARC:快速无监督低温电磁结构测定的算法。自然方法14290-296(2017)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).Article

Scheres,S。H。W。RELION:实施贝叶斯方法来确定低温电磁结构。J、 结构。生物学180519-530(2012)。文章

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).Article

Pettersen,E.F.等人,《UCSF Chimera——探索性研究和分析的可视化系统》。J、 计算机。化学。251605-1612(2004)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2126–2132 (2004).Article

Emsley,P。&Cowtan,K。Coot:分子图形的模型构建工具。晶体学报。第节。D生物晶体学。602126-2132(2004)。文章

ADS

广告

Google Scholar

谷歌学者

Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).Article

Adams,P.D.等人。PHENIX:一个基于Python的大分子结构解决方案综合系统。晶体学报。D、 生物。晶体学。66213-221(2010)。文章

ADS

广告

CAS

CAS

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).Article

Pettersen,E.F.等人,《UCSF ChimeraX:研究人员、教育者和开发人员的结构可视化》。蛋白质科学。30,70-82(2021)。文章

CAS

CAS

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by National Institutes of Health (NIH) under grant numbers (R01GM121751, R01GM139876, R01GM138863, and RM1GM145416 to A.L.; and R35GM143052 to M.Z.). We thank the staff at the University of Chicago Advanced Electron Microscopy (RRID: SCR_019198) for the help with cryo-EM data collection.

下载参考文献致谢这项工作得到了美国国立卫生研究院(NIH)的资助(A.L.的R01GM121751,R01GM139876,R01GM138863和RM1GM145416;M.Z.的R35GM143052)。我们感谢芝加哥大学高级电子显微镜(RRID:SCR\U 019198)的工作人员在低温电磁数据收集方面的帮助。

We thank the Research Computing Center at the University of Chicago for the support of this work by providing the computing resources of the Beagle3 HPC cluster funded by NIH (S10OD028655).Author informationAuthors and AffiliationsDepartment of Chemistry, Texas A&M University, College Station, TX, USATianqi Zhang, Jixing Lyu, Sangho D.

我们感谢芝加哥大学研究计算中心通过提供由NIH资助的Beagle3 HPC集群的计算资源(S10OD028655)对这项工作的支持。作者信息作者和附属机构德克萨斯农工大学化学系,德克萨斯州大学城,USATianqi Zhang,Jixing Lyu,Sangho D。

Yun, Elena Scott & Arthur LaganowskyDepartment of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USABowei Yang & Minglei ZhaoAuthorsTianqi ZhangView author publicationsYou can also search for this author in.

Yun,Elena Scott&Arthur Laganowsky芝加哥大学生物化学与分子生物学系,伊利诺伊州芝加哥,USABowei Yang&Minglei ZhaoAuthorsTianqi ZhangView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarJixing LyuView author publicationsYou can also search for this author in

PubMed谷歌学者Jixing LyuView作者出版物您也可以在

PubMed Google ScholarBowei YangView author publicationsYou can also search for this author in

PubMed Google ScholarBowei YangView作者出版物您也可以在

PubMed Google ScholarSangho D. YunView author publicationsYou can also search for this author in

PubMed Google ScholarSangho D.YunView作者出版物您也可以在

PubMed Google ScholarElena ScottView author publicationsYou can also search for this author in

PubMed Google ScholarElena ScottView作者出版物您也可以在

PubMed Google ScholarMinglei ZhaoView author publicationsYou can also search for this author in

PubMed Google Scholarmanglei ZhaoView作者出版物您也可以在

PubMed Google ScholarArthur LaganowskyView author publicationsYou can also search for this author in

PubMed Google ScholarArthur LaganowskyView作者出版物您也可以在

PubMed Google ScholarContributionsT.Z. and A.L. designed the research. T.Z. and J.L. expressed and purified MsbA. S.Y. and E.S. helped prepare MS samples. T.Z. performed mass spectrometry experiments. T.Z. and A.L. analyzed the data. B.Y., M.Z., and A.L. collected and processed cryo-EM data and built and refined atomic models.

PubMed谷歌学术贡献者。Z、 A.L.设计了这项研究。T、 Z.和J.L.表达并纯化了MsbA。S、 Y.和E.S.帮助准备了MS样品。T、 Z.进行了质谱实验。T、 Z.和A.L.分析了数据。B、 Y.,M.Z。和A.L.收集并处理了低温电磁数据,建立并改进了原子模型。

T.Z. and A.L. wrote the manuscript with input from the other authors.Corresponding authorCorrespondence to.

T、 Z.和A.L.在其他作者的意见下撰写了手稿。对应作者对应。

Arthur Laganowsky.Ethics declarations

阿瑟·拉加诺夫斯基。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Movie 1Reporting SummarySource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充电影1报告摘要源数据源数据权限和权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleZhang, T., Lyu, J., Yang, B. et al. Native mass spectrometry and structural studies reveal modulation of MsbA–nucleotide interactions by lipids.

转载和许可本文引用本文Zhang,T.,Lyu,J.,Yang,B。等人。天然质谱和结构研究揭示了脂质对MsbA-核苷酸相互作用的调节。

Nat Commun 15, 5946 (2024). https://doi.org/10.1038/s41467-024-50350-9Download citationReceived: 08 September 2023Accepted: 07 July 2024Published: 15 July 2024DOI: https://doi.org/10.1038/s41467-024-50350-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》155946(2024)。https://doi.org/10.1038/s41467-024-50350-9Download引文接收日期:2023年9月8日接收日期:2024年7月7日发布日期:2024年7月15日OI:https://doi.org/10.1038/s41467-024-50350-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

Subjects

主题

BiophysicsLipidsMass spectrometryStructural biology

生物物理脂质质谱结构生物学

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。